MA423-Class 5

Def Let S be a digrecte (finite) set. An (S -valued, digroete time)
STOchastic Process is a sequence X_{0}, X_{1}, \ldots of random
variables with values in S.
Such a stich. process is called a Markov chain if $\forall t \in \mathbb{N}, \forall r_{0}, x_{1}, \ldots, x_{4} \in S$ we have

$$
\mathbb{P}\left[x_{t+1}=r_{t+1} \mid x_{0}=r_{0}, \ldots, x_{t}=r_{t}\right]=\mathbb{P}\left[x_{t+1}=r_{t+1} \mid x_{t}=r_{t}\right] .
$$

1. (Submit, 4pts) A consumer who purchases one of two brands of soap powder every week is influenced by her choice of the previous week but not by earlier experience. If she purchased brand A the previous week, her current purchase would be of the same brand with probability $3 / 4$ and brand B with probability $1 / 4$. If she purchased brand B the previous week, the probability she would again purchase brand B is $1 / 2$, and the probability of purchasing A is also $1 / 2$.
(a) Model this stochastic process as a time-homogeneous Markov chain, where the brand purchased in Week t is the state of the process at time t. Write the transition matrix P of the Markov chain.
(b) Compute P^{2}. Interpret the values of P^{2}.
(c) Given that we use soap A in Week 0 , what is the probability that our sequence of purchases from Week 0 to Week 4 is A, B, A, A, B
a)

For all states $i, j \in\{0,1, \ldots, M-1\}$, the transition probability from state i to state j is

$$
p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

All of these probabilities can be presented in an $M \times M$ matrix P whose (i, j)-entry, that is, the entry in row i and column j, is equal to $p_{i j}$. This matrix is called the transition matrix.

Therefore we can write

$$
P=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.5 & 0.5
\end{array}\right)
$$

b) Computing P^{2} is an algebraic problem.

$$
P^{2}=\left(\begin{array}{ll}
0.6875 & 0.3215 \\
0.625 & 0.375
\end{array}\right)
$$

What does it mean?
The CHAPMAN-KOLMOGOROV: $: \quad P^{(m)}=P^{n}$
Where $P^{(n)}$ is the nth step transition probability matrix. which is, $\quad P_{i, j}^{(n)}=\mathbb{P}\left[X_{n}=J \mid X_{0}=i\right]$.
c) Given that we use soap A in week O, what is the probability that the purchase sequence is $A B A A B$?

Remember This is a Time homogeneous Morton chain.
Therefore $\mathbb{P}\left[X_{t+1}=j \mid X_{t}=i\right]=\mathbb{P}\left[X_{1}=J \mid X_{0}=i\right]=P_{i j}$

So we meed to compute $P_{A B} \cdot P_{B A} \cdot P_{A A} \cdot P_{A B}=0.02343$

PROBLEM 2 Problem about modelling a Markov chain. We obtain the following graph

c) We want to add a 0.2 chanche that the line estinguishes, how do we model this?

iRREDUCIBLE Morton chain: if every pair of states communicate with each other.

CLASS of STATES is a maximal get of mutually communicating states.
mo absorbing $s^{\text {tales }}$ are classes

TRANSIEN / RECURREN state A state A is transient if there exists a state B such that. for some $n, P_{A B}^{m}>0$ but $\forall i, P_{B_{A}}^{i}=0$. Otherwise, A is recurrent.

PERIOD of a state A is the gad of all the i for which $P_{A A}^{i}>0$.
If the period is 1, the state is APERIODiC
ERGODIC = APERIODIC + RECURRENT

PROBLEM 3 Find the classes, trausient/reecureent, absorbing, period.

PROBLEM 4

Theorem 9.1 (Steady State Probabilities). For every irreducible ergodic Markov chain, there exists non-zero probabilities $\pi_{j}, j=0,1, \ldots, M-1$ for the states, called the steady state probabilities, such that starting from an arbitrary state i,

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j}
$$

holds. Moreover, the π_{j} 's are the unique solutions to the steady state equations:

$$
\begin{aligned}
& \pi_{j}=\sum_{i=0}^{M-1} \pi_{i} p_{i j} \quad \text { for all } j=0,1, \ldots, M-1 \\
& \sum_{j=0}^{M-1} \pi_{j}=1
\end{aligned}
$$

Compute the STEADY STATE PROBABIULTIES

$$
\left\{\begin{array}{l}
\pi_{H H}=\frac{2}{3} \pi_{H H}+\frac{1}{2} \pi_{L H} \\
\pi_{H L}=\frac{1}{3} \pi_{H H}+\frac{1}{2} \pi_{L H} \\
\pi_{L H}=\frac{1}{2} \pi_{H L}+\frac{1}{6} \pi_{L L} \\
\pi_{L}=\frac{1}{2} \pi_{H L}+\frac{5}{6} \pi_{L L} \\
1=\pi_{H H}+\pi_{L H}+\pi_{H L}+\pi_{L L}
\end{array}\right\}
$$

$$
\begin{aligned}
& \pi_{H H}=\frac{3}{13} \\
& \pi_{H C}=\pi_{L H}=\frac{2}{13} \\
& \pi_{L L}=\frac{6}{13}
\end{aligned}
$$

NEW EXERCISE

A group of LSE students tries to promote their website www.ORrocks.co.uk by hacking the PageRand algorithm. It is 1998 and the Internet currently consists of 990 pages only. Besides their new website, they created 9 fake sites to promote it (thus the total number of pages reaching 1000). PageRank is computed using random teleportation with $d=0.2$. Assume the students cannot influence the old pages that do not link to the 10 new ones; however, they can add links arbitrarily among the new sites. Advise them on how to add links in order to maximise the PageRank of www.ORrocks.co.uk. What is the maximum value they can reach? Sites are also allowed to link themselves.
(1) We can treat each "group" of states as a unique state.

© Dy saining invio uccomm the U.C exepountion ganve we ger:

$$
\left.\left\{\begin{array}{l}
Z=\frac{1}{5} \frac{990}{1000}+\frac{4}{5} z \\
F=\frac{1}{5} \frac{9}{1000}+\frac{4}{5}(A-a+F-f) \\
A=\frac{1}{5} \frac{1}{1000}+\frac{4}{5}(a+f)
\end{array}\right\} \begin{array}{l}
z=95 / 100 \\
A+F=1 / 100
\end{array}\right\}
$$

