MA210 - Class 9

CODES . Practical reasons . How to actually apply it

FORMAL DEFINITION (CE 10,1)

- (2) d-evrore-detecting. $\forall c \in C \ \forall x \in \{0,1\}^n$, $d_{\mu}(x,c) \in d \ \land x \neq c$ $\Rightarrow x \notin C$. $\iff 5(C) > d_{\mu}(x,c) \in d \ \land x \neq c$
- (3) d-voron-correcting. Yee C \forall x \in \{0,1\}, ol \((x,c) \) sod, then
 the many t C-margh. of x exists and is c.
 \(\sigma \) \(\sigma \) \(\sigma \) \(\sigma \) \(\sigma \)

STANDARD - PARITY CHECK iMPLEMENTATION.

Tollow the referenced link.

- 3. You are asked to design a binary code for a certain application. For technical reasons, the code must satisfy the following conditions:
 - (i) at most three consecutive 1s are allowed in every codeword;
- (ii) every 0 must be preceded or followed by another 0. (In other words, no codeword should start like $01\ldots$, end like $\ldots 10$, or look like $\ldots 101\ldots$)
- (a) Give all possible codewords of length 5.

You must design a code of length 125. So let C be the code formed by taking all words of length 125 that satisfy the two conditions above.

(b) Show that for every codeword $\mathbf{x} \in C$, the weight $w(\mathbf{x})$ of \mathbf{x} satisfies $w(\mathbf{x}) \leq 75$.

MD MOST COMMON MISTAKE: "the way of reaching maximal weight is 11100 11100". This is sust folge.
"To maximize the weight we want to maximize the # of 111". Also FALSE

MO RIGHT IDEA: Pigeanhole principle

- (b) Suppose that C_1 and C_2 are two linear codes of length n.
 - Show that C₁ ∩ C₂ is a linear code.
 - (ii) Is $C_1 \cup C_2$ a linear code in general? Justify your answer by a proof or a counterexample

Def (LINEAR CODE) A code C= fo,11 :s linear if \(\nabla \text{x,y} \, \epsilon^{\text{c}}, \\ \text{x+y} \, \epsilon^{\text{c}}.

idea a) Take x, ye C, nCz. Then x+ye C, be C, is linear and x+yeCz be Cz is linear.

5) go for EASY examples. C, = 100,011, Cz = 100,101.

C, UCz = 100,01,101 which is NOT lineare since

10+01 & C, U Cz.

5. (a) Define the Hamming distance $d_H(x, y)$ of two words x, y in $\{0, 1\}^n$.

- (b) Let \boldsymbol{x} be a word in $\{0,1\}^n$ and let k be an integer such that $0 \le k \le n$.
 - (i) How many words \boldsymbol{y} in $\{0,1\}^n$ satisfy $d_H(\boldsymbol{x},\boldsymbol{y})=k$?
 - (ii) How many words \boldsymbol{y} in $\{0,1\}^n$ satisfy $d_H(\boldsymbol{x},\boldsymbol{y}) \leq k$?

Justify your answers.

(c) Suppose that C is a 2-error-correcting code. Explain why

$$|C| \le \frac{2^n}{1 + n + \binom{n}{2}}.$$

(d) Prove that there is no code C of length 8 such that $|C| \ge 7$ and $\delta(C) = 5$.

c) 2 ever convecting =>
$$\forall x, y \in C$$
, $N^2(x) \cap N^2(y) = \emptyset$.
Therefore we have $|\{0,1\}^{^{\circ}}| \Rightarrow \sum_{x \in C} |N^2(c)| = |C| \cdot \left[\binom{n}{2} + n + 1\right]$
A) from C .

(a) Let C be the following code of length 6:

$$C = \{\underbrace{000000}_{\textbf{LL}}, \, \underbrace{01010}_{\textbf{L}} 1, \, \underbrace{101010}_{\textbf{C}}, \, \underbrace{111000}_{\textbf{L}}, \, \underbrace{00011}_{\textbf{C}} 1, \, \underbrace{11111}_{\textbf{L}} 1 \}.$$

- (i) How many errors can C detect? And how many errors can C correct? Justify your answer.
- (ii) In order to improve the error-correcting properties of the code C, you add a 7-th bit at the end of each word, which must of course be 0 or 1.
 Describe <u>all</u> ways that a 7-th bit can be added to each word so that the resulting code can correct more errors than C can. Justify your answer.

(b) All codes in this question are binary codes.

For a word $\bar{\boldsymbol{x}} \in \{0,1\}^m$, $\bar{\boldsymbol{x}} = x_1x_2 \dots x_m$, and a word $\bar{\boldsymbol{y}} \in \{0,1\}^n$, $\bar{\boldsymbol{y}} = y_1y_2 \dots y_n$, define the *concatenation* $\bar{\boldsymbol{x}} \bullet \bar{\boldsymbol{y}}$ as the word of length m+n by putting the words behind each other: $\bar{\boldsymbol{x}} \bullet \bar{\boldsymbol{y}} = x_1x_2 \dots x_my_1y_2 \dots y_n$.

Similarly, for a code C_1 of length m and a code C_2 of length n, the concatenation $C_1 \bullet C_2$ is defined as $C_1 \bullet C_2 = \{ \bar{\boldsymbol{x}} \bullet \bar{\boldsymbol{y}} \mid \bar{\boldsymbol{x}} \in C_1, \ \bar{\boldsymbol{y}} \in C_2 \}.$

- (i) For \$\bar{x}_1\$, \$\bar{x}_2\$ ∈ {0, 1}ⁿ and \$\bar{y}_1\$, \$\bar{y}_2\$ ∈ {0, 1}ⁿ, find an expression of \$d_H(\bar{x}_1 \cdot \bar{y}_1\$, \$\bar{x}_2 \cdot \bar{y}_2\$) in terms of \$d_H(\bar{x}_1\$, \$\bar{x}_2\$) and \$d_H(\bar{y}_1\$, \$\bar{y}_2\$).
- (ii) Is it the case that for two binary codes C_1, C_2 we have $\delta(C_1 \bullet C_2) = \delta(C_1) + \delta(C_2)$? Justify your answer.

Suppose C_1 and C_2 are both linear codes.

(iii) Show that $C_1 \bullet C_2$ is also a linear code.