ETH zürich

Minimal Ramsey Graphs for cyclicity A paper by D. Reding and A. Taraz ['18]

Speaker: Domenico Mergoni Supervisor: Charlotte Knierim

Contents of this seminar:

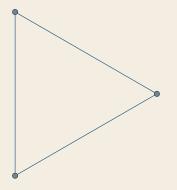
- 1. Introduction
 - 1.1 Some introductory definitions
 - 1.2 One first result
- 2. Minimal Ramsey graphs for cyclicity
 - 2.1 Some results from literature
 - 2.2 Construction of $\mathcal{M}(\mathcal{C})$ with the minor relation
 - 2.3 Another way of constructing $\mathcal{M}(\mathcal{C})$
- 3. An application to our tools
 - 3.1 Forests of cycles and Ramsey minimal graphs

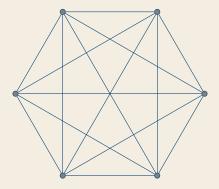
r-Ramsey graphs

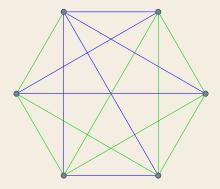
Def: r-Ramsey graph

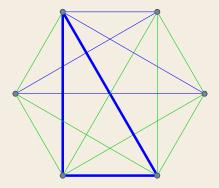
Let *H* be a graph and $r \in \mathbb{N}_{\geq 2}$, an *r*-Ramsey graph for *H* is a graph *G* such that any *r*-edge-colouring of *G* admits a monochromatic copy of *H*. The set of such graphs will be denoted by $\mathscr{R}_r(H)$.

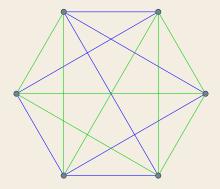
2-Ramsey graph for a triangle Take H a triangle and r = 2

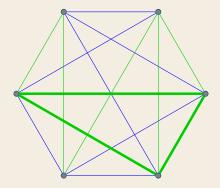












r-Ramsey graphs

Def: r-Ramsey graph

Let *H* be a graph and $r \in \mathbb{N}_{\geq 2}$, an *r*-Ramsey graph for *H* is a graph *G* such that any *r*-edge-colouring of *G* admits a monochromatic copy of *H*. The set of such graphs will be denoted by $\mathscr{R}_r(H)$.

Example: $\mathscr{R}_r(K_{1,m})$

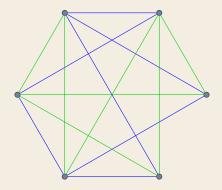
It is clear that we have $K_{1,r\cdot m} \in \mathscr{R}_r(K_{1,m})$.

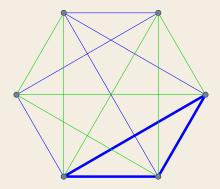
Def: r-Ramsey graph

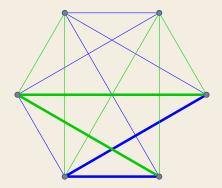
Let *H* be a graph and $r \in \mathbb{N}_{\geq 2}$, an *r*-Ramsey graph for *H* is a graph *G* such that any *r*-edge-colouring of *G* admits a monochromatic copy of *H*. The set of such graphs will be denoted by $\mathscr{R}_r(H)$.

Def: Minimal r-Ramsey graph

 $G \in \mathscr{R}_r(H)$ is called a minimal *r*-Ramsey graph if every proper subgraph of G is not in $\mathscr{R}_r(H)$. We write $G \in \mathscr{M}_r(H)$.







Def: r-Ramsey graph

Let *H* be a graph and $r \in \mathbb{N}_{\geq 2}$, an *r*-Ramsey graph for *H* is a graph *G* such that any *r*-edge-colouring of *G* admits a monochromatic copy of *H*. The set of such graphs will be denoted by $\mathscr{R}_r(H)$.

Def: Minimal r-Ramsey graph

 $G \in \mathscr{R}_r(H)$ is called a minimal *r*-Ramsey graph if every proper subgraph of G is not in $\mathscr{R}_r(H)$. We write $G \in \mathscr{M}_r(H)$.

Example: $\mathscr{R}_2(K_{1,m})$

It is clear that we have $K_{1,2m-1} \in \mathcal{M}_2(K_{1,m})$.

