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Remarks

These lecture notes are based on several textbooks. The probability part in the first few chapters
follows Blitzstein & Hwang (2015). This is an excellent introduction into probability and covers
many more topics than we are able to discuss here. We rely mostly on Chapters 1, 3, 4, 5, 7, and
10 in this book.

One good reference for random number generations and simulations is for example Ross (2006).
For the financial part involving the binomial tree model, we follow the book by Shreve (2004),

one of the standard textbooks in this area. We rely mostly on Chapter 1.
We then study more advanced Monte Carlo techniques, in particular variance reduction tech-

niques. Some material in the lecture notes is taken from or was inspired by the books by Ross
(2006) and Glasserman (2004).

There are more advanced books available which cover related material far beyond what we are
able to cover in this introductory course. See, for example, Glasserman (2004), Seydel (2009), and
Asmussen & Glynn (2007).

For several concepts in this lecture notes, also Wikipedia turns out to be a good reference.

For Python, you can find much reading material online for free.
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Course overview

This course consists of 12 lectures, each of 3-hour length. There are 12 additional classes to deepen
the understanding of the course material and to practice programming in Python.

The first few chapters of the lecture notes serve as an introduction into probability. Probability
is a very important field with many different applications, one of which is finance - the main
application area studied in this course. Unfortunately, its concepts are often difficult to grasp
and sometimes counterintuitive. For this reason, we spend a considerable amount of time on
introducing these concepts. The programming language Python is introduced by implementing
the concepts we have learned – learning by doing.

We then discuss how random numbers can be generated and how to do Monte Carlo simulations,
which will be important tools to compute option prices in practice.

In the second part of the course, we concentrate on the application of the probabilistic methods
introduced in finance. We first study the fundamental ideas used to price financial products by
considering the well-studied binomial model for the financial market. We then introduce the Nobel-
prize winning Black-Scholes formula for option pricing. Finally we show how the probabilistic
methods introduced (Monte Carlo techniques, random number generation etc.) can be used to
approximate prices of financial derivatives which cannot be computed analytically.
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Anaconda and Jupyter notebooks

https://www.anaconda.com
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Chapter 1

Probability

1.1 What is probability?

• Appears in daily life: Luck. Coincidence. Randomness. Uncertainty. Risk. Doubt. Fortune.
Chance.

• Often used in a vague, casual way.

• Probability (theory): mathematical theory (a logical framework) to make these concepts
precise.

• Probability quantifies uncertainty and randomness in a principled way.

• Can be deeply counterintuitive.

• Probability is extremely useful in many fields, since it provides tools for understanding and
explaining variation, separating signal from noise, and modeling complex phenomena.

Applications of probability:

• Statistics

• Physics

• Biology

• Computer science

• Meteorology

• Political science

• Medicine

• Gambling

• Finance

9
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1.2 Sample spaces and pebble world

The mathematical framework for probability is built around sets. Imagine

• performing an experiment,

• resulting in one out of a set of possible outcomes.

• Before the experiment is performed, it is unknown which outcome will be the result;

• after, the result “crystallizes” into the actual outcome.

Definition 1. The sample space Ω of an experiment is the set of all possible outcomes of the
experiment. An event A is a subset of the sample space Ω, and we say that A occurred if the
actual outcome is in A.

If the sample space is finite, we can
illustrate it as a pebble world. Each
pebble represents an outcome, and an
event is a set of pebbles.

10



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

Some set theory ...

• Let Ω be the sample space of an experiment.

• Let A,B ⊂ Ω be events.

• Then the union A∪B is the event that occurs if and only if at least one of A and B occurs.

• The intersection A ∩B is the event that occurs if and only if both A and B occur.

• The complement Ac is the event that occurs if and only if A does not occur.

A is a set of 5 pebbles, B is a set of 4
pebbles, A∪B consists of the 8 pebbles
in A or B (including the pebble that is
in both), A ∩ B consists of the pebble
that is in both A and B, and Ac consists
of the 4 pebbles that are not in A.

De Morgan’s laws:

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc

since

• saying that it is not the case that at least one of A and B occur

• is the same as saying that A does not occur and B does not occur;

• saying that it is not the case that both occur

• is the same as saying that at least one does not occur.

Exercise: Check De Morgan’s laws for the example sample space of the last two slides.

Example 2 (Coin tosses).

• A coin is flipped 10 times.

• Writing Heads as H and Tails as T , a possible outcome (pebble) is HHHTHHTTHT .

• The sample space is the set of all possible strings of length 10 of H’s and T ’s.

• We can (and will) encode H as 1 and T as 0, so that an outcome is a sequence (ω1, · · · , ω10)

with ωj ∈ {0, 1}, and the sample space is the set of all such sequences. [Here, ‘∈’ stands for
‘is an element of.’]

11
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Example (Coin tosses (continued)). Now let’s look at some events:

• Let A1 be the event that the first flip is Heads. As a set,

A1 = {(1, ω2, · · · , ω10) : ωj ∈ {0, 1} for 2 ≤ j ≤ 10}.

Saying that A1 occurs is the same thing as saying that the first flip is Heads. Similarly, let
Aj be the event that the jth flip is Heads for j = 2, 3, · · · , 10.

• Let B be the event that at least one flip was Heads. As a set,

B =

10⋃
j=1

Aj

Example (Coin tosses (continued)).

• Let C be the event that all the flips were Heads. As a set,

C =

10⋂
j=1

Aj

• Let D be the event that there were at least two consecutive Heads. As a set,

D =

9⋃
j=1

(Aj ∩Aj+1)

Example 3 (Pick a card, any card).

• Pick a card from a standard deck of 52 cards. The sample space Ω is the set of all 52 cards
(so there are 52 pebbles, one for each card)

• Consider the following events

– A: card is an ace.

– B: card has a black suit.

– D: card is a diamond.

– H: card is a heart.

• As a set, H consists of 13 cards.

• We can create various other events in terms of A,B,D,H.

• For example, A ∩H is the event that the card is the Ace of Hearts, A ∪D ∪H is the event
that the card is red or an ace.

12
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1.3 Naive definition of probability

Historically, the earliest definition of the probability of an event was to count the number of ways
the event could happen and divide by the total number of possible outcomes for the experiment.

Definition 4. Let A be an event for an experiment with a finite sample space Ω. The naive
probability of A is

Pnaive[A] =
|A|
|Ω| =

number of outcomes in A

total number of outcomes in Ω

(We use |A| to denote the size of A.)

Pnaive[A] =
5

9
;

Pnaive[B] =
4

9
;

Pnaive[A ∪B] =
8

9
;

Pnaive[A ∩B] =
1

9
.

Moreover,

Pnaive[A
c] =

4

9
;

Pnaive[B
c] =

5

9
; ...

In general, for an arbitrary event C,

Pnaive[C
c] =

|Cc|
|Ω| =

|Ω| − |C|
|Ω| = 1− |C|

|Ω| = 1− Pnaive[C].

1.4 Counting & combinatorics

Calculating the naive probability of an event A involves counting the number of pebbles in A and
in the sample space Ω.

Theorem 5 (Multiplication rule). Consider a compound experiment consisting of two sub-
experiments, Experiment A and Experiment B. Suppose that Experiment A has n possible out-
comes, and for each of those outcomes Experiment B has m possible outcomes. Then the compound
experiment has nm possible outcomes.

Corollary 6 (Subsets). A set with n elements has 2n subsets, including the empty set ∅
and the set itself. This follows from the multiplication rule since for each element, we can
choose whether to include it or exclude it. For example, the set {1, 2, 3} has the 8 subsets:
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

13



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

Theorem 7 (Sampling with replacement). Consider n objects and making k choices from them,
one at a time with replacement (i.e., choosing a certain object does not preclude it from being
chosen again). Then there are nk possible outcomes.

For example, imagine a jar with n balls, labeled from 1 to n. We sample balls one at a time with
replacement, meaning that each time a ball is chosen, it is returned to the jar. Each sampled ball
is a sub-experiment with n possible outcomes, and there are k sub-experiments. Thus, by the
multiplication rule there are nk ways to obtain a sample of size k.

Theorem 8 (Sampling without replacement). Consider n objects and making k choices from
them, one at a time without replacement (i.e., choosing a certain object precludes it from being
chosen again). Then there are n(n − 1) · · · (n − k + 1) possible outcomes, for k ≤ n (and 0

possibilities for k > n).

Example 9 (Two dice). If we roll two fair dice, which is more likely: a sum of 11 or a sum of 12?

• Label the dice A and B, and consider each die to be a sub-experiment.

• By the multiplication rule, there are 36 possible outcomes for ordered pairs of the form (value
of A, value of B), and they are equally likely by symmetry.

• Of these, (5, 6) and (6, 5) are favorable to a sum of 11, while only (6, 6) is favorable to a
sum of 12.

• Therefore a sum of 11 is twice as likely as a sum of 12; the probability is 1/18 for the former,
and 1/36 for the latter.

Example 10 (Committees and teams). Consider a group of four people. How many ways are
there to break the people into two teams of two?

• By the multiplication rule, there are 4 ways to choose the first person on the committee and
3 ways to choose the second person on the committee,

• but this counts each possibility twice, since picking 1 and 2 to be on the committee is the
same as picking 2 and 1 to be on the committee.

• Since we have overcounted by a factor of 2, the number of possibilities is (4 · 3)/2 = 6.

14
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1.5 Binomial coefficients
A binomial coefficient counts the number of subsets of a certain size for a set, such as the number
of ways to choose a committee of size k from a set of n people. We are counting the number of
ways to choose k objects out of n, without replacement and without distinguishing between the
different orders in which they could be chosen.

Definition 11. For any nonnegative integers k and n, the binomial coefficient
(
n
k

)
, read as “n

choose k”, is the number of subsets of size k for a set of size n.

For example,
(
4
2

)
= 6. [see the previous slide]

Theorem 12 (Binomial coefficient formula). For 0 ≤ k ≤ n, we have(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
=

n!

(n− k)!k!

For k > n ≥ 0, we have
(
n
k

)
= 0.

Proof. Let A be a set with |A| = n. Any subset of A has size at most n, so
(
n
k

)
= 0 for k > n.

Now let k ≤ n. By the theorem “sampling without replacement”, there are n(n− 1) · · · (n− k+1)

ways to make an ordered choice of k elements without replacement. This overcounts each subset
of interest by a factor of k! (since we don’t care how these elements are ordered), so we can get
the correct count by dividing by k!.

Example 13 (Permutations of a word). How many ways are there to permute the letters in the
word LALALAAA?

• We just need to choose where the 5 A’s go (or, equivalently, just decide where the 3 L’s go).

• So there are (
8

5

)
=

(
8

3

)
=

8 · 7 · 6
3!

= 56 permutations.
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1.6 General definition of probability

The naive definition requires equally likely outcomes and can’t handle an infinite sample space.
We now generalize this notion of probability.

Definition 14 (General definition of probability). A probability space consists of a sample space
Ω and a probability function P which takes an event A ⊂ Ω as input and returns P [A], a real
number between 0 and 1, as output. The function P must satisfy the following axioms:

1. P [∅] = 0, P [Ω] = 1.

2. If A1, A2, · · · are disjoint events, then

P

 ∞⋃
j=1

Aj

 =

∞∑
j=1

P [Aj ]

(Saying that these events are disjoint means that they are mutually exclusive: Ai ∩ Aj = ∅
for i ̸= j.)

Theorem 15 (Properties of probability). Probability has the following properties, for any events
A and B:

1. P [Ac] = 1− P [A].

2. If A ⊂ B then P [A] ≤ P [B].

3. P [A ∪B] = P [A] + P [B]− P [A ∩B].

1.7 Recap

• Probability allows us to quantify uncertainty and randomness in a principled way.

• Pebble World can help us visualize sample spaces and events when the sample space is finite.

• In Pebble World, each outcome is a pebble, and an event is a set of pebbles.

• If all the pebbles have the same mass (i.e., are equally likely), we can apply the naive
definition of probability, which lets us calculate probabilities by counting.

• There exist several tools for counting (e.g., multiplication rule).

16
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• Moving beyond the naive definition, we define probability to be a function that takes an
event and assigns to it a real number between 0 and 1.

• We require a valid probability function to satisfy two axioms.

• Many useful properties can be derived just from these axioms.

• It is important to distinguish between events and probabilities. The former are sets, while
the latter are numbers. Before the experiment is done, we generally don’t know whether or
not a particular event will occur (happen). So we assign it a probability of happening, using
a probability function P .

17



Chapter 2

Random variables and their
distributions

2.1 Introduction

• In this chapter, we introduce random variables,

• an incredibly useful concept that simplifies notation and expands our ability to quantify
uncertainty and summarize the results of experiments.

• Random variables are essential throughout the rest of the course.

2.2 Random variables

Definition 16 (Random variable). Given an experiment with sample space Ω, a random variable
(r.v.) is a function from the sample space Ω to the real numbers R.

• It is common, but not required, to denote random variables by capital letters.

• A random variable X assigns a numerical value X(ω) to each possible outcome ω of the
experiment.

• The randomness comes from the fact that we have a random experiment (with probabilities
described by the probability function P ).

• The mapping itself is deterministic.

18
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A random variable maps the sample space into the real line. The r.v. X depicted here is defined
on a sample space with 6 elements, and has possible values 0, 1, and 4. The randomness comes
from choosing a random pebble according to the probability function P for the sample space.

• The source of the randomness in a random variable is the experiment itself, in which a
sample outcome ω ∈ Ω is chosen according to a probability function P .

• Before we perform the experiment, the outcome ω has not yet been realized, so we don’t
know the value of X, though we could calculate the probability that X will take on a given
value or range of values.

• After we perform the experiment and the outcome ω has been realized, the random variable
crystallizes into the numerical value X(ω).

19
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Example 17 (Coin tosses).

• Consider an experiment where we toss a fair coin twice.

• The sample space consists of four possible outcomes: Ω = {HH,HT, TH, TT}.

Here are some random variables on this space. Each r.v. is a numerical summary of some aspect
of the experiment.

• Let X be the number of Heads. This is a random variable with possible values 0, 1, and 2.
Hence,

X(HH) = 2, X(HT ) = X(TH) = 1, X(TT ) = 0.

• Let Y be the number of Tails. In terms of X, we have Y = 2 − X. In other words,
Y (ω) = 2−X(ω) for all ω ∈ S.

• Let I be 1 if the first toss lands Heads and 0 otherwise. Then I assigns the value 1 to the
outcomes HH and HT and 0 to the outcomes TH and TT .

Example (Coin tosses (continued)).

• We can also encode the sample space as Ω = {(1, 1), (1, 0), (0, 1), (0, 0)}, where 1 is the code
for Heads and 0 is the code for Tails.

• Then we can give explicit formulas for X,Y, I:

X(ω1, ω2) = ω1 + ω2;

Y (ω1, ω2) = 2− ω1 − ω2;

I(ω1, ω2) = ω1.

2.3 Distributions; the discrete case

Definition 18 (Discrete random variable). A random variable X is said to be discrete if there is
a finite list of values a1, a2, · · · , an or an infinite list of values a1, a2, · · · such that

P [X = aj for some j] = 1.

If X is a discrete r.v., then the finite or countably infinite set of values x such that P [X = x] > 0

is called the support of X.

• Most commonly in applications, the support of a discrete r.v. is a set of integers.

• In contrast, a continuous r.v. can take on any real value in an interval (possibly even the
entire real line). [A continuous r.v. has to satisfy more properties; see Definition 29 below.]
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• Given a random variable, we would like to be able to describe its behavior using the language
of probability.

• For example, we might want to answer questions about the probability that the r.v. will fall
into a given range.

• E.g., if L is the lifetime earnings of a randomly chosen U.S. college graduate, what is the
probability that L exceeds a million dollars?

• The distribution of a random variable provides the answers to these questions; it specifies
the probabilities of all events associated with the r.v., such as the probability of it equaling
3 and the probability of it being at least 110.

Definition 19 (Probability mass function). The probability mass function (PMF) of a discrete
r.v. X is the function pX given by pX(x) = P [X = x].

Note that pX(x) is positive if x is in the support of X, and 0 otherwise.

Example (Coin tosses (continued)).

• X is the number of Heads. Since X equals 0 if TT occurs, 1 if HT or TH occurs, and 2 if
HH occurs, the PMF of X is the function pX given by

pX(0) = P [X = 0] =
1

4
;

pX(1) = P [X = 1] =
1

2
;

pX(2) = P [X = 2] =
1

4
.

and pX(x) = 0 for all other values of x.
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Example (Coin tosses (continued)).

• Y = 2−X is the number of Tails. Hence

pY (0) = P [Y = 0] =
1

4
;

pY (1) = P [Y = 1] =
1

2
;

pY (2) = P [Y = 2] =
1

4
.

and pY (y) = 0 for all other values of y.

• I is the indicator of the first toss landing Heads.

pI(0) = P [I = 0] =
1

2
;

pI(1) = P [I = 1] =
1

2
.

Example (Coin tosses (continued)).

Example 20 (Two fair dice rolls). Let T be the sum of two fair dice rolls.

• Suppose we’re interested in the probability that T is in the interval [1, 4].

• There are only three values in the interval [1, 4] that T can take on, namely, 2, 3, and 4.

• Hence

P [1 ≤ T ≤ 4] = P [T = 2] + P [T = 3] + P [T = 4]

=
1

36
+

2

36
+

3

36
=

6

36
=

1

6
.
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2.4 Bernoulli and binomial

Definition 21 (Bernoulli distribution). An r.v. X is said to have the Bernoulli distribution with
parameter p ∈ (0, 1) if P [X = 1] = p and P [X = 0] = 1− p.

We write this as X ∼ Bern(p). The symbol ∼ is read “is distributed as”.
Any r.v. whose possible values are 0 and 1 has a Bern(p) distribution, with p the probability of
the r.v. equaling 1.

Definition 22 (Indicator random variable). The indicator random variable of an event A is the
r.v. which equals 1 if A occurs and 0 otherwise. We will denote the indicator r.v. of A by IA or
I(A).

Note that IA ∼ Bern(p) with p = P [A].

Definition 23 (Binomial distribution). Suppose that n independent Bernoulli trials are per-
formed, each with the same success probability p ∈ (0, 1). Let X be the number of successes.
The distribution of X is called the binomial distribution with parameters n and p. We write
X ∼ Bin(n, p).

Theorem 24. If X ∼ Bin(n, p), then the PMF of X is

P [X = k] =

(
n

k

)
pk(1− p)n−k

for k = 0, 1, · · · , n (and P [X = k] = 0, otherwise).
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2.5 Discrete uniform

Definition 25 (Discrete uniform distribution). Let C be a finite, nonempty set of numbers.
Choose one of these numbers uniformly at random (i.e., all values in C are equally likely). Call
the chosen number X. Then X is said to have the discrete uniform distribution with parameter
C.

We write this as X ∼ DUnif(C).

• The PMF of X ∼ DUnif(C) is

P [X = x] =
1

|C|
for x ∈ C (and 0 otherwise), since a PMF must sum to 1.

