MA210 - Class 3

$$
(f_{\theta} \circ 3_{\theta^{2}} \text{Id}_{A_{n-1}} , 3_{\theta} \circ f_{\theta^{2}} \text{Id}_{B_{n}} , ...)
$$

Question 6	$a_n := \pm \circ f_n$ m - digit's $\frac{1}{2}, 0, 0$ stains of. ms	
600	5 and 40	
a) Show	$4m \times 3$,	$a_n = 2a_{n-1} + a_{n-2}$
31	3 (1) 4 (1) 3 (1) 1 (1) <math< td=""></math<>	

amb (2+ ③. Let
$$
\underline{x} \in A_m^o
$$
 (resp. A_m^i up to $\underline{z}^{\text{with}} \underline{w}$ of $\underline{z}^{\text{with}} \underline{w}$ (resp. A_m^i up to $\underline{z}^{\text{with}}$) (where $\underline{z}^{\text{with}} \in \mathbb{P}(z_1, z_1, z_2, z_3, z_4)$ is a good way, we find:

\nTherefore $\underline{x} \in A_{m-1}^{-1} \cup A_{m-1}^{-1}$, which are denoted by $\underline{z}^{\text{with}} \in \mathbb{P}(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_4, z_6, z_7, z_8, z_9, z_1, z_2, z_4, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_7, z_8, z_9, z_1, z_2, z_3, z_4, z_7, z_7, z_8, z_9, z_1, z_2, z_4, z_7, z_7, z_8, z_8, z_9, z_1, z_2, z_3$

$$
\begin{array}{ccc}\n\bullet & & \\
\hline\n\bullet & & \\
\hline\n\end{array}\n\quad\n\begin{array}{ccc}\n\bullet & & \\
\hline\n\end{array}
$$

$$
ConL_{m_{1}}\left| A_{m}\right| = |A_{n}^{-1}| + |A_{n}^{0}| + |A_{m}^{1}|
$$
\n
$$
= |A_{m_{-1}}| + |A_{m_{-1}}^{-1}| + |A_{m_{-1}}^{1}| + |A_{m_{-1}}^{0}| + |A_{m_{-1}}^{-1}|
$$
\n
$$
= 2 |A_{m_{-1}}| + |A_{m_{-2}}|
$$

Question 2 SUMMER 2015

- (a) Let a_n be the number of solutions, for any r, of $x_1 + x_2 + \cdots + x_r = n$ such that each term x_i is either 1 or 2. In other words, it is the number of ways to write n as an ordered sum of 1's and 2's. For example,
	- $a_1 = 1$: The only solution is $1 = 1$ $(x_1 = 1, r = 1)$. $a_2 = 2$: The two solutions are $1 + 1 = 2$ $(x_1 = x_2 = 1, r = 2)$, and $2 = 2$ $(x_1 = 2,$ $r=1$).
	- $a_3 = 3$: The three solutions are $1 + 1 + 1 = 3$ $(x_1 = x_2 = x_3 = 1, r = 3), 1 + 2 = 3$
 $(x_1 = 1, x_2 = 2, r = 2),$ and $2 + 1 = 3$ $(x_1 = 2, x_2 = 1, r = 2).$
	- (i) Prove that $a_4 = 5$.
	- (ii) Prove that the sequence satisfies the recurrence relation

$$
a_n = a_{n-1} + a_{n-2}
$$
 for $n \ge 2$.

a) caseA: no 2s. Then
$$
3m3^{+}
$$
 1 $poss/bith3$: HHH11
\ncaseB: one 2. 2+111; 12211; 11112 one possibld
\ncaseC: two 2s. 2+2 is the only possibldry
\n(a) Let $A_m := \{x \in U_1 |1,1\}^4 \mid \sum x_3 = m\}$.
\nFix $m \ge 3$ (If 15 should proved for $m = 2$).
\n $B_m := \{x \in A_m | x_1 = 1\}$ $C_m = \{x \in A_m | x_1 \ge 1\}$.
\nFor $x \in \{1,2\}^4$, let $\overline{x} := (x_2, ..., x_n)$, which is lat
\nif denote the same seq. but truncated.
\nConsider $\{\cdot \}$ $B_m \longrightarrow A_{m-1}$ $\{\cdot \}$ $C_m \longrightarrow A_{m-2}$

 $\overline{B} \times \longrightarrow \overline{X} \qquad \qquad \times \longrightarrow \overline{X}$

These functions have left and might inverses, which are $J_8: A_{m-1} \longrightarrow B_{m}$ $J_2: A_{m-2} \longrightarrow C_{m}$
 $J_8: A_{m-3} \longrightarrow C_{m}$ Therefore we have $|A_n| = |B_n| + |C_n| = |A_{n-1}| + |A_{n-2}|$ 口

(b) Find the generating function of the sequence given by the recurrence relation

$$
b_n=b_{n-1}+b_{n-2}\text{ for }n\geq 2,\quad b_0=2,\quad b_1=1.
$$

b) We have to note the def. of gen.
$$
f_m
$$
:
\n
$$
\int_{r}^{r} (x) = \sum_{m=0}^{\infty} b_m x^m = 2 + x + \sum_{m=2}^{\infty} b_m x^m
$$
\n
$$
= 2 + x + \sum_{m=2}^{\infty} (b_{m-1} + b_{m-1}) x^m
$$
\n
$$
= 2 + x + \sum_{m=1}^{\infty} b_{m-1} x^m + \sum_{m=2}^{\infty} b_{m-2} x^m
$$
\n
$$
= 2 + x + x + \sum_{m=1}^{\infty} b_m x^m + x \sum_{m=0}^{\infty} b_m x^m
$$
\n
$$
= 2 + x + x + \left(\oint_{r} (b) - 2\right) + x^2 \oint_{r} (x)
$$
\n
$$
= 2 + x + x = \left(x^2 - x - 1\right) \oint_{r} (x)
$$
\nwhich is, $\oint_{r} (x) = \frac{-z + x}{x^2 + x - 1}$