Ramsey's theorem

Fix $r, k \in \mathbb{N}_{\geq 2}$, we can find monochromatic k-cliques in any r-edge colouring of a sufficiently large complete graph.

Ramsey's theorem

Fix $r, k \in \mathbb{N}_{\geq 2}$, we can find monochromatic k-cliques in any r-edge colouring of a sufficiently large complete graph.

Note

Ramsey's theorem implies that $\mathscr{R}_r(H)$ and $\mathscr{M}_r(H)$ are never empty. And explain the general interest towards the study of $\mathscr{R}_r(K_n)$.

Ramsey's theorem

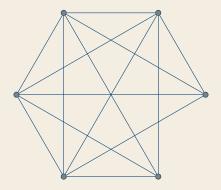
Fix $r, k \in \mathbb{N}_{\geq 2}$, we can find monochromatic k-cliques in any r-edge colouring of a sufficiently large complete graph.

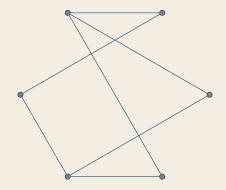
Note

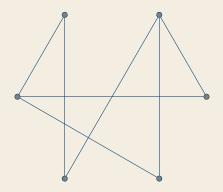
Ramsey's theorem implies that $\mathscr{R}_r(H)$ and $\mathscr{M}_r(H)$ are never empty. And explain the general interest towards the study of $\mathscr{R}_r(K_n)$.

Main problem in the study of such objects

Describing how a graph G can be edge-decomposed in H-free graphs.







What do we know about this kind of objects?

Theorem by Clemens, Liebenau, Reding [2018]

If H is 3-connected or isomorphic to a triangle, then:

- for $2 \le r \le q$ if $G \in \mathcal{M}_r(H)$ then G is an induced subgraph for infinitely many $F \in \mathcal{M}_q(H)$.
- for $3 \le r$ there are $G \in \mathcal{M}_r(H)$ of arbitrarily large maximum degree, genus, and chromatic number.

What do we know about this kind of objects?

Theorem by Clemens, Liebenau, Reding [2018]

If H is 3-connected or isomorphic to a triangle, then:

- for $2 \le r \le q$ if $G \in \mathcal{M}_r(H)$ then G is an induced subgraph for infinitely many $F \in \mathcal{M}_q(H)$.
- for $3 \le r$ there are $G \in \mathcal{M}_r(H)$ of arbitrarily large maximum degree, genus, and chromatic number.

Theorem by Rödl, Siggers [2008]

Exponential lower bound in *n* for the number of non-isomorphic graphs on $\mathcal{M}_r(K_k)$ on at most *n* vertices.

r-Ramsey graphs for a property \mathcal{P}

Def: r-Ramsey graph for a property ${\cal P}$

Let \mathscr{P} be a property, closed under taking supergraphs and $r \in \mathbb{N}_{\geq 2}$. Then an *r*-**Ramsey graph for** \mathscr{P} is a graph *G* such that any *r* edge - colouring of *G* admits a monochromatic copy of a member of \mathscr{P} .

r-Ramsey graphs for a property *P*

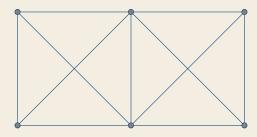
Def: *r*-Ramsey graph for a property \mathcal{P}

Let \mathscr{P} be a property, closed under taking supergraphs and $r \in \mathbb{N}_{\geq 2}$. Then an *r*-Ramsey graph for \mathscr{P} is a graph *G* such that any *r* edge - colouring of *G* admits a monochromatic copy of a member of \mathscr{P} .

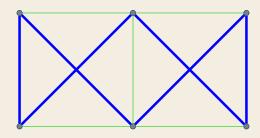
Examples

This class has been studied for the properties of: connectivity (W. Mader ['72]), minimum degree (R.Klein, J. Schönheim ['61]), planarity (J.Battle, F. Haray ['62]) and **ciclicity**.

r-Ramsey graphs for ciclicity



r-Ramsey graphs for ciclicity



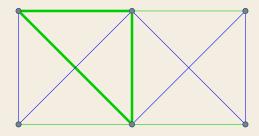
r-Ramsey graphs for a property \mathcal{P}

Def: *r*-Ramsey graph for a property \mathcal{P}

Let \mathscr{P} be a property, closed under taking supergraphs and $r \in \mathbb{N}_{\geq 2}$. Then an *r*-**Ramsey graph for** \mathscr{P} is a graph *G* such that any *r* edge - colouring of *G* admits a monochromatic copy of a member of \mathscr{P} .