• For any A ⊂ C, we have

P [X ∈ A] =
|A|
|C| .
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Example 26 (Random slips of paper). There are 100 slips of paper in a hat, each of which has
one of the numbers 1,2,...,100 written on it, with no number appearing more than once. Five of
the slips are drawn, one at a time.
Consider random sampling with replacement (with equal probabilities).

1. What is the distribution of how many of the drawn slips have a value of at least 80 written
on them?

2. What is the distribution of the value of the jth draw (for 1 ≤ j ≤ 5)?

3. What is the probability that the number 100 is drawn at least once?

Example (Random slips of paper (continued)). Solutions:

1. The distribution is Bin(5, 0.21).

2. Let Xj be the value of the jth draw. By symmetry, X ∼ DUnif(1, 2, · · · 100).

3. Taking complements,

P [Xj = 100 for at least one j] = 1− P [X1 ̸= 100, · · · , X5 ̸= 100]

= 1−
(

99

100

)5

≈ 0.049.

2.6 Cumulative distribution functions
Another function that describes the distribution of an r.v. is the cumulative distribution function
(CDF).

Definition 27 (Cumulative distribution function). The cumulative distribution function (CDF)
of an r.v. X is the function FX given by FX(x) = P [X ≤ x].

When there is no risk of ambiguity, we sometimes drop the subscript and just write F (or some
other letter) for a CDF.
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Example 28 (Binomial distribution). X ∼ Bin(4, 0.5)

The height of the vertical bar P [X = 2] in the PMF is also the height of the jump in the CDF at
2.

2.7 Distributions; the continuous case

Discrete vs. continuous r.v.s. Left: The CDF of a discrete r.v. has jumps at each point in the
support. Right: The CDF of a continuous r.v. increases smoothly.

Definition 29 (Continuous random variable). An r.v. has a continuous distribution if its CDF is
differentiable. A continuous random variable is a random variable with a continuous distribution.

Definition 30 (Probability density function). For a continuous r.v. X with CDF F , the probability
density function (PDF) of X is the derivative f of the CDF, given by f(x) = F ′(x). The support
of X, and of its distribution, is the set of all x where f(x) > 0.

A continuous r.v. can take on any value in an interval, although the probability that it equals any
particular value is exactly 0.
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Proposition 31 (PDF to CDF). Let X be a continuous r.v. with PDF f . Then the CDF of X
is given by

F (x) =

∫ x

−∞
f(t)dt.

In particular, we have

P [a ≤ X ≤ b] =

∫ b

a

f(t)dt.

2.8 Continuous uniform

Definition 32 (Continuous uniform distribution). A continuous r.v. U is said to have the uniform
distribution on the interval (a, b) if its PDF is

f(x) =

 1
b−a , if a < x < b

0, otherwise

We write this as U ∼ Unif(a, b).

Proposition 33. Let U ∼ Unif(a, b), and let (c, d) be a subinterval of (a, b), of length l (so
l = d− c). Then the probability of U being in (c, d) is proportional to l.

For example, a subinterval that is twice as long has twice the probability of containing U , and a
subinterval of the same length has the same probability.

Example 34 (Uniform distribution). The PDF and CDF of U ∼ Unif(0, 1):
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2.9 Standard normal distribution

• The normal distribution is a famous continuous distribution with a bell-shaped PDF.

• It is extremely widely used in statistics because of a theorem, the central limit theorem,
which says that under very weak assumptions, the sum of a large number of i.i.d. random
variables [we shall define below what “i.i.d.” means exactly] has an approximately normal
distribution, regardless of the distribution of the individual r.v.s.

Definition 35 (Standard normal distribution). A continuous r.v. Z is said to have the standard
normal distribution if its PDF is

ϕ(z) =
1√
2π

e−z2/2.

We write this as Z ∼ N (0, 1).
The standard Normal CDF is the accumulated area under the PDF:

Φ(z) =

∫ z

−∞
ϕ(t)dt =

∫ z

−∞

1√
2π

e−t2/2dt.

The PDF and CDF of Z ∼ N (0, 1):

Symmetry of tail areas
The area under the PDF curve to the left of −2, which is P [Z ≤ −2] = Φ(−2) by definition, equals
the area to the right of 2, which is P [Z ≥ 2] = 1− Φ(2).
In general, we have

Φ(−z) = 1− Φ(z)

for all z.
This can be seen visually by looking at the PDF curve, and mathematically by substituting u = −t

below and using the fact that PDFs integrate to 1:

Φ(−z) =

∫ −z

−∞
ϕ(t)dt =

∫ ∞

z

ϕ(u)du = 1−
∫ z

−∞
ϕ(u)du = 1− Φ(z).
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2.10 Functions of random variables

• If X is a random variable, then X2, eX , and sin(X) are also random variables, as is g(X)

for any function g : R 7→ R.

• For example, contingent claims (derivatives, options) are functions of the underlying stock
price.

Example:

The r.v. X is defined on a sample space with 6 elements, and has possible values 0, 1, and 4. The
function g is the square root function. Composing X and g gives the random variable g(X) =

√
X,

which has possible values 0, 1, and 2.

Example 36 (Maximum of two dice rolls). We roll two fair 6-sided dice. Let X be the number
on the first die and Y the number on the second die. The following table gives the values of X,Y ,
and max(X,Y ) under 7 of the 36 outcomes in the sample space.
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Example (Maximum of two dice rolls (continued)). The PMF can be computed as follows:

P [max(X,Y ) = 5] = P [X = 5, Y ≤ 4] + P [X ≤ 4, Y = 5] + P [X = 5, Y = 5]

= 2P [X = 5, Y ≤ 4] +
1

36

= 2

(
4

36

)
+

1

36

=
9

36

=
1

4
.

2.11 Independence of random variables

Intuitively, if two r.v.s X and Y are independent, then knowing the value of X gives no information
about the value of Y , and vice versa.

Definition 37 (Independence). Random variables X and Y are said to be independent if

P [X ≤ x, Y ≤ y] = P [X ≤ x]P [Y ≤ y],

for all x, y ∈ R.

If X and Y are discrete, then independence of X and Y is the same as

P [X = x, Y = y] = P [X = x]P [Y = y],

for all x, y ∈ R.

Example 38 (Two fair dice).

• If X is the number on the first die and Y is the number on the second die, then X + Y is
not independent of X − Y .

• To see why, note that

0 = P [X + Y = 12, X − Y = 1] ̸= P [X + Y = 12]P [X − Y = 1] =
1

36
· 5

36
.

• This also makes sense intuitively: knowing the sum of the dice is 12 tells us their difference
must be 0, so the r.v.s provide information about each other.

Definition 39 (I.i.d.). We will often work with random variables that are independent and have
the same distribution. We call such r.v.s independent and identically distributed, or i.i.d. for
short.
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2.12 Recap

• A random variable (r.v.) is a function assigning a real number to every possible outcome of
an experiment.

• The distribution of an r.v. X is a full specification of the probabilities for the events associated
with X, such as {X = 3} and {1 ≤ X ≤ 5}.

• The CDF of a random variable X is the function P [X ≤ x].

• It is very important to distinguish between a random variable and its distribution: the distri-
bution is a blueprint for building the r.v., but different r.v.s can have the same distribution.

• A function of a random variable is still a random variable.

• Two random variables are independent if knowing the value of one r.v. gives no information
about the value of the other.

• The PMF of a discrete random variable X is the function P [X = x].

• Examples for discrete distributions are the following:

– A Bern(p) r.v. is the indicator of success in a Bernoulli trial with probability of success
p.

– A Bin(n, p) r.v. is the number of successes in n independent Bernoulli trials, all with
the same probability p of success.

– A DUnif(C) r.v. is obtained by randomly choosing an element of the finite set C, with
equal probabilities for each element.

• A continuous r.v. can take on any value in an interval, although the probability that it equals
any particular value is exactly 0.

• The CDF of a continuous r.v. is differentiable, and the derivative is called the probability
density function (PDF).

• Probability is represented by area under the PDF curve, not by the value of the PDF at a
point.

• We must integrate the PDF to get a probability.

• Two important continuous distributions are the uniform and the standard normal distribu-
tion.
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Chapter 3

Expectation

3.1 Introduction

• Yesterday, we introduced the distribution of a random variable, which gives us full informa-
tion about the probability that the r.v. will fall into any particular set.

• For example, we can say how likely it is that the r.v. will exceed 100 or that it will equal 5.

• However, often we want just one number summarizing the “average” value of the r.v.

• There are several senses in which the word “average” is used, but by far the most commonly
used is the mean of an r.v., also known as its expected value.

3.2 Definition of expectation

• Given a list of numbers x1, x2, · · · , xn, the familiar way to average them is to add them up
and divide by n. This is called the arithmetic mean, and is defined by

x =
1

n

n∑
j=1

xj .

• More generally, we can define a weighted mean as

weighted-mean(x) =
n∑

j=1

xjpj ,

where the weights p1, p2, · · · , pn are pre-specified nonnegative numbers that add up to 1.
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Definition 40 (Expectation of a discrete r.v.). The expected value (also called the expectation or
mean) of a discrete r.v. X is given by

E[X] =
∑
x

xP [X = x],

where the sum is over the support of X (in any case, xP [X = x] is 0 for any x not in the support).
The expectation is undefined if ∑

x

|x|P [X = x],

diverges, since then the series for E[X] diverges or its value depends on the order in which the xj

are listed.

In words, the expected value of X is a weighted average of the possible values that X can take on,
weighted by their probabilities.

With this definition, the expected value can be interpreted as the center of mass.

Example 41 (Fair dice).

• X takes on the values 1, 2, 3, 4, 5, 6, with equal probabilities.

• Intuitively, we should be able to get the average by adding up these values and dividing by
6.

• Using the definition, the expected value is

E[X] =
1

6
(1 + 2 + · · ·+ 6) = 3.5

as guessed.

• Note though that X never equals its mean in this example.

Example 42 (Bernoulli distribution).

• Let X ∼ Bern(p) and q = 1− p.

• Using the definition, the expected value is

E[X] = 1 · p+ 0 · q = p.

• This makes sense intuitively since it is between the two possible values of X, compromising
between 0 and 1 based on how likely each is.
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If X and Y are discrete r.v.s with the same distribution, then E[X] = E[Y ] (if either side exists).
The converse holds not true, as the following plot illustrates:

Definition 43 (Expectation of a continuous r.v.). The expected value (also called the expectation
or mean) of a continuous r.v. X with PDF f is given by

E[X] =

∫ ∞

−∞
xf(x)dx.

The expectation is undefined if ∫ ∞

−∞
|x|f(x)dx = ∞.

With this definition, the expected value retains its interpretation as a center of mass.

3.3 Linearity of expectations

Theorem 44 (Linearity of expectation). For any r.v.s X, Y and any constant c,

E[X + Y ] = E[X] + E[Y ];

E[cX] = cE[X].

Proposition 45 (Monotonicity of expectation). Let X and Y be r.v.s such that X ≤ Y with
probability 1. Then E[X] ≤ E[Y ], with equality holding if and only if X = Y with probability 1.
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Example 46 (Binomial distribution). Let X ∼ Bin(n, p). Then we can write

X = I1 + · · ·+ In,

where each Ij has expectation E[Ij ] = 1 · p+ 0 · q = p. By linearity,

E[X] = E[I1] + · · ·+ E[In] = np.

3.4 Indicator r.v.s and the fundamental bridge

Recall from above that the indicator r.v. IA (or I(A)) for an event A is defined to be 1 if A occurs
and 0 otherwise. So IA is a Bernoulli random variable, where success is defined as “A occurs” and
failure is defined as “A does not occur”.

Theorem 47 (Indicator r.v. properties). Let A and B be events. Then the following properties
hold.

(IA)
k = IA for any positive integer k.

IAc = 1− IA.

IA∩B = IAIB .

IA∪B = IA + IB − IAIB .

Theorem 48 (Fundamental bridge between probability and expectation). There is a one-to-one
correspondence between events and indicator r.v.s, and the probability of an event A is the expected
value of its indicator r.v. IA:

P [A] = E[IA].
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3.5 Law of the unconscious statistician (LOTUS)

• If g is a function and X an r.v., then g(X) is also an r.v.

• It is often of interest to compute E[g(X)].

• As it turns out, E[g(X)] does not equal g(E[X]) in general if g is not linear.

• So how do we correctly calculate E[g(X)]?

• Since g(X) is an r.v., one way is to first find the distribution of g(X) and then use the
definition of expectation.

• Perhaps surprisingly, it turns out that it is possible to find E[g(X)] directly using the dis-
tribution of X, without first having to find the distribution of g(X).

• This is done using the law of the unconscious statistician (LOTUS).

Theorem 49 (Law of the unconscious statistician (LOTUS)). If X is a discrete r.v. and g is a
function from R to R, then

E[g(X)] =
∑
x

g(x)P [X = x],

where the sum is taken over all possible values of X.
If X is a continuous r.v. with PDF f , then

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx.

3.6 Variance

• Like expected value, variance is a single-number summary of the distribution.

• While the expected value tells us the center of mass of a distribution, the variance tells us
how spread out the distribution is.

Definition 50 (Variance and standard deviation). The variance of an r.v. X is

Var(X) = E[(X − E[X])2].

The square root of the variance is called the standard deviation:

SD(X) =
√

Var(X).
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• The variance of X measures how far X is from its mean on average,

• but instead of simply taking the average difference between X and its mean E[X], we take
the average squared difference.

• To see why, note that the average deviation from the mean, E[X − E[X]], always equals 0
by linearity; positive and negative deviations cancel each other out.

• By squaring the deviations, we ensure that both positive and negative deviations contribute
to the overall variability.

Theorem 51. For any r.v. X,

Var(X) = E[X2]− (E[X])2.

Proof. Let µ = E[X]. Expand (X − µ)2 and use linearity:

Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + µ2

= E[X2]− µ2.

Theorem 52. For any r.v. X and any constant c ∈ R, its variance has the following properties.

1. Var(X + c) = Var(X).

2. Var(cX) = c2Var(X).

3. Var(X) ≥ 0.

4. If Y is an r.v., independent of X then Var(X + Y ) = Var(X) + Var(Y ).

Example 53 (Binomial variance).

• Let’s find the variance of X ∼ Bin(n, p) using indicator r.v.s to avoid tedious sums.

• Represent X = I1 + I2 + · · · + In, where Ij is the indicator of the jth trial being a success.

• Each Ij has variance

Var(Ij) = E[I2j ]− (E[Ij ])
2 = p− p2 = p(1− p).

• Since the Ij are independent, we can add their variances to get the variance of their sum:

Var(X) = Var(I1) + · · ·+Var(In) = np(1− p).

38



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

Example 54 (Uniform expectation and variance).

• Let’s derive the mean and variance of U ∼ Unif(a, b).

• The expectation is extremely intuitive: the PDF is constant, so its balancing point should
be the midpoint of (a, b).

• This is exactly what we find by using the definition of expectation for continuous r.v.s:

E[U ] =

∫ b

a

x · 1

b− a
dx =

1

b− a

(
b2

2
− a2

2

)
=

a+ b

2
.

• For the variance, we first find E[U2], using the continuous version of LOTUS:

E[U2] =

∫ b

a

x2 · 1

b− a
dx =

1

b− a

(
b3

3
− a3

3

)
=

b3 − a3

3(b− a)
.

Example (Uniform expectation and variance (continued)).

• Then

Var(U) = E[U2]− (E[U ])2 =
b3 − a3

3(b− a)
−
(
a+ b

2

)2

.

• This simplifies, after factoring b3 − a3 = (b− a)(a2 + ab+ b2), to

Var(U) =
(b− a)2

12
.

3.7 Normal distribution

• Above, we introduced the standard normal distribution. Recall that continuous r.v. Z is
said to have the standard normal distribution if its PDF is

ϕ(z) =
1√
2π

e−z2/2.

• We write this as Z ∼ N (0, 1).

• Let’s compute its mean:

E[Z] =

∫ ∞

−∞
zϕ(z)dz = 0,

where the last equality follows from the fact that zϕ(z) is an odd function (the area under
the function from −∞ to 0 cancels the area under the function from 0 to ∞.)
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• For the variance, we use LOTUS as follows:

Var(Z) = E[Z2]− (E[Z])2 = E[Z2]

=

∫ ∞

−∞
z2ϕ(z)dz = 2

∫ ∞

0

z(zϕ(z))dz

Now we use integration by parts to obtain

Var(Z) =
2√
2π

(
−ze−z2/2

∣∣∣∞
0

+

∫ ∞

0

e−z2/2dz

)
=

2√
2π

(
0 +

√
2π

2

)
= 1.

Definition 55 (Normal distribution). If Z ∼ N (0, 1) then

X = µ+ σZ

is said to have the Normal distribution with mean µ and variance σ2.

We write this as X ∼ N (µ, σ2).

It’s clear by properties of expectation and variance that X does in fact have mean µ and variance
σ2.

Theorem 56 (Normal CDF and PDF). Let X ∼ N (µ, σ2). Then the CDF of X is

F (x) = Φ

(
X − µ

σ

)
,

and the PDF of X is

f(x) = ϕ

(
X − µ

σ

)
1

σ
.
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3.8 Covariance and correlation

• Individual distributions of two r.v.s do not tell us anything about whether the r.v.s are
independent or dependent.

• For example, two Bern(1/2) r.v.s X and Y could be independent if they indicate Heads on
two different coin flips, or dependent if they indicate Heads and Tails respectively on the
same coin flip.

• Of course, in real life, we usually care about the relationship between multiple r.v.s in the
same experiment.

• Joint distributions capture the previously missing information about how multiple r.v.s in-
teract.

Definition 57 (Joint PMF). The joint PMF of discrete r.v.s X and Y is the function pX,Y given
by

pX,Y (x, y) = P [X = x, Y = y].

41



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

Definition 58 (Joint PDF). The joint PDF of continuous r.v.s X and Y is the function fX,Y

given by

fX,Y (x, y) =
∂2

∂x∂y
P [X ≤ x, Y ≤ y].

Theorem 59 (2D LOTUS). Let g be a function from R2 to R. If X and Y are discrete, then

E[g(X,Y )] =
∑
x

∑
y

g(x, y)P [X = x, Y = y].

If X and Y are continuous with joint PDF fX,Y , then

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy.

• Just as the mean and variance provided single-number summaries of the distribution of a
single r.v., covariance is a single-number summary of the joint distribution of two r.v.s.

• Roughly speaking, covariance measures a tendency of two r.v.s to go up or down together,
relative to their expected values:

• positive covariance between X and Y indicates that when X goes up, Y also tends to go up,

• and negative covariance indicates that when X goes up, Y tends to go down.

Definition 60 (Covariance). The covariance between r.v.s X and Y is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

If Cov(X,Y ) = 0 then X and Y are said to be uncorrelated.
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• Let’s think about the definition intuitively.

• If X and Y tend to move in the same direction, then X−E[X] and Y −E[Y ] will tend to be
either both positive or both negative, so (X −E[X])(Y −E[Y ]) will be positive on average,
giving a positive covariance.

• If X and Y tend to move in opposite directions, then X − E[X] and Y − E[Y ] will tend to
have opposite signs, giving a negative covariance.

