MA103 - Class 7

GEVERAL REMARKS . good assignments · last few weeks

TOPOLOGICAL/GEOMETRICAL APPROACH TO IR

\n
$$
\begin{array}{ll}\n\mathbb{D} & \mathbb{N} \\
\mathbb{D} & \mathbb{Z} \\
\mathbb{D} & \mathbb{Z} \\
\mathbb{D} & \mathbb{Z} \\
\mathbb{D} & \mathbb{D} \\
\
$$

There is an "intermediate" step between Q and R: the set of ALGEBRAIC NUMBERS of The main thing that works Nicers in R but not in Q a t are SEQUENCES.

$$
\begin{array}{ccc}\n\overline{a} & a_{m,5} & t \\
\end{array}
$$

This is a bounded decreasing sequence in Q (therefore in A) that has no limit in A (therefore in Q). Q Can you prove it? Can you prove that $\forall g \in Q$, the sequence doos not converge to q?

DEF (convERCENT SEQUENCE) Let
$$
(a_n)_{n\in\mathbb{N}}
$$
 be a sequence in R and L in R. We say that (a_n) converges to L if $\forall \epsilon > 3$ and L in R. We say that (a_n) converges to L if $\forall \epsilon > 3$ and L is the sum of $a_n - L \leq \epsilon$.

$$
\frac{ExE}{2.4} = 2.4 Let (a_m)_{m\in\mathbb{N}} be a read sequence with limit L.\nIf $Ym\in\mathbb{N}$ $a_m\geq 0$, then $L\geq 0$.
\n
$$
\frac{Rem}{am} \stackrel{\text{def}}{=} \frac{1}{3} \text{ and true that } \frac{Im}{am} \geq 0 \Rightarrow L>0.
$$
\n
$$
\frac{Cam}{am} \stackrel{\text{def}}{=} \frac{Im}{am} \stackrel{\text{def}}{=} \frac{Im}{am} \frac{Im}{am} \stackrel{\text{def}}{=} \frac{Im}{am} \frac{Im}{am} \stackrel{\text{def}}{=} \frac{Im}{am} \frac{Im}{am} \stackrel{\text{def}}{=} \frac{Im}{am} \frac{Im}{am} \frac{Im}{am} \stackrel{\text{def}}{=} \frac{Im}{am} \frac{Im}{am}
$$
$$

New EXERCISE Let SER be a non- empty, upper bounded set of
\nreal numbers. Then there exists a sequence
$$
(a_n)_n
$$
 in S (with all
\nthe elements in S) such that
\n
$$
\lim_{n \to \infty} a_n = \sup(S).
$$
\nTRY IT ~~BEFOIE~~ readings the hinds.

\n① What happens if S is $\frac{1}{2}x$?

\n⑤ $\frac{1}{2}x$ = 0.01?

\n① Let $a^* := \sup(S)$. Then:

\n① Let $a^* := \sup(S) \cdot \frac{1}{2}b$ for all a_n and b_n are not independent.

\n② Solve need to find a sequence $\sum_{i=1}^{n} a_i b_i$ for all $i \in \mathbb{N}$.

\n③ Let $a^* := \sup(S) \cdot \frac{1}{2}b$ for all a_n and a_n and a_n are not independent.