Domenico Mergoni Cecchelli

with P. Allen, J. Böttcher

Ramsey number

Let's check the Ramsey number $r_2(2K_2)$. $(2K_2 = \)$

Ramsey number

Let's check the Ramsey number $r_2(2K_2)$. $(2K_2 = \)$

Partition universality P. Allen, J. Böttcher, D.M.C

Ramsey number

Let's check the Ramsey number $r_2(2K_2)$. $(2K_2 = \)$

Partition universality P. Allen, J. Böttcher, D.M.C

Ramsey number

Let's check the Ramsey number $r_2(2K_2)$. $(2K_2 = \)$

Ramsey number

Let's check the Ramsey number $r_2(2K_2)$. $(2K_2 = \)$

Ramsey number

Let's check the Ramsey number $r_2(2K_2)$. $(2K_2 = \)$

Partition universality P. Allen. J. Böttcher. D.M.C

Towards size-Ramsey

Are there smaller $2K_2$ -Ramsey graphs?

Towards size-Ramsey

Are there smaller (?) $2K_2$ -Ramsey graphs?

Towards size-Ramsey

Are there smaller $2K_2$ -Ramsey graphs?

Towards size-Ramsey

Are there smaller $2K_2$ -Ramsey graphs?

Partition universality P. Allen, J. Böttcher, D.M.C

Towards size-Ramsey

Are there smaller $2K_2$ -Ramsey graphs?

size-Ramsey

The r-size-Ramsey number of F is the minimum $e(\Gamma)$ such that $\Gamma \rightarrow_r F$.

size-Ramsey

The r-size-Ramsey number of F is the minimum $e(\Gamma)$ such that $\Gamma \rightarrow_r F$.

 $\hat{r}_2(2K_2)$

size-Ramsey

The r-size-Ramsey number of F is the minimum $e(\Gamma)$ such that $\Gamma \rightarrow_r F$.

 $\hat{r}_2(2K_2) = 3$

size-Ramsey

The r-size-Ramsey number of F is the minimum $e(\Gamma)$ such that $\Gamma \rightarrow_r F$.

ĬĬĬ

- *Rem:* We have $\hat{r}_r(F) \leq \binom{r_r(F)}{2}$

 $\hat{r}_2(2K_2) = 3$

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

We are interested in improvements to the upper bound.

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

We are interested in improvements to the upper bound.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

We are interested in improvements to the upper bound.

Thm. (Nenadov, 2016)

- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

We are interested in improvements to the upper bound.

Thm. (Conlon, Nenadov and Trujić)

- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.
 - Improved for $\Delta=3$ to $O(n^{\frac{8}{5}}).$

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

We are interested in improvements to the upper bound.

Thm. (Draganić and Petrova, 2023)

- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.
 - Improved for $\Delta=3$ to $O(n^{\frac{3}{2}+o(1)}).$

Thm. (Chvátal, Rödl, Szemerédi and Trotter, 1983)

If F is a graph on n vertices with $\Delta(F) \leq \Delta,$ then:

$$e(F) \le \hat{r}_r(F) = O(n^2).$$

We are interested in improvements to the upper bound.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.
 - Improved for $\Delta=3$ to $O(n^{\frac{3}{2}+o(1)}).$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$?

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\underline{Q}}: \text{ How would you upper bound } \hat{r}_2(F) \text{ for } F \in \{2K_2, K_3, C_4\}?$ $\underline{Opt. 1}: \text{ Do it graph by graph.}$

$$\left|\begin{array}{ccc} \circ & \circ \\ \circ & \circ \end{array}\right| \longrightarrow \left|\begin{array}{ccc} \circ & \circ \\ \circ & \circ \end{array}\right|$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\underline{Q}}: \text{ How would you upper bound } \hat{r}_2(F) \text{ for } F \in \{2K_2, K_3, C_4\}?$ $\underline{Opt. 1}: \text{ Do it graph by graph.}$