Proposition 61. For two r.v.s X and Y , we have

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

Definition 62 (Correlation). The correlation between r.v.s X and Y is

Cor(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

Theorem 63 (Correlation bounds). For any two r.v.s X and Y ,

−1 ≤ Cor(X,Y ) ≤ 1.

43



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

3.9 Recap

• The expectation of a discrete r.v. X is

E[X] =
∑
x

xP [X = x],

and of a continuous r.v. X with PDF f is

E[X] =

∫ ∞

−∞
xf(x)dx.

• Expectation is a single number summarizing the center of mass of a distribution.

• A single-number summary of the spread of a distribution is the variance, defined by

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2.

• The square root of the variance is called the standard deviation.

• Expectation is linear, but variance is not.

• An important tool for computing expectations is LOTUS, which says we can calculate the
expectation of g(X) using only the PMF/PDF of X.

• We also discussed normally distributed random variables.

• If Z ∼ N (0, 1) then
X = µ+ σZ

is said to have the Normal distribution with mean µ and variance σ2.

• A N (µ, σ2) r.v. has a symmetric bell-shaped PDF centered at µ, with σ2 controlling how
spread out the curve is.

• Covariance is a single-number summary of the tendency of two r.v.s to move in the same
direction.

• If two r.v.s are independent, then they are uncorrelated (but the converse does not hold).

• Correlation is a unitless, standardized version of covariance that is always between -1 and 1.
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Chapter 4

Generating random numbers, Part I

4.1 Introduction
"Random numbers should not be generated with a method chosen at random", Knuth (1981).

• In many applications in finance one needs to compute the expectation E[X] of a random
variable X, e.g., in option pricing.

• It is not always possible to compute E[X] analytically.

• Suppose we have a sequence of random variables (Xi)i∈N which are mutually independent
and identically distributed with the same distribution as X, then

P

[
lim
n→∞

1

n

n∑
i=1

Xi = E[X]

]
= 1

by the so called Strong Law of Large Numbers.

• How can one obtain (realisations of) Xi?
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Example 64 (Fair die).

• Consider a random variable X which can take values in {1, 2, 3, 4, 5, 6} with P [X = i] = 1
6

for i = 1, · · · , 6.

• Then E[X] can be computed analytically and is given by

E[X] =

6∑
i=1

i P [X = i]︸ ︷︷ ︸
=1/6

= 3.5.

• We can interpret the random variable X as the outcome of the role of a fair die.

• We can compute an approximation for E[X] by doing a random experiment: We role a fair
die n times and therefore generate some numbers x1, · · · , xn. Then 1

n

∑n
i=1 xi can be used

as an approximation for E[X].

• Here: Realisations of X can be obtained by rolling a fair die.

• Of course, we already know how to simulate certain distributions with Python (e.g., the
commands in numpy.random)

• We want to understand how these commands work; and we need more general methods than
this!

• Need methods that can generate a large number of random numbers from any distribu-
tion on a computer.

• We are interested in generating random numbers from various distributions.

• As soon as we generate random numbers on a computer, the generation will have to
be based on a completely deterministic mechanism.

• The generated output is therefore sometimes also referred to as pseudo-random numbers.

• The idea is to develop mechanisms such that the computer-generated random num-
bers mimic the properties of true random numbers as much as possible.
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4.2 The linear congruential generator for generating samples

from the uniform distribution

• Initially we want to generate samples from a uniform distribution.

• As we will later see, these samples can also be used to derive samples from other distributions.

Recall the following facts of a uniformly distributed random variable U ∼ Unif(0, 1).

• The probability density function (PDF) of U is given by

f(x) =

1, if 0 < x < 1

0, otherwise.

• The cumulative distribution function (CDF) of U is given by

F (x) =


0, if x < 0

x, if x ∈ [0, 1]

1, if x > 1.

The linear congruential generator can be used to generate a sample from the uniform distribution
on [0, 1].

Definition 65 (Linear congruential generator). Let m ∈ N and a, x0 ∈ {1, 2, · · · ,m− 1}.
A linear congruential generator is a recurrence of the following form. For i = 0, 1, 2, . . . set

xi+1 = axi mod m,

ui+1 = xi+1/m.

x0 is called the seed, a the multiplier and m the modulus.

• We do not allow x0 = 0, since for x0 = 0 we would get xi = 0 ∀i ∈ N.

• The sequence (ui)i∈N is a sequence in [0, 1).
It is deterministic (so-called pseudo-random numbers). However, for appropriate values
of a and m, it does resemble a sequence of samples from the uniform distribution
on [0, 1].
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• Recall that for x,m ∈ N the expression x mod m (say x modulo m) returns the remainder
of x after division by m, i.e.,

x mod m = x−m
⌊ x
m

⌋
∈ {0, 1, · · · ,m− 1},

where ⌊x⌋ denotes the greatest integer less than or equal to x.

• Examples:

5 mod 7 = 5, 20 mod 10 = 0, 13 mod 7 = 6.

Example 66. For a = 6, m = 11 and x0 = 1 the linear congruential generator yields

1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, · · ·

for the xi and the corresponding sequence (ui) is obtained by setting ui+1 = xi+1/11.
Observe that this sequence periodically returns back to the seed 1!

• Each of the numbers in a sequence (xi) resulting from the linear congruential generator takes
values in the set {0, 1, · · · ,m− 1}.

• The sequence (xi) (and hence also (ui)) will repeat itself after at most m steps.

• Hence, large values of m are necessary for a long cycle.

• Large values of m are not sufficient for a long cycle.

The following example shows that a large m itself does not guarantee a long cycle.

Example 67. Let m = 11 as in Example 66, but now we choose the multiplier a = 3.

1. With seed x0 = 1 we obtain

1, 3, 9, 5, 4, 1, · · ·

for the xi.

2. Changing the seed to x0 = 2 yields

2, 6, 7, 10, 8, 2, · · · .

We see that the possible values are split into two cycles.
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• One can show that for a prime number m, a full period is achieved for any x0 ̸= 0, if

– am−1 − 1 is a multiple of m,

– aj − 1 is not a multiple of m for j = 1, · · · ,m− 2.

(Full period means that all m− 1 distinct values 1, 2, · · · ,m− 1 are produced before repeat-
ing.)

• Such a number a is called a primitive root of m.

• The sequence (xi) is then given by

x0, ax0 mod m, a2x0 mod m, · · · .

• It returns to x0 at the smallest k for which akx0 mod m = x0, which is the smallest k for
which ak mod m = 1, i.e., the smallest k for which (ak − 1) is a multiple of m.

Example 68 (Lattice structure).

• Consider the linear congruential generator
in Example 66 with a = 6, m = 11, x0 = 1.

• Plot consecutive overlapping pairs
(u1, u2), (u2, u3), · · · , (u10, u11).

• You will find that the ten points lie on just
two parallel lines through the unit square
(with ui on x-axis and ui+1-on y axis).

• This lattice structure distinguishes those
samples from genuine random numbers.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ui

u i
+1

• As we have seen, the linear congruential generator is started with some seed x0.

• The existence of this seed is a common feature of random number generators.

• On a computer, a time stamp is often used as a seed for a random number generator.

• If one would like to reproduce results one will need to start the random number generator
with the same seed.

• The linear congruential generator is a very simple random number generator and has some
undesirable properties (e.g. the lattice structure).

• There are much more advanced methods for generating uniform random numbers but these
are beyond the scope of this course.
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4.3 The inverse transform method for generating samples

from a CDF F

We consider a random variable X with cumulative distribution function F , i.e., F (x) = P [X ≤ x].

Definition 69 (Inverse of CDF). Given a cumulative distribution function (CDF) F , its (gener-
alized) inverse F−1 is defined by

F−1(u) = inf {x ∈ R | F (x) ≥ u} for u ∈ (0, 1).

Theorem 70 (Universality of the Uniform). If U ∼ Unif(0, 1), then the random variable F−1(U)

has cumulative distribution function F .

Proof. We first note that, given x ∈ R and u ∈ (0, 1), the right-continuity of F implies that

F−1(u) ≤ x ⇐⇒ u ≤ F (x).

Hence,

P
[
F−1(U) ≤ x

]
= P [U ≤ F (x)] = F (x),

where the last equality follows because U is uniform on [0, 1].
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• Let’s make sure we understand what the theorem is saying.

• If we start with U ∼ Unif(0, 1) and a CDF F ,

• then we can create an r.v. whose CDF is F

• by plugging U into the inverse CDF F−1.

• Since F−1 is a function (known as the quantile function), U is a random variable, and a
function of a random variable is a random variable, F−1(U) is a random variable;

• universality of the Uniform says its CDF is F .

Example 71. (Exponential distribution)

• Consider the exponential distribution with parameter µ. Its CDF F is given by

F (x) = 1− e−µx for x > 0.

• From

u = F (F−1(u)) = 1− e−µF−1(u),

we can see that

F−1(u) = − log(1− u)

µ
.

• Noting that, if U ∼ Unif(0, 1), then 1−U ∼ Unif(0, 1), we conclude that the random variable
− 1

µ log(U) has the exponential distribution with parameter µ.
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• In many cases, F−1 cannot be calculated in closed analytical form.

• However, we can still calculate F−1 numerically.
Let u ∈ (0, 1). There are many situations (e.g., if F is continuous and strictly increasing) in
which one can compute F−1(u) by just solving the following equation for x:

F (x)− u = 0.

• For instance, if F is C1, then we can use Newton’s method. Choose an initial point x0

and compute recursively

xn+1 = xn − F (xn)− u

F ′(xn)
.

For a suitable choice of x0 and for a suitably well-behaved function F this sequence converges
to the required solution.

If a discrete random variable is considered, the evaluation of F−1 reduces to a table lookup.

• Suppose X is a random variable which has possible values c1 < · · · < cn. (Note: This
ordering is important!)
Let

P [X = ci] = pi, i = 1, · · · , n with pi ≥ 0 and
n∑

i=1

pi = 1.

• We define cumulative probabilities

q0 = 0, qi =

i∑
j=1

pj , i = 1, · · · , n.

• Then the cumulative distribution function F of X satisfies F (ci) = P [X ≤ ci] = qi.

• Now we can sample from this distribution as follows:

1. Generate U ∼ Unif(0, 1).

2. Find K ∈ {1, · · · , n} such that qK−1 < U ≤ qK .

3. Set X̃ = cK .
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Example 72 (Discrete distribution). Plot F (x) = P [X ≤ x] for a random variable X taking
only the values c1 = 1, c2 = 3, c3 = 4.5, c4 = 7.

• Let P [X = 1] = 1
8 = p1, P [X = 3] =

1
2 = p2, P [X = 4.5] = 2

8 = p3, P [X =

7] = 1
8 = p4.

• Here q0 = 0 = P [X < 1], q1 = 1
8 =

0.125 = F (1), q2 = 5
8 = 0.625 = F (3),

q3 = 7
8 = 0.875 = F (4.5), q4 = 1 =

F (7).

• Suppose U = 0.7, then q2 = F (c2) <

U ≤ F (c3) = q3. Therefore, X = c3 =

4.5.
x

F

1 −
7/8−
6/8−
5/8−
4/8−
3/8−
2/8−
1/8−

| | | |
1 3 4.5 7

U

4.4 Recap

• The linear congruential generator map is a method to construct pseudo-random numbers
that resemble samples from a uniform distribution.

• If we have a sample from a uniform distribution, then the inverse transform method yields
samples for an arbitrary CDF.

• This method uses the universality of the uniform, namely the fact that F−1(U) for some
U ∼ Unif(0, 1) and CDF F yields a sample from F .
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Chapter 5

Generating random numbers, Part II

5.1 Von Neumann’s acceptance-rejection algorithm for samples

from a PDF f

• We would like to sample from a target distribution which has corresponding PDF f .

• Suppose there is a PDF g from which we know how to generate samples from and for which

f(x) ≤ cg(x) for all x ∈ R, (5.1)

for a constant c.

• The idea is now to generate X from g and accept the sample with probability f(X)
cg(X) .
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cg(x)

f(x)

x

+

+

+

+

+

Simulation by acceptance-rejection-sampling. Graphical interpretation:

• Sample X0 from g.

• Given this X0 sample Ũ from a uniform distribution on [0, cg(X0)].

• If Ũ ≤ f(X0) (labeled as ’◦’) accept X0, otherwise (labeled as ’+’) reject X0.

We can use the following modified algorithm:

Definition 73 (Acceptance-rejection algorithm). Suppose condition (5.1) is satisfied. Then, the
Von Neumann’s acceptance-rejection algorithm is given by

1. Generate X from the PDF g.

2. Generate U ∼ Unif(0, 1).

3. If U ≤ f(X)
cg(X) , then accept X and return it. Otherwise, go back to step 1.

• Hence, we see that we first generate samples from another distribution (with PDF g) which
might be easier to sample from and then reject some of those candidates.

• The rejection mechanism is designed such that the accepted candidates are indeed a sample
from our target distribution.

Theorem 74. The algorithm in Definition 73 works, i.e., it indeed returns a sample from the
PDF f .
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Example 75. We can use Von Neumann’s acceptance-rejection algorithm to generate samples
from the standard normal distribution using the doubly exponential distribution as follows.

• Consider the probability density
function (PDF) of the standard
normal distribution

f(x) =
1√
2π

e−x2/2 for x ∈ R,

• and the PDF of the doubly expo-
nential distribution

g(x) =
1

2
e−|x| for x ∈ R. −3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

f(x)
2e πg(x)

Example (continued).

• We next look for a constant c ≥ 1 such that (5.1) is true.

• We calculate

f(x)

g(x)
=

2√
2π

e−
x2

2 +|x|

=

√
2

π
e−

x2−2|x|+1
2 + 1

2

=

√
2e

π
e−

(|x|−1)2

2

≤
√

2e

π
=: c ≈ 1.3155.
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Example (continued).

• Von Neumann’s algorithm:

1. Generate X from the doubly exponential PDF g and generate U from the uniform
distribution on [0, 1].

2. If

U >
f(X)

cg(X)
= e−

(|X|−1)2

2 ,

then reject X and go back to step 1.

3. Return X.

• The proportion of rejected samples is

1− 1

c
= 1−

√
π

2e
≈ 23.98%.

5.2 The Box-Muller method for generating samples from the

standard normal distribution

Definition 76 (Box-Muller algorithm). The Box-Muller algorithm is defined as follows:

1. Generate independent random variables U1, U2 ∼ Unif(0, 1);

2. Set R = −2 log(U1);

3. Set θ = 2πU2;

4. Set X1 =
√
R cos(θ);

5. Set X2 =
√
R sin(θ);

6. Return X1 and X2.

Theorem 77 (Box-Muller algorithm). The algorithm in Definition 76 returns two independent
standard normally distributed random variables.
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5.3 Recap

• Von Neumann’s acceptance-rejection algorithm provides a tool how to sample from a specific
distribution, if one only can sample from a different distribution.

• This algorithm requires that the target PDF is bounded by a constant times the original
PDF.

• The Box-Muller algorithm yields a transformation, that turns two independent standard
uniformly distributed random variables into two independent standard normally distributed
random variables.
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Chapter 6

Monte Carlo integration

6.1 Introduction to Monte Carlo integration

• Monte Carlo simulation is an extremely powerful technique, and there are many problems
where it is the only reasonable approach currently available.

• It is a standard technique in option pricing (the pricing of option often reduces to computing
an expectation).

• The numerical evaluation of definite integrals is one of the main applications that
Monte Carlo simulation is concerned with.

• To fix ideas, let h be a given function and consider the integral

I =

∫ 1

0

h(s) ds.

• We can view this integral as the expectation of the random variable X = h(U),
where U ∼ Unif(0, 1). Indeed,

I = E[X] = E[h(U)].

• This representation gives rise to the Monte Carlo estimator of I, which is given by

In =
1

n

n∑
i=1

Xi =
1

n

n∑
i=1

h(Ui),

where U1, · · · , Un are i.i.d. random variables from the Unif(0, 1) distribution and Xi = h(Ui).
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6.2 Monte Carlo estimators

Definition 78 (Monte Carlo estimator). Suppose that X is a random variable. Let X1, · · · , Xn

be i.i.d. random variables from the distribution of X. A Monte Carlo estimator of µ = E[X] is
given by the sample mean

X̄n =
1

n

n∑
i=1

Xi. (6.1)

• The mean of X̄n is

E
[
X̄n

]
=

1

n

n∑
i=1

E[Xi] = E[X] = µ,

so this estimator is unbiased.

• Its variance is given by

Var
(
X̄n

)
=

1

n2

n∑
i=1

Var(Xi) =
1

n
Var(X). (6.2)

• The so called Strong Law of Large Numbers implies that the Monte Carlo estimator X̄n of
µ = E[X] given by (6.1) is consistent, i.e.,

lim
n→∞

X̄n = µ.

• The variance in (6.2) can be related to the number of Xi needed to achieve a certain
degree of accuracy.

• A major challenge is to reduce the variance of the estimator, provided in (6.2). We will
consider this problem below.

6.3 Recap

• Monte Carlo gives a way to compute expectations of the form E[g(Y )], where Y is a random
variable, which can be sampled.

• To do Monte Carlo, choose a large N , sample N realizations (y1, · · · , yN ) of Y , compute
(x1, · · · , xN ) = (g(y1), · · · , g(yN )), and take the sample average.

• The variance of the Monte Carlo estimator is Var(g(Y ))/n.
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Chapter 7

Introduction to option pricing - the
one-period binomial asset pricing
model

7.1 What are options?

• A derivative security is a security whose value depends on the values of basic underlying
variables.

• Such basic underlying variables often are prices of stocks, interest rates, exchange rates etc.

• Derivative securities are also sometimes called contingent claims.

• Example: A stock option is a derivative security (here: an option) whose value is contingent
on the price of a stock.

Examples of derivative securities:

• A forward contract is an agreement to buy or sell an asset at a certain future time for
a certain price.

• An option is a special type of derivative security that gives the holder the right but not
the obligation to do something, e.g., to buy or sell an asset at a certain future time for a
certain price.
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• Two basic types of options: call options and put options.

• A call option gives the holder the right to buy the underlying asset by a certain date for
a certain price.

• A put option gives the holder the right to sell the underlying asset by a certain date for
a certain price.

• Common names used for the date in the contract: expiration date, exercise date, maturity.

• Common names for price in the contract: exercise price, strike price.

• American options are option that can be exercised at any time up to the maturity.

• European options are options that can be exercised only at the maturity date itself.

• An option gives the holder a right but not an obligation to do something.

• Hence, the holder can choose not to exercise their right.

• The holder needs to pay for the right to do something.

• What should the price of an option be?

There are other derivative securities (e.g. forwards and futures) where the holder is obligated
to buy or sell the underlying asset.

• We now focus on stock options.

• We need to model the price of the underlying, i.e., the stock.

• We do this using the one-period binomial asset pricing model.

• We need to develop a concept for determining the price of an option.

• We do this using the principle of no-arbitrage and risk-neutral pricing.
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7.2 The one-period binomial model - model description

• We use the one-period binomial asset pricing model to introduce the concept of the
no-arbitrage price of an option.

• One-period binomial asset pricing model considers two points in time:
Time zero (=beginning of the period) and time one (=end of the period).