Note

The choice of such a member can depend on the colouring.



r-Ramsey graphs for a property *P*

Def: *r*-Ramsey graph for a property \mathcal{P}

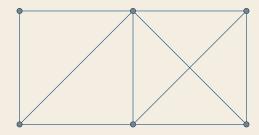
Let \mathscr{P} be a property, closed under taking supergraphs and $r \in \mathbb{N}_{\geq 2}$. Then an *r*-**Ramsey graph for** \mathscr{P} is a graph *G* such that any *r* edge - colouring of *G* admits a monochromatic copy of a member of \mathscr{P} .

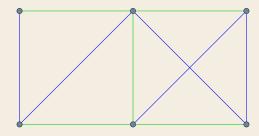
Note

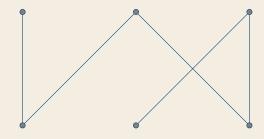
The choice of such a member can depend on the colouring.

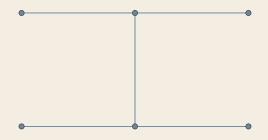
Def: Minimal *r*-Ramsey graph for \mathcal{P}

 $G \in \mathscr{R}_r(\mathscr{P})$ is called a minimal *r*-Ramsey graph for \mathscr{P} if every proper subgraph of G is not in $\mathscr{R}_r(\mathscr{P})$. We write $G \in \mathscr{M}_r(\mathscr{P})$.









One example: The class $\mathscr{R}_r(\mathscr{C}_{odd})$

Lemma

Let $r \ge 2$, then $G \in \mathscr{R}_r(\mathscr{C}_{odd})$ if and only if $\chi(G) \ge 2^r + 1$.

One example: The class $\mathscr{R}_r(\mathscr{C}_{odd})$

Lemma

Let $r \ge 2$, then $G \in \mathscr{R}_r(\mathscr{C}_{odd})$ if and only if $\chi(G) \ge 2^r + 1$.

Proof (Idea)

- ← If $G \notin \mathscr{R}_r(\mathscr{C}_{odd})$, then G edge-decomposes into $\leq r$ bipartite graphs. Therefore $\chi(G) \leq 2^r$.
- \rightarrow Induction on *r*.

One example: The class $\mathscr{R}_r(\mathscr{C}_{odd})$

Lemma

Let $r \ge 2$, then $G \in \mathscr{R}_r(\mathscr{C}_{odd})$ if and only if $\chi(G) \ge 2^r + 1$.

Proof (Idea)

- ← If $G \notin \mathscr{R}_r(\mathscr{C}_{odd})$, then G edge-decomposes into $\leq r$ bipartite graphs. Therefore $\chi(G) \leq 2^r$.
- \rightarrow Induction on r.

Idea

Study minimal graphs with $\chi(G) = (2^r + 1)$ instead of $\mathcal{M}_r(\mathcal{C}_{odd})$.

Nash-Williams arboricity theorem [1964]

Every graph G admits an edge-decomposition into [ar(G)] many forests and none with less forests. Where we define

 $ar(G) := \max_{J \subseteq G, v_j > 1} \frac{e_j}{v_j - 1}$

Nash-Williams arboricity theorem [1964]

Every graph G admits an edge-decomposition into [ar(G)] many forests and none with less forests. Where we define

$$ar(G) := \max_{J \subseteq G, v_j > 1} \frac{e_j}{v_j - 1}$$

Corollary

 $G \in \mathscr{R}_r(\mathscr{C})$ iff $\frac{e_H}{v_H - 1} > r$ for some subgraph $H \subseteq G$. Because $G \in \mathscr{R}_r(\mathscr{C})$ iff G do not edge-decompose in r forests.