$$\left|\begin{array}{c}\circ\\\circ\\\circ\end{array}\right| \rightarrow \left|\begin{array}{c}\circ\\\circ\\\circ\end{array}\right| \left|\begin{array}{c}\circ\\\circ\\\circ\end{array}\right| \right|$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

$$\left|\begin{array}{c}{}\right\rangle\\\\\\{}\right\rangle\\\\\\\\\\\end{array}\right| \longrightarrow \left|\begin{array}{c}{}\right\rangle\\\\\\\\\\\\\\\\\\\end{array}\right| \xrightarrow{}\right\rangle$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

$$\left|\begin{array}{c} \circ\\ \circ\\ \circ\end{array}\right| \rightarrow \left|\begin{array}{c} \circ\\ \circ\\ \circ\end{array}\right| \left|\begin{array}{c} \circ\\ \circ\\ \circ\end{array}\right| \right|$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 1: Do it graph by graph.

$$\left|\begin{array}{c} \circ\\ \circ\end{array}\right| \xrightarrow{} \rightarrow \left|\begin{array}{c} \circ\\ \circ\end{array}\right| \xrightarrow{} \left|\begin{array}{c} \circ\\ \end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\begin{array}{c} \circ\\ \end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\begin{array}{c} \end{array}\\\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \left|\end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\begin{array}{c} \\\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\end{array}\right| \xrightarrow{} \left|\left|\end{array}\right| \xrightarrow{} \left|\left|\left|\right\right| \xrightarrow{} \left|\left|\right\right| \xrightarrow{} \left|\left|\left|\right\right| \xrightarrow{}$$

. . .

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 2 (stronger) : Find a graph that works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 2 (stronger) : Find a graph that works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 2 (stronger) : Find a graph that works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 2 (stronger) : Find a graph that works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 2 (stronger) : Find a graph that works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$? Opt. 2 (stronger) : Find a graph that works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011) There is $\Gamma(e(\Gamma) = ...)$ s.t. $\Gamma \rightarrow_r F$ for each $F \in \mathcal{G}(\Delta, n)$.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

For any colouring of $\Gamma,$ there is a colour χ such that Γ^{χ} contains the whole class

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

For any colouring of $\Gamma,$ there is a colour χ such that Γ^{χ} contains the whole class

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

<u>Q</u>: How would you upper bound $\hat{r}_2(F)$ for $F \in \{2K_2, K_3, C_4\}$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

For any colouring of $\Gamma,$ there is a colour χ such that Γ^{χ} contains the whole class

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Partition universality

We say that Γ is *r*-partition universal for \mathcal{G} if for any colouring of Γ , there is a colour χ such that Γ^{χ} contains the whole \mathcal{G} .

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Partition universality

We say that Γ is *r*-partition universal for \mathcal{G} if for any colouring of Γ , there is a colour χ such that Γ^{χ} contains the whole \mathcal{G} .

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

There is a graph Γ ($e(\Gamma) = ...$) that is *r*-partition universal for $\mathcal{G}(\Delta, n)$.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta,n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

Partition universality

We say that Γ is *r*-partition universal for \mathcal{G} if for any colouring of Γ , there is a colour χ such that Γ^{χ} contains the whole \mathcal{G} .

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011)
$$G(Cn, (\frac{Cn}{\log Cn})^{-\frac{1}{\Delta}})$$
, a.a.s. is *r*-partition universal for $\mathcal{G}(\Delta, n)$.

Summary

Summary

While studying upper bounds for $\hat{r}_r(\mathcal{G}(\Delta, n))$ one realises that the p for which we can prove G(Cn, p) is r size-Ramsey for $\mathcal{G}(\Delta, n)$ are the same for which G(Cn, p) is r-partition universal for $\mathcal{G}(\Delta, n)$.

GOAL: Study partition universality properties of random graphs.

GOAL: Study partition universality properties of random graphs.

Thm. (Kohayakawa, Rödl, Schacht and Szemerédi, 2011) A.a.s. $G(Cn, (\frac{Cn}{\log Cn})^{-\frac{1}{\Delta}})$ is *r*-partition universal for $\mathcal{G}(\Delta, n)$.