• The financial market consists of two assets: a riskless asset (bank account) and a risky
asset (stock).

• We model riskiness of an asset by modelling it as a random variable.

Definition 79 (Riskless asset in one-period binomial model). The time-0 price of the riskless
asset is given by B0 = 1 and the time-1 price by B1 = (1 + r) where r > −1.

Remark 80.

• You can think of the riskless asset as a bank account with interest rate r.

• Interest rate is the same for investing and for borrowing:

– Investing £1 at time 0 yields £(1 + r) at time 1.

– Borrowing £1 at time 0 yields £(1 + r) debt at time 1.

Definition 81 (Risky asset in one-period binomial model). The time-0 price of the risky asset is
given by S0 where S0 > 0. The time-1 price of the risky asset is given by the random variable S1

defined on the (coin toss) sample space Ω = {H,T} (H=head, T=tail):

S1(ω) =

{
uS0, if ω = H,

dS0, if ω = T,

where u > d > 0. Furthermore, P (S1 = uS0) = p, P (S1 = dS0) = 1− p, where p ∈ (0, 1).

Remark 82.

• Price of stock at time 0 is known (S0). Price of stock at time 1 (S1) is unknown at time 0

but known at time 1.

• Intuition: Toss a coin and the outcome determines the price of the stock per share at time
1.

• Intuitively think of u as up factor and d as down factor (even though we do not require
that d < 1 < u).
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S0

S1(H) = uS0

S1(T ) = dS0

7.3 The concept of no-arbitrage

Important: Need to make sure that our mathematical model for the financial market does not
allow for arbitrage opportunities.

Definition 83 (Arbitrage - intuitive definition). A trading strategy is an arbitrage if it begins
with zero money, has zero probability of losing money and has a positive probability of making
money.

Definition 84 (Trading strategy in the one-period binomial model). We refer to a tuple φ =

(β0,∆0)
⊤ ∈ R2 as a trading strategy in the one-period binomial model, where β0 denotes the

number of riskless assets held at time 0 and ∆0 denotes the number of shares of the
stock held at time 0.

Definition 85 (Wealth corresponding to trading strategy). Consider a trading strategy φ =

(β0,∆0)
⊤ in the one-period binomial model. The corresponding time-0 wealth is given by

Xφ
0 = X0 = β0B0 +∆0S0 = β0 +∆0S0,

and the corresponding time-1 wealth is given by

Xφ
1 = X1 = β0B1 +∆0S1 = β0(1 + r) + ∆0S1.

Remark 86. We sometimes write Xt rather than Xφ
t for the wealth at time t ∈ {0, 1} to simplify

notation.
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Definition 87 (Arbitrage in one-period binomial model). Consider a trading strategy φ =

(β0,∆0)
⊤ in the one-period binomial model. We refer to φ as an arbitrage if

Xφ
0 = 0, P [Xφ

1 ≥ 0] = 1, P [Xφ
1 > 0] > 0. (7.1)

Theorem 88. Consider a one-period binomial model. Then, there is no arbitrage if and only if

d < 1 + r < u. (7.2)

Proof of Theorem 88.

First, assume that there is no arbitrage in the one-period binomial model. We show that d <

1 + r < u by contradiction.

• Assume that d ≥ 1 + r.

– Time 0: Start with zero wealth X0 = 0 by borrowing β0 = −S0 riskless assets and
buying ∆0 = 1 share of stock. Hence, φ = (β0,∆0)

⊤ = (−S0, 1).
Indeed Xφ

0 = β0B0 +∆0S0 = −S0 +∆0S0 = 0.

– Time 1: Wealth at time 1:
Outcome Tail:

Xφ
1 (T ) = β0B1 +∆0S1(T ) = −S0(1 + r) + dS0

≥ −S0(1 + r) + (1 + r)S0 = 0.

Outcome Head:

Xφ
1 (H) = β0B1 +∆0S1(H) = −S0(1 + r) + uS0

≥ −S0d+ uS0 = (u− d)S0 > 0.

This is a contradiction to the assumption that there is no arbitrage.
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• Assume that u ≤ 1 + r.

– Time 0: Start with zero wealth X0 = 0 by short-selling ∆0 = −1 share of stocks and
investing the proceeds S0 in the riskless asset, i.e., β0 = S0. Hence, φ = (β0,∆0)

⊤ =

(S0,−1).
Indeed Xφ

0 = β0B0 +∆0S0 = S0 +∆0S0 = 0.

– Time 1: Wealth at time 1:
Outcome Tail:

Xφ
1 (T ) = β0B1 +∆0S1(T ) = S0(1 + r)− dS0

≥ uS0 − dS0 = (u− d)S0 > 0.

Outcome Head:

Xφ
1 (H) = β0B1 +∆0S1(H) = S0(1 + r)− uS0

≥ S0u− uS0 = 0.

This is a contradiction to the assumption that there is no arbitrage.

We prove the second direction (i.e., (7.2) implies that the one-period model is free of arbitrage),
in the class.

7.4 Pricing a European call option in the one-period bino-

mial model

• A European call option gives its owner the right but not the obligation to buy one share
of stock at the maturity date T for the strike price K.

• Assumptions in the one-period binomial model: maturity T = 1 and strike K satisfies
S1(T ) < K < S1(H).

• Outcome Tail: Option expires worthless. (It would be cheaper to buy the share on the stock
market directly for S1(T ) rather than exercising the option and paying K for it.)

• Outcome Head: The option will be exercised yielding profit S1(H)−K.

• Payoff or value of the option at time 1: (S1 −K)+,
(where we omit argument of random variable S1).
Notation: x+ = max{x, 0}.
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ST

(ST −K)+

K

• How much is the European call option worth at time 0, i.e., before we know the
outcome of the coin toss?

• Arbitrage pricing theory approach to option pricing:

– Replicate option by trading in stock and money market.

– Price of replicating strategy = price of option.

Example 89 (European call option).

• Consider one-period binomial model with S0 = 4, u = 2, d = 1
u = 1

2 , r = 1
4 . Hence,

S1(H) = 8, S1(T ) = 2 and in particular, d = 1
2 < 1 + r = 5

4 < 2 = u.

• Consider European call option with maturity T = 1 and strike price K = 5.

• Option payoff at time 1:

– outcome head: (S1(H)− 5)+ = 3,

– outcome tail: (S1(T )− 5)+ = 0.

Example (European call option (continued)).

• Consider the investment strategy φ = (β0,∆0)
⊤ = (−0.8, 0.5), i.e.:

– borrow £0.8 in riskless asset,

– buy ∆0 = 0.5 shares of stock at time 0.

• Corresponding time-0 wealth: Xφ
0 = β0 +∆0S0 = −0.8 + ∆0S0 = −0.8 + 0.5 · 4 = 1.2.

• Corresponding time-1 wealth: Xφ
1 = −0.8(1 + 0.25) + 0.5S1 = −1 + 0.5S1.

– Outcome head: Xφ
1 (H) = −1 + 0.5S1(H) = 3,

– outcome tail: Xφ
1 (T ) = −1 + 0.5S1(T ) = 0.
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Example (European call option (continued)).

• The time-1 wealth corresponding to the trading strategy φ = (−0.8, 0.5)⊤ corresponds to
the option payoff at time 1. Hence, we have replicated the option by trading in the stock
and money markets.

• The initial time-0 wealth Xφ
0 = 1.2 corresponding to the replicating strategy φ =

(−0.8, 0.5)⊤ is the no-arbitrage price of the option at time 0.

Example (European call option (continued)).

• Why is the time-0 price of the European call indeed £1.2?

• We show that there exist an arbitrage if the price is either greater or smaller than £1.2.

Example (European call option (continued)). Consider the case where the price is larger, e.g.
£1.21.

• Strategy: At time 0,

– sell the option for £1.21,

– use £1.2 to replicate the option (using φ = (−0.8, 0.5)),

– invest the additional £0.01 in the riskless asset.

• At time 1, the seller can pay off the option using the replicating portfolio and in addition
has gained £0.01 · 1.25 = £0.0125.

• Arbitrage! Seller needs no money initially and without risk of loss gains £0.0125 at time 1.
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Example (European call option (continued)). Consider the case where the price is smaller, e.g.
£1.19.

• Strategy: At time 0, reverse the replicating strategy, i.e., use φ̃ = (0.8,−0.5):

– short-sell 0.5 shares of stock which generates an income of £0.5 · 4 =£2,

– buy the option for £1.19,

– invest £0.8 in the riskless asset,

– invest the remaining £0.01 in a separate riskless asset account.

• At time 1:

– outcome head: Option is worth £3, cash in the riskless asset has grown to £(0.8+0.01) ·
1.25 =£1.0125, i.e., it is £4.0125 in total available to replace the 0.5 shares of stocks
for £0.5 · 8 = £4.

– outcome tail: Option is worth 0, investment in riskless asset is worth £1.0125 which is
sufficient to replace the 0.5 shares of stock at a price of £0.5 · 2 = £1.

• Arbitrage! Buyer needs no money initially and without risk of loss gains £0.0125 at time 1.

Key assumptions to derive the time-0 price:

• Shares of stocks can be subdivided (for sale or purchase),

• same interest rate for investing and borrowing,

• purchase price of stock = selling price of stock (no bid-ask spread),

• at any point in time, only two possible values for the stock price in the next period.

7.5 Pricing more general derivatives in the one-period bino-

mial model

Definition 90. In the one-period binomial model we define a derivative security to be a security
that pays V1(H) at time 1 if the outcome of the coin toss is head and V1(T ) if the outcome of the
coin toss is tail, i.e., V1 is a random variable on the coin toss sample space.

Example 91 (Derivative securities).

• European call option: V1 = (S1 −K)+.

• European put option: V1 = (K − S1)
+.

• Forward contract: V1 = S1 −K

Goal: Compute time-0 price of derivative security with payoff V1 at time-1 by computing
the time-0 wealth corresponding to the replicating strategy.
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Definition 92 (Replicating strategy). Consider the one-period binomial model with a derivative
security V1. We refer to a trading strategy φ = (β0,∆0)

⊤ ∈ R2 that satisfies

Xφ
1 (ω) = β0(1 + r) + ∆0S1(ω) = V1(ω),

for all ω ∈ Ω = {H,T}, as a replicating strategy (for V1).

• Goal: Determine trading strategy φ = (β0,∆0)
⊤ such that

Xφ
1 = β0(1 + r) + ∆0S1 = V1.

• Since there are two possible outcomes for the stock, we obtain a system of two equations:

β0(1 + r) + ∆0S1(H) = V1(H),

β0(1 + r) + ∆0S1(T ) = V1(T ).
(7.3)

We need to solve (7.3) for β0 and ∆0.

We solve (7.3) for β0 and ∆0: {
β0(1 + r) + ∆0S1(H) = V1(H),

β0(1 + r) + ∆0S1(T ) = V1(T )

⇐⇒
{

β0 = 1
1+r (V1(H)−∆0S1(H)) ,

β0 = 1
1+r (V1(T )−∆0S1(T ))

(7.4)

Hence,

1

1 + r
(V1(H)−∆0S1(H)) =

1

1 + r
(V1(T )−∆0S1(T ))

⇐⇒∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
. (7.5)

Then, plugging (7.5) into (7.4) yields

β0 =
1

1 + r

(
V1(H)− V1(H)− V1(T )

S1(H)− S1(T )
S1(H)

)
=

1

1 + r

V1(H)S1(T )− V1(T )S1(H)

S1(T )− S1(H)
.
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Consider the trading strategy derived from (7.3), i.e., φ = (β0,∆0)
⊤ with

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
,

β0 =
1

1 + r

V1(H)S1(T )− V1(T )S1(H)

S1(T )− S1(H)
.

(7.6)

Then, the corresponding time-0 wealth is given by

Xφ
0 = β0 +∆0S0 = β0 +

V1(H)− V1(T )

S0u− S0d
S0 = β0 +

V1(H)− V1(T )

u− d

=
1

1 + r

(
V1(H)d− V1(T )u

d− u
+

(1 + r)(V1(H)− V1(T ))

u− d

)
=

1

1 + r

(
V1(H)

1 + r − d

u− d
+ V1(T )

u− 1− r

u− d

)
. (7.7)

We collect the results of the calculations in the following theorem.

Theorem 93. Consider a one-period binomial model satisfying the no-arbitrage condition (7.2)
and consider a derivative security paying V1 at time 1. Then,

1. there exists a replicating strategy φ = (β0,∆0)
⊤ such that Xφ

1 = V1.

2. In particular, the replicating strategy φ = (β0,∆0)
⊤ is given by (7.6).

3. The time-0 price V0 of the financial security is given by

V0 = Xφ
0 =

1

1 + r

(
V1(H)

1 + r − d

u− d
+ V1(T )

u− 1− r

u− d

)
. (7.8)

Remark 94.

• Note that the time-0 price V0 does not depend on the probability p of head occurring!

• The formula (7.6) for ∆0 is sometimes referred to as delta-hedging formula.

Remark 95. The trading strategy given in (7.6) provides a hedge for the seller of the derivative
security. The seller has a short position in the derivative security.

One could also derive a hedging strategy for the long position, i.e., for the buyer of the derivative
security. The number of shares of a long position hedge is the negative of the ∆0 given in (7.6).
We will look at an example in an exercise in the class.

We consider an alternative representation of the pricing formula (7.8).

Lemma 96. Suppose the no-arbitrage condition (7.2) holds and u > d > 0, define

p̃ =
1 + r − d

u− d
. (7.9)

Then p̃ ∈ (0, 1) and 1− p̃ = u−1−r
u−d .

Proving this lemma is an exercise that you will do in class.

72



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

Theorem 97. Consider a one-period binomial model satisfying the no-arbitrage condition (7.2)
and consider a derivative security paying V1 at time 1. Then, the time-0 price V0 of the financial
security is given by

V0 =
1

1 + r
(V1(H)p̃+ V1(T )(1− p̃)) = Ẽ

(
V1

B1

)
, (7.10)

where p̃ is given in (7.9) and Ẽ is the expectation corresponding to the risk-neutral probability p̃.

Remark 98. The pricing formula (7.10) shows that the price of the derivative security can be
expressed as an expectation of the discounted payoff V1

B1
= V1

1+r under a probability measure under
which head occurs with probability p̃ and tail occurs with probability 1− p̃.
The probability p̃ is referred to as risk-neutral probability and formula (7.10) as risk-neutral
pricing formula.
Again, the actual (real world) probability p of head occurring does not matter for the price.

The proof of Lemma 96 is given in the class.
Note that

Ẽ

[
S1

B1

]
=

1

1 + r
(p̃S1(H) + (1− p̃)S1(T ))

=
1

1 + r

(
1 + r − d

u− d
uS0 +

u− 1− r

u− d
dS0

)
=

S0

1 + r

u(1 + r)− du+ ud− (1 + r)d

u− d

= S0.

(7.11)

In particular,

(1 + r)S0 = p̃S1(H) + (1− p̃)S1(T ).

Hence, under the risk-neutral probability the average rate of growth of the stock is equal to the
average rate of growth of an investment in the money market account.
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7.6 Recap

• The binomial asset pricing models considers a financial market with two assets:

– a riskless asset with price B0 = 1 and B1 = (1 + r) (where r > −1),

– a risky asset with price S0 > 0 and S1 is a random variable taking two possible values
uS0 with probability p ∈ (0, 1) and dS0 with probability 1−p. Assumption: u > d > 0.

• We introduced the concept of an arbitrage, which is a trading strategy that begins with
zero money, trades in the two available assets and at time 1 with positive probability makes
money without any possibility of losing money.

• We have seen that the one-period binomial asset pricing model is free of arbitrage if and
only if d < 1 + r < u.

• Idea of arbitrage pricing theory: Price of a derivative security must be such that one
cannot form an arbitrage by trading in the two underlying assets (the riskless and the risky
assets) and the derivative security.

• Idea: Replicate the payoff of the derivative security at time 1 by a portfolio that
trades in the riskless and the risky assets. By the no-arbitrage assumption, the time-0 price
of the derivative security must be exactly the price of the replicating strategy at time
0.

• The one-period binomial model is complete, i.e., every derivative security can be replicated
by trading in the two underlying assets.

• In the one-period binomial model the time-0 price of a derivative security is uniquely
determined by the time-0 price of the replicating portfolio.

• Risk-neutral pricing formula: The time-0 price of a derivative security can be expressed
as an expectation of the discounted payoff under the risk-neutral probability measure, see
formula (7.10).

• Reading: This chapter followed closely (Shreve, 2004, Section 1.1).
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Chapter 8

The multiperiod binomial asset
pricing model, Part I

8.1 Model description

We extend the one-period binomial model to the N -period binomial model where N ∈ N.

Definition 99 (Riskless asset in N -period binomial model). The price of the riskless asset at
time n is given by Bn = (1 + r)n for all n ∈ {0, 1, . . . , N} where r > −1.

• Note that B0 = 1.

• The initial stock price is S0 > 0.

• Again we assume 0 < d < u and these constants model the “up” and “down” movements of
the stock price.

• The price of the stock at time 1 is S1(H) = uS0 if the first coin toss is head and
S1(T ) = dS0 otherwise.

• The price of the stock at time 2 (after two coin tosses) is:

S2(HH) = uS1(H) = u2S0, S2(HT ) = dS1(H) = duS0,

S2(TH) = uS1(T ) = udS0, S2(TT ) = dS1(T ) = d2S0.
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Definition 100 (Risky asset in the N -period binomial model). Let S0 > 0 be the price of the
risky asset at time 0. The price of the risky asset at time n ∈ {1, . . . , N}, denoted by Sn is a
random variable and depends on the outcome of the first n coin tosses (ω1 . . . ωn) where for all
i ∈ {1, . . . , N} ωi ∈ {H,T}. In particular,

Sn(ω1 . . . ωn) = S0cω1 · . . . · cωn , (8.1)

where for all i ∈ {1, . . . , N}

cωi
=

{
u, if ωi = H,

d, if ωi = T.

Remark 101. Observe that there are n + 1 possible distinct outcomes for the time-n price
of the risky asset.
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S0

uS0

u2S0

u3S0

dS0

d2S0

d3S0

udS0

u2dS0

ud2S0

n = 0 n = 3
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8.2 Pricing derivatives in the multi-period binomial model

• We now want to compute the time-0 price of a European call option in the two-period
binomial model.

• We use the same idea as in the one-period model: We derive a replicating portfolio φ =

(φt)t∈{0,1}, where φt = (βt,∆t)
⊤, t ∈ {0, 1}.

• As before, β0 and ∆0 are constants, but β1 and ∆1 are random variables, i.e., they
will depend on the outcome of the first coin toss.

• In the following we will always assume that the no-arbitrage condition (7.2) is satisfied, i.e.,
that d < 1 + r < u.

• At time 0 the wealth is given by Xφ
0 = β0 +∆0S0.

• At time 1 the wealth is given by Xφ
1 = β0(1 + r) + ∆0S1.

• We allow rebalancing of the portfolio at time 1, i.e., new numbers of riskless and risky
assets β1, ∆1 can be chosen, but only such that the current wealth stays the same, i.e., we
require

Xφ
1 = β0(1 + r) + ∆0S1 = β1(1 + r) + ∆1S1, (8.2)

i.e., φ is a self-financing strategy.