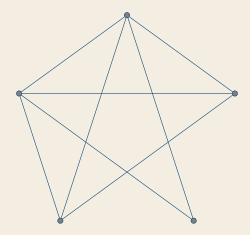
Nash-Williams arboricity theorem [1964]

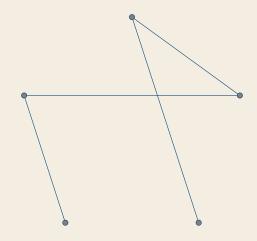
Every graph G admits an edge-decomposition into [ar(G)] many forests and none with less forests. Where we define

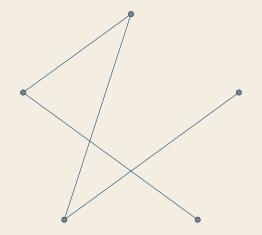
$$ar(G) := \max_{J \subseteq G, v_j > 1} \frac{e_j}{v_j - 1}$$

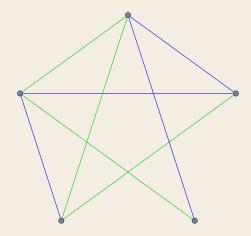
Corollary

In particular
$$G \in \mathcal{M}_r(\mathscr{C})$$
 iff $\frac{e_H}{v_H - 1} < r$, $\forall H \subsetneq G$ and $\frac{e_G}{v_G - 1} \ge r$.









First aim of the paper

Note

From now on we will assume r = 2.

Idea

We mentioned the relation between $\mathcal{M}(\mathscr{C})$ and minimal graphs with $\chi(G) = 5$. These were completely described by Hàjos [1961] as the graphs that could be minor-constructed from K_5 . We want to do the same with $\mathcal{M}(\mathscr{C})$.

Construction of $\mathcal{M}(\mathcal{C})$

Theorem I

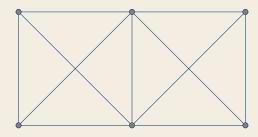
For every $G \in \mathcal{M}(\mathscr{C})$ there exists a finite sequence of minimal Ramsey graphs for \mathscr{C} such that (if \prec denotes the minor relation):

 $\{K_5 - e, K_4 \vee K_4\} \ni G_0 \prec \cdots \prec G_n = G$

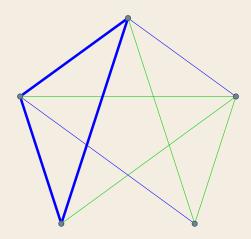
Idea

This means that every $G \in \mathcal{M}(\mathscr{C})$ can be obtained starting from one base graph and recursively splitting one suitable vertex. We will see how in the second theorem of the paper.

Base graphs $K_4 \vee K_4$



Base graphs $K_5 - e$



Lemmas

Lemma I.1

Every $G \in \mathcal{M}(\mathscr{C})$ is 2-connected and satisfies $\delta(G) = 3$.

Lemmas

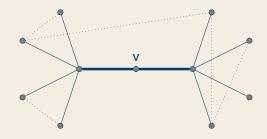
Lemma I.1

Every $G \in \mathcal{M}(\mathcal{C})$ is 2-connected and satisfies $\delta(G) = 3$.

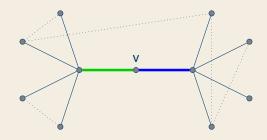
Idea

- Upper bound for δ(G) is given by the characterization of *M* (*C*) which follows from arboricity theorem.
- Lower bound for $\delta(G)$: suppose d(v) = 2, then $G \setminus v \in \mathscr{R}(\mathscr{C})$.

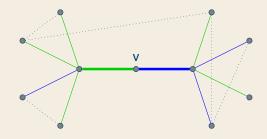
Proof of theorem I d(v) > 2



Proof of theorem I d(v) > 2



Proof of theorem I d(v) > 2



Lemma I.1

Every $G \in \mathcal{M}(\mathscr{C})$ is 2-connected and satisfies $\delta(G) = 3$.

Idea

- Upper bound for δ(G) is given by the characterization of *M* (*C*) which follows from arboricity theorem.
- Lower bound for $\delta(G)$: suppose d(v) = 2, then $G \setminus v \in \mathscr{R}(\mathscr{C})$.
- Suppose G = G₁ ∪ G₂ s.t. G₁ ∩ G₂ has at most one vertex. Fix a colouring of G₂ s.t. it has no monochromatic cycle (we can by minimality). Then G₁ must be in *R* (*C*).