GOAL: Study partition universality properties of random graphs.

GOAL: Study partition universality properties of random graphs.

Thm. (Allen, Böttcher, 2022)
A.a.s. $G(Cn, (Cn)^{\mu - \frac{1}{\Delta - 1}})$ is r-partition universal for $\mathcal{G}(\Delta, n)$.

<u>*Rem*</u>: Worst bounds for $\Delta = 3$.

GOAL: Study partition universality properties of random graphs.

Thm. (Allen, Böttcher, 2022)
A.a.s. $G(Cn, (Cn)^{\mu - \frac{1}{\Delta - 1}})$ is r-partition universal for $\mathcal{G}(\Delta, n)$.

Coro. (Allen, Böttcher, 2022)

For any $F \in \mathcal{G}(\Delta, n)$,

$$\hat{r}_r(F) = O(n^{2+\mu - \frac{1}{\Delta - 1}}).$$

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, n)$.

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, n)$.

<u>*Rem*</u>: - By first moment method we cannot take $p = o((Cn)^{-\frac{1}{D}})$. - Any *r*-partition universal Γ for $\mathcal{G}(D, 2D + 1, n)$ has $e(\Gamma) \geq \frac{1}{100}n^{2-\frac{1}{D}}$.

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, n)$.

<u>*Rem:*</u> - By first moment method we cannot take $p = o((Cn)^{-\frac{1}{D}})$. - Any *r*-partition universal Γ for $\mathcal{G}(D, 2D + 1, n)$ has $e(\Gamma) \geq \frac{1}{100}n^{2-\frac{1}{D}}$.

Thm. (Allen, Böttcher, M.C., 2023+)

 $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is a.a.s. *r*-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, n)$.

<u>*Rem:*</u> - By first moment method we cannot take $p = o((Cn)^{-\frac{1}{D}})$. - Any *r*-partition universal Γ for $\mathcal{G}(D, 2D + 1, n)$ has $e(\Gamma) \geq \frac{1}{100}n^{2-\frac{1}{D}}$.

Thm. (Allen, Böttcher, M.C., 2023+)

 $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is a.a.s. *r*-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Thm. (Cooley, Fountoulakis, Kühn, Osthus, 2009)

 $G^{(k)}(Cn,1)$ is a.a.s. r-partition univ. for $\mathcal{G}^{(k)}(\Delta,n).$

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, n)$.

<u>*Rem:*</u> - By first moment method we cannot take $p = o((Cn)^{-\frac{1}{D}})$. - Any *r*-partition universal Γ for $\mathcal{G}(D, 2D + 1, n)$ has $e(\Gamma) \geq \frac{1}{100}n^{2-\frac{1}{D}}$.

Thm. (Allen, Böttcher, M.C., 2023+)

 $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is a.a.s. *r*-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Thm. (Allen, Böttcher, Hng, Skokan, Davies, 2021) $G^{(k)}(Cn, (Cn)^{-\epsilon})$ is a.a.s. *r*-partition univ. for $\mathcal{G}^{(k)}(\Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(2)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(2)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Want

A.a.s. $G^{(k)}(Cn, (Cn)^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}^{(k)}(D, \Delta, n)$.

Goal

Find $\psi_1, \ldots, \psi_{v(F)}$ growing seq. of partial homom. from F to G.

Partition universality P. Allen, J. Böttcher, D.M.C

F

Find $\psi_1, \ldots, \psi_{v(F)}$ growing seq. of partial homom. from F to G.

At each step, the number of viable embeddings of each of the following vertices should not decrease too much.

Goal

Find $\psi_1, \ldots, \psi_{v(F)}$ growing seq. of partial homom. from F to G.

Partition universality P. Allen, J. Böttcher, D.M.C

F

F

Goal

We won't embed x to dangerous vertices, but there are very few of them.

Goal

For ψ_y we know no x decreased the available extensions by too much.