• At time 2 the wealth is given by Xφ
2 = β1(1 + r)2 +∆1S2.

• Goal: Find β0, ∆0, β1(H), β1(T ), ∆1(H), ∆1(T ).

Strategy: First solve for β1(H), β1(T ), ∆1(H), ∆1(T ) by using the replication argument:

Xφ
2 = β1(1 + r)2 +∆1S2

!
= V2.

This in fact leads to 4 linear equations in 4 unknowns:

β1(H)(1 + r)2 +∆1(H)S2(HH) = V2(HH), (8.3)

β1(H)(1 + r)2 +∆1(H)S2(HT ) = V2(HT ), (8.4)

β1(T )(1 + r)2 +∆1(T )S2(TH) = V2(TH), (8.5)

β1(T )(1 + r)2 +∆1(T )S2(TT ) = V2(TT ). (8.6)
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We can solve (8.3) and (8.4) for β1(H) and ∆1(H) and obtain

∆1(H) =
V2(HH)− V2(HT )

S2(HH)− S2(HT )
,

β1(H) =
1

(1 + r)2
V2(HT )S2(HH)− V2(HH)S2(HT )

S2(HH)− S2(HT )
.

We can solve (8.5) and (8.6) for β1(T ) and ∆1(T ) and obtain

∆1(T ) =
V2(TH)− V2(TT )

S2(TH)− S2(TT )
,

β1(T ) =
1

(1 + r)2
V2(TT )S2(TH)− V2(TH)S2(TT )

S2(TH)− S2(TT )
.

Strategy: Second compute Xφ
1 (H), Xφ

1 (T ) using the just derived β1(H), β1(T ), ∆1(H), ∆1(T )

and then solve for β0, ∆0 using the self-financing condition (8.2):

Xφ
1 (H) = β1(H)(1 + r) + ∆1(H)S1(H) = β0(1 + r) + ∆0S1(H),

Xφ
1 (T ) = β1(T )(1 + r) + ∆1(T )S1(T ) = β0(1 + r) + ∆0S1(T ).

We obtain

∆0 =
Xφ

1 (H)−Xφ
1 (T )

S1(H)− S1(T )
,

β0 =
1

1 + r

Xφ
1 (T )S1(H)−Xφ

1 (H)S1(T )

S1(H)− S1(T )
.

We rewrite the expressions of Xφ
1 (H) and Xφ

1 (T ) to see that they can be interpreted as expectations
under the risk-neutral probability:

Xφ
1 (H) = β1(H)(1 + r) + ∆1(H)S1(H)

=
1

(1 + r)2
V2(HT )S2(HH)− V2(HH)S2(HT )

S2(HH)− S2(HT )
(1 + r)

+
V2(HH)− V2(HT )

S2(HH)− S2(HT )
S1(H)

=
1

1 + r

V2(HT )u2 − V2(HH)ud

u2 − ud
+

V2(HH)− V2(HT )

u2 − ud
u

=
1

1 + r

V2(HT )u− V2(HH)d

u− d
+

V2(HH)− V2(HT )

u− d

=
1

1 + r

(
V2(HH)

1 + r − d

u− d
+ V2(HT )

u− 1− r

u− d

)
=

1

1 + r
(V2(HH)p̃+ V2(HT )(1− p̃)) ,
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Xφ
1 (T ) = β1(T )(1 + r) + ∆1(T )S1(T )

=
1

1 + r

V2(TT )du− V2(TH)d2

du− d2
+

V2(TH)− V2(TT )

du− d2
d

=
1

1 + r

V2(TT )u− V2(TH)d

u− d
+

V2(TH)− V2(TT )

u− d

=
1

1 + r

(
V2(TH)

1 + r − d

u− d
+ V2(TT )

u− 1− r

u− d

)
=

1

1 + r
(V2(TH)p̃+ V2(TT )(1− p̃)) .

Note that by the idea of replication the time-1 price of the derivative is given by V1 = Xφ
1 .

In particular,

V1(ω1) = Xφ
1 (ω1) =

1

1 + r
(V2(ω1H)p̃+ V2(ω1T )(1− p̃)) , (8.7)

where ω1 ∈ {H,T} is the outcome of the first coin toss.
Note that the time-1 price is a random variable.

Then the time-0 price of V2 is given by

V0 = Xφ
0 = β0 +∆0S0 (8.8)

=
1

1 + r

Xφ
1 (T )S1(H)−Xφ

1 (H)S1(T )

S1(H)− S1(T )
+

Xφ
1 (H)−Xφ

1 (T )

S1(H)− S1(T )
S0

=
1

1 + r

Xφ
1 (T )u−Xφ

1 (H)d

u− d
+

Xφ
1 (H)−Xφ

1 (T )

u− d

=
1

1 + r

(
Xφ

1 (H)
1 + r − d

u− d
+Xφ

1 (T )
u− 1− r

u− d

)
=

1

1 + r
(Xφ

1 (H)p̃+Xφ
1 (T )(1− p̃)) (8.9)

Since Xφ
1 = V1 we obtain:

V0 =
1

1 + r
(V1(H)p̃+ V1(T )(1− p̃)) (8.10)

=
1

1 + r

(
1

1 + r
(V2(HH)p̃+ V2(HT )(1− p̃)) p̃

+
1

1 + r
(V2(TH)p̃+ V2(TT )(1− p̃)) (1− p̃)

)
=

1

(1 + r)2
(
V2(HH)p̃2 + V2(HT )p̃(1− p̃)

+V2(TH)p̃(1− p̃) + V2(TT )(1− p̃)2
)
.

Note that the time-0 price is deterministic.
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• The ideas presented in the one- and two-period binomial model generalise to N -periods.

• In particular, from (8.7) and (8.10) we see that the time-n price Vn can be computed from
Vn+1 for all n ∈ {0, 1, . . . , N − 1}. Hence, we can compute VN from the payoff of the option
and then VN−1, VN−2, . . . V0.

We summarise the insights in the following two theorems.

Definition 102 (Arbitrage in N -period binomial model). Consider an N -period binomial model
and a trading strategy φ =

(
(βn,∆n)

⊤)
n∈{0,...,N−1}, where βn denotes the numbers of riskless

assets and ∆n the number of risky assets held at time n.

1. The trading strategy φ is referred to as self-financing if and only if

βn−1Bn +∆n−1Sn = βnBn +∆nSn

for all n ∈ {1, . . . , N − 1}.

2. Assume that φ is a self-financing trading strategy. We refer to φ as an arbitrage if

Xφ
0 = 0, P (Xφ

N ≥ 0) = 1, P (Xφ
N > 0) > 0. (8.11)

Theorem 103. Consider a multi-period binomial model. Then, there is no arbitrage if and only
if

d < 1 + r < u. (8.12)

One can generalise the ideas used in the proof of the one-dimensional binomial model to prove
the result for the multi-period model. We will omit the proof here.

Theorem 104. Consider an N -period binomial model satisfying the no-arbitrage condition (8.12)
and consider a derivative security paying VN at time N . Then,

1. there exists a replicating self-financing strategy φ = (φn)n∈{0,...,N−1} such that Xφ
n = Vn for

all n ∈ {0, . . . , N}.

2. For n ∈ {0, . . . , N − 1} Vn can be derived recursively backwards in time by setting

Vn(ω1 . . . ωn) =
1

1 + r
(p̃Vn+1(ω1 . . . ωnH) + (1− p̃)Vn+1(ω1 . . . ωnT )) . (8.13)
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Theorem (Theorem 104 continued).

3. In particular, the replicating strategy at time n ∈ {0, . . . , N − 1} φn = (βn,∆n)
⊤ is given

by

∆n(ω1, . . . , ωn) =
Vn+1(ω1 . . . ωnH)− Vn+1(ω1 . . . ωnT )

Sn+1(ω1 . . . ωnH)− Sn+1(ω1 . . . ωnT )
, (8.14)

βn(ω1, . . . , ωn) =
Vn+1(ω1 . . . ωnT )u− Vn+1(ω1 . . . ωnH)d

Bn+1(u− d)
. (8.15)

4. The time-0 price V0 can be written as

V0 =
∑

ω=(ω1...ωN )∈Ω

p̃ω1
· . . . p̃ωN

VN (ω)

BN
=: Ẽ

(
VN

BN

)
, (8.16)

where for all n ∈ {1, . . . , N}

p̃ωn
=

{
p̃, if ωn = H,

1− p̃, if ωn = T,

where p̃ is given in (7.9).

Theorem 104 can be proved by induction and using the same arguments we developed in the
one-period and two-period model we will therefore omit it. You can find it in (Shreve, 2004, p.
13–14 (Proof of Theorem 1.2.2)).

Remark 105. The pricing formula (8.16) shows that the price of the derivative security can
be expressed as an expectation of the discounted payoff VN

BN
under a risk-neutral probability.

Formula (8.16) is referred to as risk-neutral pricing formula.
Again, the actual (real world) probability p of head occurring does not matter for the price.

The next result is an immediate consequence of (8.16) in Theorem 104:

Corollary 106. Consider an N -period binomial model satisfying the no-arbitrage condition (8.12)
and consider a derivative security paying VN = v(SN ) at time N , where v is a deterministic
function and SN is the stock price at time N . Then, the time-0 price of VN = v(SN ) is given by

V0 = Ẽ

[
v(SN )

BN

]
=

1

BN

N∑
k=0

(
N

k

)
p̃k(1− p̃)N−kv(S0u

kdN−k), (8.17)

where p̃ = 1+r−d
u−d .

Definition 107. For n = 1, . . . , N , the price of the derivative security at time n if the
outcome of the first coin tosses is ω1 . . . ωn is defined to be the random variable Vn(ω1 . . . ωn) of
Theorem 104. The price of the derivative security at time 0 is defined to be V0 as given in Theorem
104.
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Remark 108 (Completeness). The N -period binomial model is complete since every derivative
security can be replicated by trading in the underlying riskless and risky asset.

In the following we consider an example of a derivative security whose payoff does not only
depend on the stock price at the maturity date but on stock prices at previous points in
time as well.
Such derivative securities are called path-dependent.

Example 109 (Lookback option). Consider a 3-period binomial model with S0 = 4, u = 2, d = 1
2 ,

r = 1
4 . Consider a lookback option that has payoff

V3 = max
n∈{0,1,2,3}

Sn − S3.

We compute its time-0 price V0 via backward recursion.
Note that in this example

p̃ =
1 + r − d

u− d
=

5
4 − 1

2
3
2

=
1

2
= 1− p̃.

Example (Lookback option (continued)). V3 is determined from the payoff directly:

V3(HHH) = S3(HHH)− S3(HHH) = 32− 32 = 0,

V3(HHT ) = S2(HH)− S3(HHT ) = 16− 8 = 8,

V3(HTH) = S1(H)− S3(HTH) = 8− 8 = 0,

V3(THH) = S3(THH)− S3(THH) = 8− 8 = 0,

V3(HTT ) = S1(H)− S3(HTT ) = 8− 2 = 6,

V3(THT ) = S2(TH)− S3(THT ) = 4− 2 = 2,

V3(TTH) = S0 − S3(TTH) = 4− 2 = 2,

V3(TTT ) = S0 − S3(TTT ) = 4− 0.5 = 3.5.

Example (Lookback option (continued)). For any outcome of the first two coin tosses ω1ω2 the
time-2 value V2 is determined from the backward recursion:

V2(ω1ω2) =
1

1 + r
(p̃V3(ω1ω2H) + (1− p̃)V3(ω1ω2T ))

=
4

5

(
1

2
V3(ω1ω2H) +

1

2
V3(ω1ω2T )

)
=

2

5
(V3(ω1ω2H) + V3(ω1ω2T )) .
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Example (Lookback option (continued)). Hence,

V2(HH) =
2

5
(V3(HHH) + V3(HHT )) =

2

5
(0 + 8) =

16

5
= 3.2,

V2(HT ) =
2

5
(V3(HTH) + V3(HTT )) =

2

5
(0 + 6) =

12

5
= 2.4,

V2(TH) =
2

5
(V3(THH) + V3(THT )) =

2

5
(0 + 2) =

4

5
= 0.8,

V2(TT ) =
2

5
(V3(TTH) + V3(TTT )) =

2

5
(2 +

7

2
) =

11

5
= 2.2.

Example (Lookback option (continued)). For any outcome of the first coin toss ω1 the time-1
value V1 is determined from the backward recursion:

V1(ω1) =
1

1 + r
(p̃V2(ω1H) + (1− p̃)V2(ω1T ))

=
4

5

(
1

2
V2(ω1H) +

1

2
V2(ω1T )

)
=

2

5
(V2(ω1H) + V2(ω1T )) .

Hence,

V1(H) =
2

5
(V2(HH) + V2(HT )) =

2

5
(3.2 + 2.4) = 2.24,

V1(T ) =
2

5
(V2(TH) + V2(TT )) =

2

5
(0.8 + 2.2) = 1.2.

Example (Lookback option (continued)). Finally, the time-0 price of the lookback option is given
by

V0 =
1

1 + r
(p̃V1(H) + (1− p̃)V1(T )) =

2

5
(2.24 + 1.2) = 1.376.
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Example (Lookback option (continued)). Consider the following hedging strategy for the seller
of the lookback option:

• Sell the lookback option at time 0 for 1.376.

• Buy

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
=

2.24− 1.2

8− 2
=

13

75
≈ 0.1733

shares of stocks at a price of S0 = 4 per share, i.e., the total costs are £ 52
75 ≈ 0.6933 and

invest the remaining 1.376− 52
75 ≈ 0.6827 in the riskless asset. Note that indeed

β0 =
V1(T )u− V1(H)d

(1 + r)(u− d)
=

1.2 · 2− 2.24 · 0.5
15
8

=
256

375
≈ 0.6827.

Example (Lookback option (continued)).

• At time 1 the investment in the riskless asset is worth 256
375 · 1.25 = 64

75 ≈ 0.8533.

• If the stock price goes up to 8 the position in the stock is worth 13
75 · 8 = 104

75 ≈ 1.3867 and
hence the portfolio value is 64

75 + 104
75 = 168

75 = 2.24 = V1(H).

• If the stock price goes down to 2 the position in the stock is worth 13
75 · 2 = 26

75 ≈ 0.3467 and
hence the portfolio value is 64

75 + 26
75 = 90

75 = 1.2 = V1(T ).

• Continuing like this we see that the seller of the lookback option has a portfolio worth V3 at
time 3 no matter what the outcomes of the three coin tosses are.

8.3 Computational aspects in the binomial model, Part I

• In practice, one considers binomial models with 100 or more periods.

• There are 2100 ≈ 1030 possible outcomes for a sequence of 100 coin tosses.

• We cannot use an algorithm that starts by tabulating 2100 values for V100, but need to find
a computationally efficient approach.

We illustrate how the implementation of the binomial model can be set up in a more efficient
manner by looking at two examples.
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Example 110 (European put option).

• Market model: We consider the 3-period binomial model with S0 = 4, u = 2, d = 1
2 ,

r = 1
4 .

• Derivative security: We would like to compute the time-0 price of a European put option
with strike K = 5 and maturity T = 3, its payoff at time 3 is given by V3 = (K − S3)

+ =

max{0,K − S3}. In particular,

V3(HHH) = 0,

V3(HHT ) = V3(HTH) = V3(THH) = 0,

V3(TTH) = V3(THT ) = V3(HTT ) = 3,

V3(TTT ) = 4.5.

• There are 23 = 8 possible outcomes for 3 coin tosses but they do not lead to 8 distinct stock
values or option payoffs (see also Remark 101 and Corollary 106).

Example (European put option (continued)).

• Notation: v3(s) denotes the payoff of the option at time three for a time-3 stock price s. (V3

has sequence of three coin tosses as arguments, v3 has stock price as argument.)

• At time 3: Only four possible stock values: 32, 8, 2, 0.5 and therefore

v3(32) = (5− 32)+ = 0,

v3(8) = 0,

v3(2) = 3,

v3(0.5) = 4.5.

• Note that in a 100-period binomial model there are 2100 possible outcomes of the coin tosses,
but only 101 possible stock prices at time 100.
Huge reduction in complexity to consider v rather than V !
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Example (European put option (continued)).

• From Theorem 104 we know that

V2(ω1ω2) =
2

5
(V3(ω1ω2H) + V3(ω1ω2T )) , (8.18)

which represents 4 equations for 4 different choices of ω1ω2 (HH,HT, TH, TT ).

• We write v2(s) for the price of the European put option where s is the stock price at time
2. Then formula (8.18) can be written as

v2(s) =
2

5
(v3(2s) + v3(0.5s)) ,

and hence there are only 3 equations corresponding to three stock prices at time 2:

Example (European put option (continued)).

v2(16) =
2

5
(v3(32) + v3(8)) = 0,

v2(4) =
2

5
(v3(8) + v3(2)) =

6

5
= 1.2,

v2(1) =
2

5
(v3(2) + v3(0.5)) = 3.

Example (European put option (continued)).

• Again, from Theorem 104 we know that

V1(ω1) =
2

5
(V2(ω1H) + V2(ω2T )) , (8.19)

which represents 2 equations for 2 different choices of ω1 (H,T ).

• We write v1(s) for the price of the European put option where s is the stock price at time
1. Then formula (8.19) can be written as

v1(s) =
2

5
(v2(2s) + v2(0.5s)) ,

and hence there are 2 equations corresponding to two stock prices at time 1;

v1(8) =
2

5
(v2(16) + v2(4)) =

12

25
= 0.48,

v1(2) =
2

5
(v2(4) + v2(1)) =

42

25
= 1.68
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Example (European put option (continued)).

• Again, from Theorem 104 we know that

V0 =
2

5
(V1(H) + V1(T )) , (8.20)

which represents only one equation.

• We write v0(s) for the price of the European put option where s is the stock price at time
0. Then formula (8.20) can be written as

v0(s) =
2

5
(v1(2s) + v1(0.5s)) .

Since the initial stock price is S0 = 4, the price of the European put option at time 0 is

v0(4) =
2

5
(v1(8) + v1(2)) =

2

5
(0.48 + 1.68) = 0.864.

Example (European put option (continued)).

• Similarly, the replicating strategy can also be characterised as a function of the stock price.

• The number of shares of stock that should be held in the replicating portfolio at time n if
the stock price at time n is s is given by

∆̃n(s) =
vn+1(2s)− vn+1(0.5s)

2s− 0.5s
,

which is the analogue of formula (8.14) in Theorem 104.

• The number of riskless assets that should be held in the replicating portfolio at time n if the
stock price at time n is s is given by

β̃n(s) =
2vn+1(0.5s)− 0.5vn+1(2s)(

5
4

)n+1 3
2

.

which is the analogue of formula (8.15) in Theorem 104.
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• Key idea in Example 110 to reduce the complexity of the computations:
Since in this example the option price at time n only depends on the stock price at
time n we can write

Vn = v(Sn),

i.e., we can relate the random variable Vn to the random variable Sn via a determ-
inistic function vn.