Lemmas

Lemma I.1

Every $G \in \mathcal{M}(\mathscr{C})$ is 2-connected and satisfies $\delta(G) = 3$.

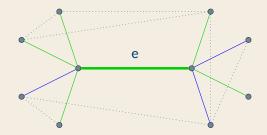
Lemma I.2

Let $G \in \mathscr{R}(\mathscr{C})$ and $e \in E(G)$ which lies in at most one triangle. Then the contracted graph G/e is in $\mathscr{R}(\mathscr{C})$.

Idea

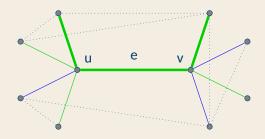
- Case 1. e belongs to no triangle in G.

Proof of Lemma I.2 *Case 1: e is in no triangle*



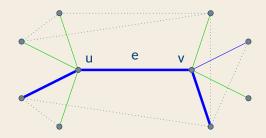
- 2-edge colouring of $G/e \iff$ 2-ed. colouring of G e.
- Any monochr. cycle in G e induces one monochr. cycle in G/e.

Proof of Lemma I.2 *Case 1: e is in no triangle*



- If no monochromatic cycle in *G e*, any colour we paint *e* of would generate a cycle in *G*.
- G e contains a blue and a green path between u and v.

Proof of Lemma I.2 *Case 1: e is in no triangle*



- If no monochromatic cycle in *G e*, any colour we paint *e* of would generate a cycle in *G*.
- G e contains a blue and a green path between u and v.

Lemmas

Lemma I.1

Every $G \in \mathcal{M}(\mathscr{C})$ is 2-connected and satisfies $\delta(G) = 3$.

Lemma I.2

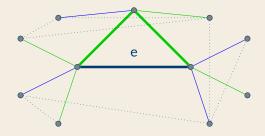
Let $G \in \mathscr{R}(\mathscr{C})$ and $e \in E(G)$ which lies in at most one triangle. Then the contracted graph G/e is in $\mathscr{R}(\mathscr{C})$.

Idea

- Case 1. e belongs to no triangle in G.
- Case 2. e belongs exactly to one triangle in G.

Proof of Lemma I.2

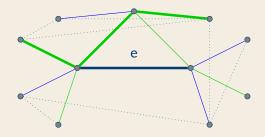
e belongs exactly to one triangle in G



- 2-edge colouring of $G/e \leftrightarrow$ 2-ed. colouring of G e with the other two edges of the same colour.
- If no monochromatic cycle in G e, procede as above.

Proof of Lemma I.2

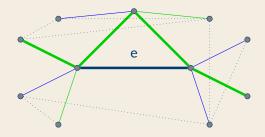
e belongs exactly to one triangle in G



- If the monochr. cycle in G - e use one edge we are done.

Proof of Lemma I.2

e belongs exactly to one triangle in G



- If the monochr. cycle in G e use one edge we are done.
- If the monochr. cycle in *G e* use both edges then one path joins *u* and *v*.

Theorem I

For every $G \in \mathcal{M}(\mathscr{C})$ we have:

$$\{K_5 - e, K_4 \lor K_4\} \ni G_0 \prec \cdots \prec G_n = G$$

Lemmas

I.1 Every $G \in \mathcal{M}(\mathscr{C})$ is 2-connected and satisfies $\delta(G) = 3$.

- I.2 Let $G \in \mathscr{R}(\mathscr{C})$ and $e \in E(G)$ which lies in at most one triangle. Then the contracted graph G/e is in $\mathscr{R}(\mathscr{C})$.
- I.3 Any 2-connected graph G with every edge contained in at least two triangles satisfies $e(G) \ge 2v(G)$, unless $v(G) \le 6$.

Another construction

Theorem II

Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* is constructed in one of the following ways:

Move I

Another construction

Theorem II

Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* is constructed in one of the following ways:

Move II

Another construction

Theorem II

Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* is constructed in one of the following ways:

Move III

Theorem II

Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* as above.

Move I or II.