• Generalisations of this idea are possible even if the payoff does not just depend on the
current stock price but on the whole path of the stock price as we will see in the
next example.

8.4 Recap

• The N -period binomial asset pricing models considers a financial market with two assets:

– a riskless asset with price Bn = (1 + r)n (where r > −1) at time n ∈ {0, . . . , N},
– a risky asset with price S0 > 0 and SN is a random variable given in (9.5) and hence

depends on the outcome of N coin tosses. At any point in time the stock price can only
move up by a factor u or down by a factor d and this is determined by the outcome of
the coin tosses. Assumption: u > d > 0.

• For trading strategies in the multiperiod binomial model we introduced the additional
concept of a trading strategy being self-financing. A self-financing trading strategy re-
balances a portfolio after observing the new asset prices at the next point in time in such a
way that only the composition of the portfolio but not the total wealth corresponding to the
portfolio changes. In particular, no additional money is used to invest and also no money is
taken out of the portfolio.

• When defining arbitrage in multiperiods we only consider self-financing strategies, but oth-
erwise the concept of an arbitrage stays the same as in the one-period model.

• The multiperiod binomial asset pricing model is free of arbitrage if and only if d <

1 + r < u.
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• Idea of arbitrage pricing theory: Price of a derivative security must be such that one
cannot form an arbitrage by trading in the two underlying assets (the riskless and the risky
assets) and the derivative security.

• Idea: Replicate the payoff of the derivative security at time N by a portfolio
that trades in the riskless and the risky assets. By the no-arbitrage assumption, the time-0
price of the derivative security must be exactly the price of the replicating strategy at
time 0.

• The multiperiod binomial model is complete, i.e., every derivative security can be replicated
by trading in the two underlying assets.

• In the multiperiod binomial model the time-0 price of a derivative security is uniquely
determined by the time-0 price of the replicating portfolio.

• Risk-neutral pricing formula: The time-0 price of a derivative security can be expressed
as an expectation of the discounted payoff under the risk-neutral probability measure, see
formula (8.16).

• Reading: This chapter followed closely (Shreve, 2004, Sections 1.2, 1.3).
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Chapter 9

The multiperiod binomial asset
pricing model, Part II

9.1 Computational aspects in the binomial model, Part II

Example 111 (Lookback option - computational aspects). We again consider the example of the
3-period binomial model with S0 = 4, u = 2, d = 1

2 , r = 1
4 and the lookback option with payoff

V3 = max
n∈{0,1,2,3}

Sn − S3

as introduced in Example 109. As before, p̃ = 1
2 .

Key idea: express the price of the option at time n in terms of the two-dimensional
vector of random variables (Sn,Mn), where

Mn = max
k∈{0,...,n}

Sk.
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Example (Lookback option - computational aspects (continued)).

• At time 3: 4 possible values for the stock price S3: 32, 8, 2, 0.5.

• At time 3: 6 possible pairs of (S3,M3), namely

(32, 32), (8, 16), (8, 8), (2, 8), (2, 4), (0.5, 4).

• We denote by vn(s,m) the value of the option at time n if the stock price at time n is Sn = s

and Mn = m.

• Then the value of the option at time 3 is just its payoff:

v3(32, 32) = 0, v3(8, 16) = 8, v3(8, 8) = 0,

v3(2, 8) = 6, v3(2, 4) = 2, v3(0.5, 4) = 3.5.

• We again rewrite the recursion provided in Theorem 104 in terms of (s,m) rather than the
outcome of the coin tosses:

vn(s,m) =
2

5
(vn+1(2s,max{m, 2s}) + vn+1(0.5s,m)) . (9.1)

Example (Lookback option - computational aspects (continued)).

• At time 2 there are three possible values for the stock price S2, namely 16, 4, 1, and four
possible pairs of (S2,M2), namely (16, 16), (4, 8), (4, 4), (1, 4).

• Then using (9.1) we obtain the option price at time 2:

v2(16, 16) =
2

5
(v3(32,max{16, 32}) + v3(8, 16))

=
2

5
(v3(32, 32) + v3(8, 16)) =

16

5
= 3.2,

v2(4, 8) =
2

5
(v3(8, 8) + v3(2, 8)) =

12

5
= 2.4,

v2(4, 4) =
2

5
(v3(8, 8) + v3(2, 4)) =

4

5
= 0.8,

v2(1, 4) =
2

5
(v3(2, 4) + v3(0.5, 4)) =

2

5
· 5.5 = 2.2.
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Example (Lookback option - computational aspects (continued)).

• At time 1 there are two possible values for the stock price S1, namely 8, 2 and hence 2
possible pairs of (S1,M1), namely (8, 8), (2, 4), therefore using (9.1) we obtain

v1(8, 8) =
2

5
(v2(16, 16) + v2(4, 8)) = 2.24,

v1(2, 4) =
2

5
(v2(4, 4) + v2(1, 4)) = 1.2.

• Hence, using (9.1) the time-0 price is given by

v0(4, 4) =
2

5
(v1(8, 8) + v1(2, 4)) = 1.376.

Example (Lookback option - computational aspects (continued)).

• Similarly, the replicating strategy at time n can also be characterised as a function of (s,m),
where s is the stock price at time n and m the maximum stock price to date.

• The number of shares of stock that should be held in the replicating portfolio at time n if
the stock price at time n is s is given by

∆̃n(s,m) =
vn+1(2s,max{2s,m})− vn+1(0.5s,m)

2s− 0.5s
,

which is the analogue of formula (8.14) in Theorem 104.

• The number of riskless assets that should be held in the replicating portfolio at time n if the
stock price at time n is s is given by

β̃n(s,m) =
2vn+1(0.5s,m)− 0.5vn+1(2s,max{2s,m})(

5
4

)n+1 3
2

.

which is the analogue of formula (8.15) in Theorem 104.

• Reading: This section followed closely (Shreve, 2004, Section 1.3).
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9.2 Option pricing in a special N-period binomial model

• We will see that a special version of the N -period binomial model approximates the famous
option pricing model by Black and Scholes (BS).

• Idea: Consider a fixed time interval [0, T ] where T > 0 is the time horizon. We develop a
binomial asset model that describes asset prices at N + 1 discrete points in time within the
time-interval [0, T ].

• Consider the time step size T
N , where N ∈ N. Then we consider a N -period binomial model

which determines the prices at time 0, T
N , 2T

N , . . . , NT
N = T .

• We will later see that for N → ∞ we obtain the Black-Scholes model.

• Hence, we study convergence from a model in discrete-time to a model in continu-
ous time.

• We first consider the riskless asset.

• Let r ≥ 0 be an interest rate in a continuous time model, i.e., consider a riskless asset
worth B(c)(t) = ert at time t ∈ [0, T ].

• Define an interest rate in the N-period binomial model rN by setting rN = er
T
N −1.

• Then the time-n price of the riskless asset in the N -period binomial model at the discrete
points in time n ∈ {0, T

N , 2T
N , . . . , NT

N } is given by

Bn = (1 + rN )n = ern
T
N = B(c)

(
nT

N

)
and hence coincides with the price of the riskless asset in continuous time at the discrete
points in time.

Definition 112 (Riskless asset in BS-approximating N -period binomial model). The price of the
riskless asset in the BS-approximating N-period binomial model with time horizon T

at time n is given by

Bn = (1 + rN )n,

where

rN = er
T
N − 1 (9.2)

for an r ≥ 0.
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• Next we consider a special definition for the risky asset. We consider the following up- and
down factors:

uN = exp

(
σ

√
T

N

)
,

dN =
1

uN
= exp

(
−σ

√
T

N

) (9.3)

for a σ > 0 which will be referred to as volatility.

• Clearly for σ > 0, T > 0, N > 0:
uN > dN > 0.

• Note that for large N the no arbitrage condition

dN < 1 + rN < uN (9.4)

is satisfied.

• Consider the right hand side of (9.4):

1 + rN < uN ⇔ er
T
N < eσ

√
T
N ⇔ r

T

N
< σ

√
T

N
⇔ r

σ

√
T <

√
N

which is satisfied for large N .

• Consider the left hand side of (9.4):

dN < 1 + rN ⇔ e−σ
√

T
N < er

T
N ⇔ −σ

√
T

N
< r

T

N
⇔

√
N > − r

σ

√
T

which is always satisfied.
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Definition 113 (Risky asset in the BS-approximating N -period binomial model). Let S0 > 0 be
the price of the risky asset at time 0. The price of the risky asset in the BS-approximating
N-period binomial model at time n ∈ {1, . . . , N}, denoted by Sn is a random variable
and depends on the outcome of the first n coin tosses (ω1 . . . ωn) where for all i ∈ {1, . . . , N}
ωi ∈ {Head,Tail}. In particular,

Sn(ω1 . . . ωn) = S0cω1 · . . . · cωn , (9.5)

where for all i ∈ {1, . . . , N}

cωi
=

 uN = exp
(
σ
√

T
N

)
, if ωi = Head,

dN = exp
(
−σ
√

T
N

)
, if ωi = Tail,

where σ > 0.

• We consider a European call option with maturity T > 0 and strike K > 0 in the BS-
approximating N -period binomial model.

• Hence, its payoff at time T which corresponds to step N in the binomial model is given by
VN = v(SN ) = (SN −K)+.

• According to Corollary 106 its time-0 price is given by

V
(N)
0 = Ẽ

[
v(SN )

BN

]
=

1

BN

N∑
k=0

(
N

k

)
p̃kN (1− p̃N )N−k(S0u

k
NdN−k

N −K)+, (9.6)

where p̃N = 1+rN−dN

uN−dN
.

9.3 From the N-period binomial model to the Black and

Scholes option pricing formula

Theorem 114. Let V (N)
0 be as in (9.6) with p̃N = 1+rN−dN

uN−dN
, uN , dN as in (9.3), rN as in (9.2).

Then,

CBS
0 = lim

N→∞
V

(N)
0 = S0Φ(D1)−Ke−rTΦ(D1 − σ

√
T ),

where

D1 =
log
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

, (9.7)

and Φ is the CDF of the standard normal distribution.

We provide some details of the proof of Theorem 114 in Subsection 9.3.2.
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Theorem 115. The Black-Scholes formula for the price of the European call option with maturity
T and strike K at time t is given by

CBS
t (St) = StΦ(D1(t))−Ke−r(T−t)Φ(D1(t)− σ

√
T − t),

D1(t) =
log
(
St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

(9.8)

and St is the time-t price of the risky asset.

Meaning of model parameters:

• r ≥ 0: interest rate,

• σ > 0: volatility of the price of the risky asset,

• St: stock price at time t,

• T : maturity date of option,

• K: strike price of option.

Remark 116. From (9.7) and (12.1) we see that D1 = D1(0).

Example 117 (Convergence of the multiperiod binomial model). We consider a European call
with K = 100 maturity T = 1 and model parameters for S0 = 100, r = 0.01, σ = 0.2. The
following plot shows the convergence of the price given by the N -period binomial model V (N)

0 to
the Black-Scholes price CBS

0 (S0) as N → ∞.

0 20 40 60 80 100
N

7.5

8.0

8.5

9.0

9.5

10.0

10.5
Binomial tree approximation V(N)

0  against the number of steps N 
V(N)

0
CBS

0 (S0)

The proof of Theorem 114 relies on the Central Limit Theorem.
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9.3.1 The Central Limit Theorem

• The Central Limit Theorem (CLT) states that the suitably standardised sample mean of
independent and identically distributed random variables is approximately normally distrib-
uted if the sample size is large, more precisely:

Theorem 118. Let X1, X2, . . . be a sequence of independent and identically distributed random
variables having finite mean µ and finite variance σ2. Then, for all x ∈ R

lim
n→∞

P

 1
n

∑n
i=1 Xi − µ√

σ2

n

≤ x

 = Φ(x) =

∫ x

−∞

1√
2π

e−
y2

2 dy.

Remark 119. Note that E
[
1
n

∑n
i=1 Xi

]
= µ and Var

[
1
n

∑n
i=1 Xi

]
= σ2

n .

• Note how general the results of the CLT is.

• The distribution of the individual Xi can be anything in the world, as long as the mean and
variance are finite.

• The act of averaging will cause Normality to emerge.

• We will consider an example of a discrete distribution (Poisson) and two continuous distri-
butions (continuous uniform and exponential) in the following.

Remark 120 (Empirical CDF).

• Let Z1, . . . , Zn be i.i.d. random variables with CDF F . For every z ∈ R, let Rn(z) count
how many of Z1, . . . , Zn are less than or equal to z, i.e.,

Rn(z) =

n∑
j=1

I(Zj ≤ z).

The indicators I(Zj ≤ z) are i.i.d. with probability of success F (z). Hence, Rn(z) is Binomial
with parameters n and F (z).

• Then, the empirical CDF of Z1, . . . , Zn is defined as

F̂n(z) =
Rn(z)

n

and is a function in z.
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• Before Z1, . . . , Zn are observed, F̂n(z) is a random variable for each z. After Z1, . . . , Zn

have been observed, F̂n(z) just reduces to one value for each z. In particular, F̂n then is a
particular CDF which can be used to estimate the CDF F of Z if F is unknown.

• In the following we will study the empirical CDF of the random variable
1
n

∑n
i=1 Xi−E[ 1

n

∑n
i=1 Xi]√

Var[ 1
n

∑n
i=1 Xi]

for different choices of n and see how this approaches the CDF of the

standard normal distribution as n goes to infinity.

Example 121 (Applying CLT to Poisson distribution with mean 2).

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

(E
)C

DF

Illustration of CLT for Poisson distribution
(x)

F1(x)
F5(x)
F15(x)

Example 122 (Applying CLT to Uniform distribution).

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6
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(E
)C

DF

Illustration of CLT for Uniform distribution
(x)

F1(x)
F5(x)
F15(x)
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Example 123 (Applying CLT to Exponential distribution with rate 2).

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

(E
)C

DF

Illustration of CLT for Exponential distribution
(x)

F1(x)
F5(x)
F15(x)

• We have already introduced the Monte Carlo estimator 1
n

∑n
i=1 Xi of E[X] = µ where

X1, . . . , Xn are i.i.d. with the same distribution as X.

• We have also already seen using properties of expectation and variance that E
[
1
n

∑n
i=1 Xi

]
=

E[X] = µ and Var
[
1
n

∑n
i=1 Xi

]
= σ2

n where σ2 = Var[X].

• From the CLT we see that for large n it holds that 1
n

∑n
i=1 Xi ∼ N (µ, σ2

n ).

• Hence the CLT gives the additional information that 1
n

∑n
i=1 Xi is approximately Normal

with the given mean and variance.

9.3.2 Appendix

• In the following we give some intuition on the proof of Theorem 114.

• To simplify the presentation we only consider the case t = 0.
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• We set aN = min{k ∈ N0 : S0u
k
NdN−k

N −K > 0}, then

V
(N)
0 =

1

BN

N∑
k=0

(
N

k

)
p̃kN (1− p̃N )N−k(S0u

k
NdN−k

N −K)+

=
1

BN

N∑
k=aN

(
N

k

)
p̃kN (1− p̃N )N−k(S0u

k
NdN−k

N −K)

= S0

N∑
k=aN

(
N

k

)(
p̃NuN

1 + rN

)k (
(1− p̃N )dN

1 + rN

)N−k

− K

(1 + rN )N

N∑
k=aN

(
N

k

)
p̃kN (1− p̃N )N−k

= S0

N∑
k=aN

(
N

k

) p̃NuN

1 + rN︸ ︷︷ ︸
=qN


k1− p̃NuN

1 + rN︸ ︷︷ ︸
=qN


N−k

− K

(1 + rN )N

N∑
k=aN

(
N

k

)
p̃kN (1− p̃N )N−k

= S0B̄N,qN (aN )− K

(1 + rN )N
B̄N,p̃N

(aN ).

Note that (1 + rN )N = erT .

• To obtain the BS-formula one needs to prove that:

lim
N→∞

B̄N,qN (aN ) = lim
N→∞

N∑
k=aN

(
N

k

)
qkN (1− qN )

N−k
= Φ(D1),

lim
N→∞

B̄N,p̃N
(aN ) = lim

N→∞

N∑
k=aN

(
N

k

)
p̃kN (1− p̃N )

N−k
= Φ(D1 − σ

√
T ).

101



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

• Recall that if ZN ∼ Bin(N, qN ) then

P [ZN = k] =

(
N

k

)
qkN (1− qN )N−k,

for k ∈ {0, . . . , N}.

• Let z ∈ {0, 1, . . . , N}, then

P [z ≤ ZN ≤ N ] =

N∑
k=z

(
N

k

)
qkN (1− qN )N−k = B̄N,qN (z).

• Hence B̄N,qN (aN ) = P [aN ≤ ZN ≤ N ] where ZN ∼ Bin(N, qN ).

• Similarly, B̄N,p̃N
(aN ) = P

[
aN ≤ ẐN ≤ N

]
where ẐN ∼ Bin(N, p̃N )

We have already seen that p̃ ∈ (0, 1). The next lemma shows that also indeed qN ∈ (0, 1).

Lemma 124.

qN =
p̃NuN

1 + rN
∈ (0, 1).

Proof. It is obvious that qN > 0. To see that qN < 1 consider

p̃NuN

1 + rN
< 1

⇔ 1 + rN − dN
uN − dN

uN

1 + rN
< 1

uN>dN⇔ (1 + rN − dN )uN < (uN − dN )(1 + rN )

⇔ uN + rNuN − dNuN < uN + rNuN − dN − dNrN

⇔ 0 < dN (uN − 1− rN ) = dN (uN − (1 + rN ))

which holds due to (9.4).
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• Note that a ZN ∼ Bin(N, qN ) can be written as a sum of N i.i.d. Bern(qN ) random variables
Ij . Hence,

Z̃N =
ZN − E[ZN ]√

Var(ZN )
=

ZN −NqN√
NqN (1− qN )

=

∑N
j=1 Ij −NqN√
NqN (1− qN )

where Ij i.i.d. with Bern(qN ) distribution.

• We also normalise aN and N and define:

αN =
aN −NqN√
NqN (1− qN )

, βN =
N(1− qN )√
NqN (1− qN )

.

• One can check that limN→∞ αN = −D1 and limN→∞ βN = +∞.

• Then according to the Central Limit Theorem Z̃N follows a standard normal distribution
(for large N) and hence:

lim
N→∞

BN,qN (aN ) = lim
N→∞

P [aN ≤ ZN ≤ N ] = lim
N→∞

P
[
αN ≤ Z̃N ≤ βN

]
= Φ( lim

N→∞
βN )− Φ( lim

N→∞
αN )

= Φ(∞)− Φ(−D1) = 1− Φ(−D1) = Φ(D1).

• One can use similar arguments to show that limN→∞ BN,p̃N
= Φ(D1 − σ

√
T ).

9.4 Recap

• We have investigated what happens in a special N -period binomial model as N tends to ∞.

• We have seen that the corresponding option price for a European call option in the N -period
binomial model converges to the Black-Scholes option pricing formula.

• The important argument used to show convergence is the Central Limit Theorem.
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Chapter 10

The Black and Scholes option pricing
formula as an expectation

10.1 Option prices as expectations in the Black-Scholes mar-

ket

• We will now see how the Black-Scholes formula for a European call option can be written as
an expectation of a suitable random variable.

• Let X be a random variable with a standard normal distribution and again let r ≥ 0, σ > 0,
T ≥ 0.

• We define a random variable ST by setting

ST = S0 exp

(
(r − σ2

2
)T + σ

√
TX

)
. (10.1)

• ST represents the time-T price of a stock per share.

Theorem 125. Let ST be given by (10.1) and let K ≥ 0. Then,

E
[
e−rT (ST −K)+

]
= CBS

0 (S0).

We will prove the theorem in the class.

Remark 126. Hence, we see that the time-0 price of a European call option can be written as an
expectation of the discounted payoff of the option. We now study properties of ST in more detail.
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Definition 127 (Log-normal distribution). A positive random variable Z is said to have a log-
normal distribution if the (natural) logarithm of Z is normally distributed, i.e., log(Z) ∼ N (µ, σ2)

where µ ∈ R, σ2 > 0. We write this as Z ∼ Lognorm(µ, σ2).

• Recall that if X ∼ N (0, 1) then a+ bX ∼ N (a, b2).

• Hence, from (10.1) we obtain that

log(ST ) = log(S0) + (r − σ2

2
)T + σ

√
TX

has a normal distribution with mean log(S0) + (r − σ2

2 )T and variance σ2T .

• Therefore, ST ∼ Lognorm(log(S0) + (r − σ2

2 )T, σ2T ).

Plot of the pdf of ST for different choices of σ and S0 = 100, r = 0.01, T = 1.
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Example 128 (Convergence of the stock price in the multiperiod binomial model). We simulate
10000 stock prices at time T = 1 in the N = 1000-period binomial model with parameters
S0 = 100, r = 0.01, σ = 0.2 and compare their distribution to the lognormal distribution with
parameters log(S0) + (r − σ2

2 )T and σ2T .

0 50 100 150 200
0.000

0.005

0.010

0.015

0.020
pdf lognormal distribution
ST binomial model

• Hence, we see that the log-normal distribution can be obtained as a limit of the multi-period
binomial model as well.

• Next, we show that the expectation of the discounted log-normally distributed stock price
coincides with the initial stock price - a property we have also found in the binomial model.

Proposition 129. Let ST be given by (10.1). Then,

E[e−rTST ] = S0 (10.2)

and E[ST ] = S0e
rT .

Note that (10.2) corresponds to (7.11) in the one-period binomial model.
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Proof of Proposition 129.

E[ST ] = E

[
S0 exp

(
(r − σ2

2
)T + σ

√
TX

)]
= S0 exp

(
(r − σ2

2
)T

)
E
[
exp

(
σ
√
TX

)]
.

We compute the expectation:

E
[
exp

(
σ
√
TX

)]
=

∫ ∞

−∞
eσ

√
Tx 1√

2π
e−

x2

2 dx

=

∫ ∞

−∞

1√
2π

e−
1
2 (x

2−2σ
√
Tx+σ2T−σ2T)dx

= e
σ2T
2

∫ ∞

−∞

1√
2π

e−
1
2 (x−σ

√
T)

2

dx = e
σ2T
2 .

Hence, E[ST ] = S0e
rT and in particular E[e−rTST ] = S0.

Definition 130 (Black-Scholes Market). The Black-Scholes market consists of a risky asset whose
time-T price is given by (10.1) and a riskless asset whose time-T price is given by BT = erT for
r ≥ 0.

Remark 131. In the above definition the time-T stock price is a log-normally distributed random
variable. We have specified its distribution under the risk-neutral probability measure and E

denotes the expectation under the risk-neutral probability measure.

Theorem 132 (Option pricing in the Black-Scholes market). We consider a derivative security
in the Black-Scholes market with payoff h(ST ) at time T , where h is a suitable function. Then its
time-0 price is given by

V0 = E
[
e−rTh(ST )

]
, (10.3)

where ST is given by (10.1).
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10.2 Option pricing by Monte Carlo in the Black-Scholes

market

• From Theorem 132 we know how to obtain the time-0 price of a derivative security as an
expectation.

• If we cannot compute the expectation analytically, we can approximate it using Monte Carlo
methods.

Theorem 133. The time-0 price V0 of a derivative security with payoff h(ST ) as specified in
Theorem 132 can be approximated by the following Monte Carlo estimator:

V MC
0 (n) =

1

n

n∑
i=1

e−rTh(Si),

where S1, . . . , Sn are i.i.d. from the Lognorm(log(S0) + (r − σ2

2 )T, σ2T ) distribution.

Corollary 134. The time-0 price V0 of a derivative security with payoff h(ST ) as specified in
Theorem 132 can be approximated by the following Monte Carlo estimator:

V MC
0 (n) =

1

n

n∑
i=1

e−rTh

(
S0 exp

(
(r − σ2

2
)T + σ

√
TXi

))
,

where X1, . . . , Xn are i.i.d. from the N (0, 1) distribution.

Example 135 (European call: Convergence of the MC estimator V MC
0 (n) to the BS formula

CBS
0 ).
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Plot of VMC

0 (n) against the number of samples
VMC

0 (n)
analytical price

10.3 Measuring the error of Monte Carlo estimation - con-

fidence intervals

We assume that all random variables considered in the following have finite mean and variance.
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• In the following we study how we can measure the error of a Monte Carlo estimator.

• Recall that for a random variable X the Monte Carlo estimator of µ = E[X] is given by
X̄n = 1

n

∑n
i=1 Xi where X1, . . . , Xn are i.i.d. with the same distribution as X.

• How close is the estimator X̄n = 1
n

∑n
i=1 Xi to the true value µ?

• Since the Monte Carlo estimator X̄n is a random variable, also |X̄n−µ| is a random variable.

• Goal: Find bound b(n, ϵ) such that

P
[∣∣X̄n − µ

∣∣ < b(n, ϵ)
]
≈ 1− ϵ,

where ϵ > 0 is usually small, e.g. 0.05.

• Note, that

1− ϵ ≈ P
[∣∣X̄n − µ

∣∣ < b(n, ϵ)
]
= P

[
−b(n, ϵ) < X̄n − µ < b(n, ϵ)

]
= P

[
−b(n, ϵ)− X̄n < −µ < −X̄n + b(n, ϵ)

]
= P

[
b(n, ϵ) + X̄n > µ > X̄n − b(n, ϵ)

]
= P

[
µ ∈

(
X̄n − b(n, ϵ), X̄n + b(n, ϵ)

)]
.

• Hence, we try to find an interval with random lower bound X̄n − b(n, ϵ) and random upper
bound X̄n + b(n, ϵ) such that the probability that this random interval contains the true
parameter µ is high, i.e., (1− ϵ).

• Such an interval is called (1− ϵ)-confidence interval.

• How can we compute the probability that the confidence interval contains the true para-
meter?

• What should b(n, ϵ) be?

• Solution: Set b(n, ϵ) = aϵ
σ√
n

for a suitable aϵ and apply the Central Limit Theorem.

• Let µ = E[X] and 0 < σ =
√

Var[X] < ∞. From the Central Limit Theorem we know that

lim
n→∞

P

[
X̄n − µ

σ/
√
n

≤ x

]
= Φ(x) for all x ∈ R,

where Φ is the CDF of the standard normal distribution.
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• It follows that

lim
n→∞

P

[
µ ∈

(
X̄n − aϵ

σ√
n
, X̄n + aϵ

σ√
n

)]
= lim

n→∞
P

[
X̄n − aϵ

σ√
n
< µ < X̄n + aϵ

σ√
n

]
= lim

n→∞
P

[
−aϵ

σ√
n
< µ− X̄n < aϵ

σ√
n

]
= lim

n→∞
P

[
−aϵ <

X̄n − µ

σ/
√
n

< aϵ

]
= lim

n→∞
P

[
X̄n − µ

σ/
√
n

< aϵ

]
− lim

n→∞
P

[
X̄n − µ

σ/
√
n

≤ −aϵ

]
= Φ(aϵ)− Φ(−aϵ) (10.4)

= Φ(aϵ)− (1− Φ(aϵ)) = 2Φ(aϵ)− 1, for all aϵ ≥ 0, (10.5)

which provides asymptotic confidence intervals for the mean µ.

• Hence, for given ϵ ∈ (0, 1) we would like to determine the level of confidence by requiring
that 2Φ(aϵ)− 1 = 1− ϵ.

• Hence, we consider the unique point aϵ such that

Φ(aϵ) = 1− ϵ

2
, (10.6)

and we note that Φ(−aε) =
ε
2 , since Φ(−x) = 1− Φ(x) for all x.

• (10.5) implies that

lim
n→∞

P

[
µ ∈

(
X̄n − aε

σ√
n
, X̄n + aε

σ√
n

)]
= 1− ε. (10.7)

• We conclude that the mean µ = E[X] belongs to the (1− ε)-confidence interval(
X̄n − aε

σ√
n
, X̄n + aε

σ√
n

)
as n → ∞.
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Remark 136.

• The Central Limit Theorem provides information about the distribution of the error between
the Monte Carlo estimator and µ, in particular X̄n−µ

σ/
√
n

is in the limit (i.e., as n → ∞) standard
normally distributed.

• Since a standard normal distribution has support R there is no finite bound on the error
between the MC estimator X̄n and µ.

• Suppose Z ∼ N1(0, 1) and we choose ε = 0.05. Then aε ≈ 1.96 and

P [|Z| < 1.96] ≈ 0.95.

• Hence, we can say that with a probability close to 0.95, for n large enough, the error between
the MC estimator X̄n and the true µ is bounded by 1.96 σ√

n
.

• In practice, the variance σ2 of X is typically unknown.

• In such a case, one can for example replace σ by the sample standard deviation

sn =

√√√√ 1

n− 1

n∑
i=1

(
Xi − X̄n

)2
.

Then, (
X̄n − aε

sn√
n
, X̄n + aε

sn√
n

)
is an asymptotically valid (1− ε)-confidence interval.

• We see that the length of a confidence interval is given by X̄n+aε
σ√
n
−(X̄n−aε

σ√
n
) = 2aϵ

σ√
n
.

• Ideally we would like to have short confidence intervals.

• One can see that the length of the confidence interval depends on the variance σ2 of X.

• One way of improving the efficiency of Monte Carlo simulation schemes is to con-
sider sampling that is associated with reduced variance, which is the topic of the next
chapter.
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Example 137 (European call: Different realisations of 0.9 - confidence intervals for the MC
estimator of the European call price in the Black Scholes market).
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90% - confidence intervals for Monte Carlo estimates of calls

10.4 Recap

• In the Black-Scholes model stock prices follow a log-normal distribution under the risk-
neutral probability.

• Option prices in the Black-Scholes market can be expressed as expectations of discounted
payoffs using risk-neutral probabilities.

• One can approximate option prices by using a Monte Carlo estimator.

• Monte Carlo estimators are random variables. We have seen that we can quantify the error
of a Monte Carlo estimator using confidence intervals.

• A confidence interval is a (random) interval that contains the true (unknown) parameter
with high probability.

• The main idea for deriving a confidence interval for the Monte Carlo estimator is to use the
Central Limit Theorem.

• The length of the standard confidence interval depends (among other things) on the variance
of the random variable of which we try to estimate the expectation.

112



Chapter 11

Advanced Monte Carlo techniques -
variance reduction

We assume that all random variables considered in the following have finite mean and variance.

• We consider the problem of estimating the expectation of a random variable X, i.e., we
would like to estimate µ = E[X].

• The classical Monte Carol estimator is X̄n = 1
n

∑n
i=1 Xi where X1, . . . , Xn are i.i.d. random

variables with the same distribution as X.

• The variance of X̄n is Var(X̄n) =
Var(X)

n .

• We consider two variance reduction methods for estimating µ. They both try to find another
random variable Z such that E[Z] = µ.

• Then, they estimate µ using a Monte Carlo estimator Z̄n = 1
n

∑n
i=1 Zi, where Z1, . . . , Zn

are i.i.d. random variables with the same distribution as Z.

• If Var(Z̄n) ≤ Var(X̄n), then the Monte Carol estimator Z̄n has a reduced variance compared
to the original Monte Carlo estimator X̄n.

• How to find Z?

11.1 Control variates

We can introduce the context of the control variates technique by means of the following example.
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Example 138.

• Suppose we want to estimate E[f(X)], where f is a given function and X is a random
variable with known µ = E[X].

• Let (Xi) be an an i.i.d. sequence of random variables with the same distribution as X, and
define Yi = f(Xi), then the sample mean

Ȳn =
1

n

n∑
i=1

Yi (11.1)

is an unbiased Monte Carlo estimator of E[Y ] = E[f(X)].

• The sample mean X̄n = 1
n

∑n
i=1 Xi, which arises as a byproduct in the computation of Ȳn,

is an unbiased estimator of the known mean µ = E[X].

• The control variates technique uses this extra information to construct a Monte
Carlo estimator of E[Y ] = E[f(X)] that performs better than the estimator Ȳn given by
(11.1).

• Let X and Y be random variables such that E[X] is known.

• The control variates method for estimating E[Y ] can be described as follows.

– Given a sequence (Xi, Yi) of i.i.d. random vectors from the joint distribution of (X,Y ),
we define

Yi(b) = Yi − b (Xi − E[X]) , for i = 1, 2, . . . ,

where b ∈ R is a constant.

– For each choice of b ∈ R, (Yi(b)) is a sequence of i.i.d. random variables such that

E [Yi(b)] = E[Yi]− b (E[Xi]− E[X]) = E[Y ], (11.2)

Var (Yi(b)) = Var(Yi − bXi) = Var(Y )− 2bCov(X,Y ) + b2Var(X). (11.3)

Definition 139. Suppose the pairs (Xi, Yi), i = 1, . . . , n are i.i.d. and that the expectation E[X]

is known.
((X,Y ) denotes a generic pair of random variables with the same distribution as each (Xi, Yi).)
The control variate estimator with parameter b of E[Y ] is defined by

Ȳn(b) := Ȳn − b
(
X̄n − E[X]

)
=

1

n

n∑
i=1

[Yi − b (Xi − E[X])] =
1

n

n∑
i=1

Yi(b). (11.4)

Note that the observed error X̄n − E[X] is used to control the estimation of E[Y ].
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Remark 140.

• The Strong Law of Large Numbers implies that limn→∞ Ȳn(b) = E[Y ].

• The mean of the control variate estimator is

E
[
Ȳn(b)

]
=

1

n

n∑
i=1

E [Yi(b)]
(11.2)
= E[Y ], (11.5)

so it is unbiased.
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Remark 141.

• The variance of the control variate estimator is

Var(Ȳn(b)) =
1

n2

n∑
i=1

Var(Yi(b))

=
1

n
Var(Yi(b))

(11.3)
=

1

n

[
Var(Y )− 2bCov(X,Y ) + b2Var(X)

]
. (11.6)

• This is a function in b and can be minimized with respect to b.

• The value b∗ of the parameter b that minimizes the variance of Ȳn(b) is given by

b∗ =
Cov(X,Y )

Var(X)
. (11.7)

• Substituting b∗ for b in (11.6), we obtain

Var(Ȳn(b
∗)) =

1

n

[
Var(Y )− Cov(X,Y )2

Var(X)

]
. (11.8)

• This expression and the fact that

Var(Ȳn) =
1

n
Var(Y )

imply that

Var(Ȳn(b
∗))

Var(Ȳn)
= 1− Cov(X,Y )2

Var(X)Var(Y )
= 1− ρ2XY , (11.9)

where ρXY is the correlation between X and Y .

• The control variates method is useful provided that the correlation ρXY of X and Y is big
and the extra computational effort associated with generating the samples Xi is relatively
small.
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• In practice, if E[Y ] is not known and we need simulations to estimate it, then it is unlikely
that Cov(X,Y), which is needed for determining b∗ in (11.7), is known.

• In such a case, we can use an unbiased estimator b̂∗n of b∗.

• In particular, we can choose

b̂∗n =

∑n
j=1

(
Xj − X̄n

) (
Yj − Ȳn

)∑n
j=1

(
Xj − X̄n

)2 .

• The corresponding control variates estimator is given by 1
n

∑n
i=1 Yi(b̂

∗
n), where

Yi(b̂
∗
n) = Yi −

∑n
j=1

(
Xj − X̄n

) (
Yj − Ȳn

)∑n
j=1

(
Xj − X̄n

)2 (Xi − E[X]) .

Example 142. In the following we consider an example which shows the potential benefit of using
control variates.

• Suppose we would like to compute the integral

µ =

∫ 1

0

eudu = e− 1

using Monte Carlo simulation.

• We can express µ as the expectation of a function of a Unif[0, 1] random variable by setting
µ =

∫ 1

0
eudu = E[eU ], where U ∼ Unif[0, 1].

• Hence, using the previous notation we are interested in E[Y ], where Y = f(X), f(x) = ex

and X = U ∼ Unif[0, 1].

• The control variate estimator is

Ȳn(b) =
1

n

n∑
i=1

(eUi − b(Ui − E[U ]︸ ︷︷ ︸
=1/2

)),

where U1, . . . , Un ∼ Unif[0, 1] i.i.d..
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Using (11.7) and (11.8) we obtain

Var(U) =
1

12
,

Var(eU ) = E[e2U ]− (E[eU ])2 =
1

2
(e2 − 1)− (e− 1)2,

Cov(U, eU ) = E[eUU ]− E[U ]E[eU ] =

∫ 1

0

euudu− 1

2
(e− 1)

= euu|u=1
u=0 −

∫ 1

0

eudu− 1

2
(e− 1),

= e− (e− 1)− 1

2
(e− 1) = −e

2
+

3

2
,

Var(Ȳn(b
∗)) =

1

n

[
Var(eU )− Cov(U, eU )2

Var(U)

]
≈ 1

n
0.003940.

• Then Var(Ȳn(b
∗)) = 1

n

[
Var(eU )− Cov(U,eU )2

Var(U)

]
≈ 1

n0.003940.

• If we compare this to the variance of the standard Monte Carlo estimator given by

Var(Ȳn) = Var(
1

n

n∑
i=1

eUi) =
1

n
Var(eU ) ≈ 1

n
0.242036

we find that

1− Var(Ȳn(b
∗))

Var(Ȳn)
≈ 0.9837.

Hence, the control variate estimator has reduced the variance by 98.37 % compared to the
Monte Carlo estimator.

We consider now an example from option pricing.

Example 143.

• Suppose we want to price a European call written on an underlying stock with:

– time-T price S(T ),

– maturity T ,

– strike price K.

– We assume constant interest rate r ≥ 0.

• Then, Y = f(ST ) = e−rT (S(T )−K)+.

• We have seen that the discounted stock price satisfies E
(
e−rTS(T )

)
= S(0)

(where the expectation is taken with respect to the risk-neutral measure).
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• Let Si be i.i.d. random variables with the same distribution as S(T ) and Yi = e−rT (Si−K)+.

• Then a control variate estimator is given by

Y n(b) =
1

n

n∑
i=1

(Yi − b(e−rTSi(T )− S(0))).

• Here b might be replaced by b̂∗n.