Idea

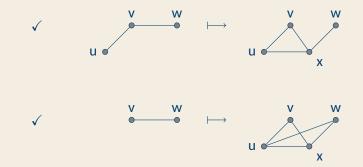
We simply prove the conditions stated by the arboricity theorem for G^* . I.e. it is an exercise to prove that:

$$\frac{e(G^*) - 1}{v(G^*) - 1} = 2 \qquad \text{and} \qquad \frac{e(H) - 1}{v(H) - 1} < 2$$

As a corollary we get that $\# \mathscr{M}(\mathscr{C}) = \infty$.

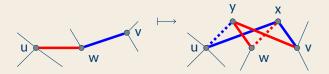
Theorem II

Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* is as above.



Theorem II

Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* is as above.

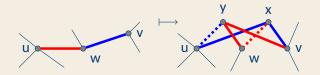


- $e(G^*) = e(G) + 4$, $v(G^*) = v(G) + 2$, therefore $G^* \in \mathscr{R}(\mathscr{C})$.

- To prove minimality, consider $G^* - e$ for a generic $e \in G^*$.

Theorem II

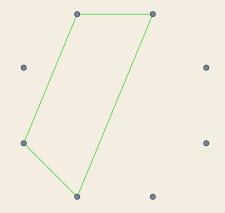
Let $G \in \mathcal{M}(\mathcal{C})$, then also $G^* \in \mathcal{M}(\mathcal{C})$, where G^* is as above.

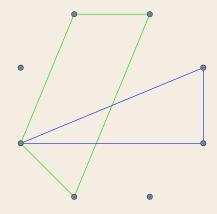


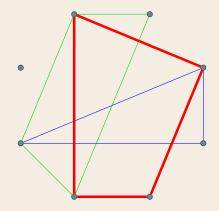
- If $e \notin E(G)$ (it has been added) argue as in the previous lemma.
- If $e \in E(G)$ set a colouring of E(G) e. If this colouring has no monochromatic cycles neither has our colouring of $G^* e$,

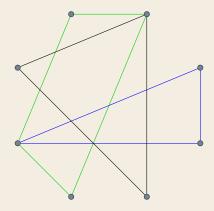
Def: forest of cycles

A forest of cycles is a graph *F* which can be obtained by starting with a cycle and then recursively adjoining further cycles s.t. any new cycle has at most one vertex in common with the previous graph.







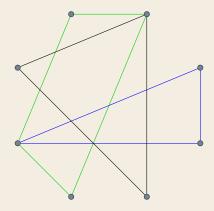


Def: forest of cycles

A forest of cycles is a graph *F* which can be obtained by starting with a cycle and then recursively adjoining further cycles s.t. any new cycle has at most one vertex in common with the previous graph.

Note:

- We can construct forests of cycles with arbitrarily large maximum degree.
- Each edge of *F* belongs **exactly** to one cycle. So we can edge-colour *F* in such a way that each cycle is monochromatic, and choose the colour of each cycle freely.





Theorem III

For every forest of cycles F and every integer $n \ge 5$ satisfying $n \ge |F|$ there exists $G \in \mathcal{M}(\mathscr{C})$ with the following properties:

- (1) |G| = n.
- (2) F is a subgraph of G.
- (3) Every cycle-monochromatic 2-edge-colouring of F extends to a 2-edge-colouring of G, in which there are no monochromatic cycles other than those already in F.

Concluding remarks

What we saw

Possibility to construct $\mathscr{M}(\mathscr{C})$ from some base graphs splitting some vertex. And other constructions inside $\mathscr{M}(\mathscr{C})$.

Concluding remarks

What we saw

Possibility to construct $\mathscr{M}(\mathscr{C})$ from some base graphs splitting some vertex. And other constructions inside $\mathscr{M}(\mathscr{C})$.

Questions:

- Can we find $G \in \mathcal{M}(\mathcal{C})$ with arbitrary girth?
- Can we study $\mathcal{M}(\mathcal{C}_k)$? Maybe finding some similar result?
- Edge decomposition in subgraphs with at most *k* cycles.
- Study the relation between $\mathscr{R}(\mathscr{C})$ and $\mathscr{R}(K_3)$.

[1] Damian Reding and Anusch Taraz, *Minimal Ramsey Graphs for cyclicity*, arXiv:1807.11890v1, Jul 2018.

Thank you for your attention