• The effectiveness of the control variate depends heavily on K, see the next Python example.
For K = 0 we would have perfect correlation.

Example 144 (Control variate estimator of European call option for different strike prices).
Black Scholes market with S0 = 100, r = 0, σ = 0.3, T = 1, N = 10000 and strike prices in
K ∈ {0, 1, . . . , 80}. We plot 1− Var(Ȳn(b̂

∗))
Var(Ȳn)

with respect to the strike price.

0 10 20 30 40 50 60 70 80
strike

0.0

0.2

0.4

0.6

0.8

1.0

2

Squared correlation of discounted payoff and discounted stock

11.2 Antithetic variates

• The method of antithetic variates attempts to exploit negative correlation between
random variables to reduce the variance.

• Uniform distribution: U ∼ Unif(0, 1) if and only if 1− U ∼ Unif(0, 1).

• This observation can also be applied to more general distributions which can be generated
from the inverse transform method. Let U ∼ Unif(0, 1):
F−1(U) and F−1(1− U) both have cdf F and are antithetic since F−1 is monotone.

• Standard normal distribution: X ∼ Nd(0, Id) if and only if −X ∼ Nd(0, Id).

• Pairs of random variables, such as (U, 1−U), (F−1(U), F−1(1−U)) and (X,−X), are called
antithetic pairs.

• The method of antithetic variates uses antithetic pairs to produce estimators
with reduced variance.
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Example 145.

• Suppose that we want to estimate E[f(U)], where f is a given function and U ∼ Unif(0, 1).

• Given a sequence (Ui) of i.i.d. random variables from Unif(0, 1),

X̄n =
1

n

n∑
i=1

f(Ui) and Ȳn =
1

n

n∑
i=1

f(1− Ui)

are unbiased Monte Carlo estimators of E[f(U)].

• In particular, limn→∞ X̄n = E[f(U)] and limn→∞ Ȳn = E[f(U)]

• The antithetic variates estimator simply takes the average of these two estimators and
considers

Xn + Y n

2

as an estimator for Ef(U).

Definition 146. Let (X,Y ) be a random vector such that X and Y have the same distribu-
tion. Given a sequence (Xi, Yi) of i.i.d. random vectors from the joint distribution of (X,Y ), the
antithetic variates estimator of E[X] ≡ E[Y ] is given by

Z̄n =
X̄n + Ȳn

2
, (11.10)

where X̄n = 1
n

∑n
i=1 Xi and Ȳn = 1

n

∑n
i=1 Yi.

• The antithetic variates estimator is strongly consistent because

lim
n→∞

Z̄n =
1

2
lim
n→∞

X̄n +
1

2
lim
n→∞

Ȳn = E[X] ≡ E[Y ]. (11.11)

• Note, that the pairs (Xi, Yi) are assumed to be i.i.d., but obviously for each i the Xi and
Yi have the same distribution but are not necessarily independent.
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Since the random variables in the sequence ((Xi, Yi), i = 1, 2, . . .) are independent, we can see that
the variance of the antithetic variates estimator Z̄n given by (11.10) is

Var(Z̄n) = Var
(
X̄n + Ȳn

2

)
= Var

(
1

2n

n∑
i=1

(Xi + Yi)

)

=
1

4n2
Var

(
n∑

i=1

(Xi + Yi)

)
=

1

4n
Var (Xi + Yi)

=
1

4n
[Var(Xi) + 2Cov(Xi, Yi) + Var(Yi)]

=
1

2n
[Var(Y ) + Cov(X,Y )] .

Comparing this result with

Var(Ȳ2n) =
1

2n
Var(Y ),

we can see that Var(Z̄n) < Var(Ȳ2n) if Cov(X,Y ) < 0.

• Hence, the antithetic variates technique can be useful in practice when the random vari-
ables X and Y are negatively correlated and it takes roughly twice (or less than twice) the
computational effort to generate a sample (Xi, Yi) relative to generating a sample Yi.

• In applications, the following result will be very useful:

Lemma 147. If h : [0, 1]d → R is a monotone function of each of its arguments, then for
U1, . . . , Ud i.i.d. with distribution Unif[0, 1]:

Cov(h(U1, . . . , Ud), h(1− U1, . . . , 1− Ud)) ≤ 0.

Remark 148.
• We know already, that we can use the inverse transform method to generate a sample from a
distribution with cumulative distribution function F by setting Xi = F−1(Ui) and U1, . . . , Un ∼
Unif[0, 1] i.i.d..
• Note that for a cumulative distribution function F the generalized inverse F−1 is non-decreasing.
Hence, if we consider a function g : R → R that is monotone, then h := g ◦ F−1 is monotone as
well. This also generalizes to the case g : Rd → R.
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Example 149.

• We consider again the integral from Example 142:

µ =

∫ 1

0

eudu = E[eU ] = e− 1, where U ∼ Unif[0, 1].

• Let U1, . . . , U2n ∼ Unif[0, 1] i.i.d.. Then, the standard Monte Carlo estimator using 2n

random numbers has variance

Var

(
1

2n

2n∑
i=1

eUi

)
=

Var(eU )
2n

=
1
2 (e

2 − 1)− (e− 1)2

2n
≈ 1

n
0.1210.

• Note that

Cov(eU , e1−U ) = E[eUe1−U ]− E[eU ]E[e1−U ] = e− (e− 1)(−1)(1− e)

= e− (e− 1)2 ≈ −0.23.

• Let U1, . . . , Un ∼ Unif[0, 1] i.i.d.. Then the variance of the antithetic variates estimator is

Var

(
1

2n

(
n∑

i=1

eUi +

n∑
i=1

e1−Ui

))
=

1

2n

(
Var(eU ) + Cov(eU , e1−U )

)
≈ 1

n
0.003913.

• Hence,

1− Var
(

1
2n

(∑n
i=1 e

Ui +
∑n

i=1 e
1−Ui

))
Var

(
1
2n

∑2n
i=1 e

Ui

) ≈ 0.9677

and therefore the antithetic variates method reduced the variance by 96.77 % .

Example 150. The antithetic variates method eliminates variance due to the antisymmetric part
of an integrand.

122



J. Ruf & L. Veraart Computational Methods in Financial Mathematics 2023

• Suppose that we want to estimate E[f(Z)], where f is a given function and Z ∼ Nd(0, Id).

• The standard Monte Carlo estimator of E[f(Z)] is given by

1

n

n∑
i=1

f(Zi),

• while the antithetic variates estimator of E[f(Z)] is given by

1

n

n∑
i=1

f(Zi) + f(−Zi)

2
.

• The variances of these two estimators are as follows:

standard Monte Carlo scheme:
1

n
Var (f(Z)) , (11.12)

antithetic variates scheme:
1

n
Var

(
f(Z) + f(−Z)

2

)
. (11.13)

• To investigate how these variances compare, we define

fs(z) =
f(z) + f(−z)

2
and fa(z) =

f(z)− f(−z)

2
,

so that f(z) = fs(z) + fa(z).

• Now, since both of Z and −Z have the same distribution Nd(0, Id), we can calculate

E [fs(Z)fa(Z)] =
1

4

(
E
[
f2(Z)− f2(−Z)

])
=

1

4

(
E
[
f2(Z)

]
− E

[
f2(−Z)

])
= 0

= E [fs(Z)]E [fa(Z)]︸ ︷︷ ︸
=0

,

• which implies that

Cov (fs(Z), fa(Z)) ≡ E [fs(Z)fa(Z)]− E [fs(Z)]E [fa(Z)] = 0.
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• It follows that

Var (f(Z)) = Var (fs(Z) + fa(Z))

= Var (fs(Z)) + Var(fa(Z)) + 2Cov(fs(Z), fa(Z))︸ ︷︷ ︸
=0

= Var
(
f(Z) + f(−Z)

2

)
+ Var (fa(Z)) .

• In the view of this calculation and (11.12)–(11.13), we can see that

– if f is symmetric (even), i.e., if f = fs, then

Var(f(Z)) = Var
(
f(Z) + f(−Z)

2

)
,

and antithetic sampling eliminates no variance;

– if f is antisymmetric (odd), i.e., if f = fa, then

Var
(
f(Z) + f(−Z)

2

)
= 0,

and the method of antithetic variates eliminates all variance.

Note that if f is symmetric, then f(z) = fs(z) + fa(z) = fs(z) ∀z, since fa(z) = 0 ∀z. Hence,
in particular f(z) = f(−z), so f is symmetric with respect to the y-axis (z = 0).
If f is antisymmetric, then f(z) = fs(z) + fa(z) = fa(z) ∀z and in particular −f(z) = f(−z) ∀z.
Hence f is symmetric with respect to the origin.
Note that fs is symmetric and fa is antisymmetric.

Example 151.

• Let X ∼ N (0, 1) and suppose we would like to estimate E[X] = 0 using an antithetic variate
estimator.

• We take an i.i.d. sample X1, . . . , Xn from the N (0, 1) distribution. Then (Xi,−Xi) are
antithetic pairs for all i.

• The antithetic variates estimator is then given by

1

n

n∑
i=1

Xi + (−Xi)

2
= 0

and this estimator has zero variance (because it is a deterministic constant). Note that here
f(x) = x is antisymmetric (−f(x) = −x = f(−x) ∀x).
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• An antithetic variates estimator for the second moment E[X2] is given by

1

n

n∑
i=1

X2
i + (−Xi)

2

2
=

1

n

n∑
i=1

X2
i ,

which is the same as the Monte Carlo estimator and hence there is no reduction in variance.
Note that here f(x) = x2 is symmetric (f(x) = f(−x) ∀x).

Example 152 (Antithetic variate estimator for European option).

• We now consider an antithetic variates estimator for a European option with payoff h(ST )

where ST is modelled as in the Black Scholes market. We use ideas from Corollary 134.

• We want to approximate E
[
e−rTh

(
S0 exp

(
(r − σ2

2 )T + σ
√
TX

))]
where X ∼ N (0, 1).

• Let X1, . . . , Xn be an i.i.d. sample from the N (0, 1) distribution.

• Then (Xi,−Xi) are antithetic pairs for all i.

• An antithetic variate estimator for the time-0 price of a European option with payoff h(ST )

is given by:

V AV
0 (n) =

1

2

1

n

n∑
i=1

e−rTh

(
S0 exp

(
(r − σ2

2
)T + σ

√
TXi

))

+
1

2

1

n

n∑
i=1

e−rTh

(
S0 exp

(
(r − σ2

2
)T + σ

√
T (−Xi)

))
.

Example (Antithetic variate estimator for a European call option - example). For S0 = 100,
K = 100, r = 0, σ = 0.3, T = 1, N = 10000 variance is reduced by antithetic variate estimator by
about 66 %.

11.3 Recap

• We have studied two techniques to reduce the variance of a Monte Carlo estimator: Control
variates, antithetic variates.

• There is no general rule which tells you which variance reduction method is best.

• The best method to use will always be problem specific.

125



Chapter 12

Applications and outlook

12.1 Recipe for computing option prices

Suppose you want to compute the time-0 price of a derivative security, i.e., you know the payoff
of the derivative security.

Remark 153 (Recipe for pricing options).

• You need to decide which model you use for the underlying asset. In this course we have
seen two possible models (a large number of alternative models exists!):

– the binomial asset pricing model,

– the Black-Scholes model.

• Compute the time-0 price by computing the risk-neutral expectation of the discounted payoff.

• If this can be done analytically you are done!

• Otherwise: Monte Carlo.

– Simulate the underlying asset price, plug it into the formula for the payoff and compute
the Monte Carlo estimator.

– Compute a confidence interval for you MC estimator.

– If it is too large consider using variance reduction methods.
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12.2 Case study - cash or nothing call

Consider the following European digital option with payoff at maturity T given by

LI{ST≥K},

where K,L > 0 and the indicator I{ST≥K} is 1 if ST ≥ K and 0 otherwise. Hence, this is a
European option on ST that pays nothing if at the maturity date ST < K and otherwise it pays
L. What is its time-0 price?

• We use our recipe and decide on the model for the underlying, for example the Black-Scholes
model, i.e., ST = S0 exp((r− σ2

2 )T+σ
√
TX) where X ∼ N (0, 1) and BT = erT where S0 > 0,

r, σ ≥ 0.

• We write down the risk-neutral expectation:

V0 = E
[
e−rTLI{ST≥K}

]
= Le−rTE

[
I{ST≥K}

]
= Le−rT

∫ ∞

−∞
I{S0 exp((r−σ2

2 )T+σ
√
Tx)≥K}

1√
2π

e−
x2

2 dx

= Le−rT

∫ ∞

−∞
I{S0 exp((r−σ2

2 )T+σ
√
Tx)≥K}

1√
2π

e−
x2

2 dx

• Note that

S0 exp((r −
σ2

2
)T + σ

√
Tx) ≥ K

⇐⇒(r − σ2

2
)T + σ

√
Tx ≥ log

(
K

S0

)
⇐⇒x ≥ − log

(
S0

K

)
− (r − σ2

2 )T

σ
√
T

= −D1 + σ
√
T ,

where D1 is as in (9.7).

• Hence, the time-0 price of the cash or nothing call is given by

V0 = Le−rT

∫ ∞

−D1+σ
√
T

1√
2π

e−
x2

2 dx = Le−rT (1− Φ(−D1 + σ
√
T ))

= Le−rTΦ(D1 − σ
√
T ),

where we used the fact that Φ(−x) = 1− Φ(x) for all x ∈ R.
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• What would be a Monte Carlo estimator for the time-0 price of the cash or nothing call?

• We generate an i.i.d. sample from the stock price at time T by generating an
i.i.d. sample X1, . . . , Xn from the standard normal distribution and setting Si =

S0 exp
(
(r − σ2

2 )T + σ
√
TXi

)
.

• Then the Monte Carlo estimator is given by

1

n

n∑
i=1

Le−rT I{Si≥K}

12.3 Black-Scholes formula revisited - implied volatilities

Next, we look into more detail into the Black-Scholes option pricing formula. Recall the following
result from Lecture 9.

Theorem 154. The Black-Scholes formula for the price of the European call option with maturity
T and strike K at time t is given by

CBS
t (St, σ,K, T ) = StΦ(D1)−Ke−r(T−t)Φ(D1 − σ

√
T − t),

D1 =
log
(
St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

(12.1)

and St is the time-t price of the risky asset.

Meaning of model parameters:

• r ≥ 0: interest rate,

• σ > 0: volatility of the price of the risky asset,

• St: stock price at time t,

• T : maturity date of option,

• K: strike price of option.

• At time t, the stock price St is known (observable).

• The strike price K and the maturity date of the option T are known from the option contract.

• The interest rate r is also observable.

• The only unknown parameter in the Black-Scholes option pricing formula is the volatility σ.
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• How to estimate σ?

• Two approaches:

– Statistical approach: Consider empirical data of the the stock price and use a statistical
method to estimate the unknown parameter. For example, a Maximum Likelihood
Estimator can be used, but we will not consider this here.

– Concept of implied volatility: Consider market data of option prices and find σ such
that the Black-Scholes formula matches the observed market price.

The concept of implied volatility:

• Suppose we observe a market price pmarket
t (K,T ) of a European Call option with strike price

K and maturity T at time t.

• We can then try to find σimplied such that

CBS
t (St, σ

implied,K, T ) = pmarket
t (K,T ).

|

• According to Rebonato (2005), implied volatility is “the wrong number to put in the wrong
formula to get the right price”.

• This is one equation for one unknown parameter σimplied.

• We cannot solve this equation analytically but we can solve it numerically.

• There are several numerical methods to compute implied volatilities.

• We will use the Newton method here.

• Recall, that the Newton method is an iterative procedure to compute the root of a function
f , i.e., to find x such that f(x) = 0:
Start with an initial point x0 and compute recursively

xn+1 = xn − f(xn)

f ′(xn)
.

For a suitable choice of x0 and for a suitably well-behaved function f this sequence converges
to the required solution as n tends to ∞.
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• We write

f(σ) = CBS
t (St, σ

implied,K, T )− pmarket
t (K,T )

and want to solve f(σimplied) = 0 for σimplied, i.e., we want to apply Newton’s method to f .

• To be able to do this we need to compute the derivative of f .

Theorem 155 (Vega ). The first derivative of the European Call option price with respect to the
volatility parameter σ, which is also referred to as Vega, is given by

∂CBS
t (St, σ

implied,K, T )

∂σ
= Stφ(D1)

√
T − t,

where φ(x) = 1√
2π

exp(−x2

2 ).

To prove Theorem 155, we will use the following Lemma which will be proved in the class.

Lemma 156. Let

D1 =
log
(
St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

,

D2 = D1 − σ
√
T − t.

(12.2)

Then, it holds that

Stφ(D1) = Ke−r(T−t)φ(D2).

Proof of Theorem 155. First, note that using the chain rule of differentiation we obtain

∂CBS
t (σ)

∂σ
= Stφ(D1)

∂D1

∂σ
−Ke−r(T−t)φ(D2)

∂D2

∂σ

= Stφ(D1)
∂D1

∂σ
−Ke−r(T−t)φ(D2)

(
∂D1

∂σ
−

√
T − t

)
=
(
Stφ(D1)−Ke−r(T−t)φ(D2)

) ∂D1

∂σ
+Ke−r(T−t)φ(D2)

√
T − t,

where the second equality follows from D2 = D1 − σ
√
T − t.

Next, we simplify the last line of the equation, using Lemma 156, i.e., we use Stφ(D1) =

Ke−r(T−t)φ(D2).
Then,

∂CBS
t (σ)

∂σ
= 0 +Ke−r(T−t)φ(D2)

√
T − t = Stφ(D1)

√
T − t,

where we used Lemma 156 again in the last step.
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• Example of implied volatilities for 7 different strike prices.

• We see that the implied volatility is not constant!

• The shape of the implied volatilities as a function of strike prices is typical; one refers to this
shape as volatility smile.

• If the Black-Scholes model was the correct model for the observed prices, the volatility
parameter should not change for different strike prices.

• The analysis of implied volatilities is not just restricted to implied volatilities as a function
of strike.

• Implied volatilities are also often analysed as functions in strike and time to maturity. This
gives a two-dimensional surface - the volatility surface.

12.4 Outlook

• So far we have considered the Black-Scholes market only at a fixed point in time and seen
that the stock price has a lognormal distribution at this point in time.

• The Black-Scholes model is in fact a model in continuous time, i.e., it can be used to char-
acterise the price of a stock at time t for t ∈ [0, T ].

• To be able to define it for all t ∈ [0, T ] one needs a famous stochastic process - the so-called
Brownian motion which is also known as Wiener process. Defining it formally is beyond
the scope of this course.
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• In practice, there is a wide range of available models (and you can try to develop new ones!)
to describe the dynamics of underlying assets.

• Some for example relax the assumption of a constant volatility in the Black Scholes model,
and assume that volatility is time-dependent and possible random as well. Other models,
include jumps in stock price etc.

• In the binomial model and the Black-Scholes model many standard option prices of interest
can be computed analytically. This is not the case for many more advanced models used in
practice.

• The Monte Carlo methods discussed in this course are universal and can be applied in
situations in which analytical formulae are not available.
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