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If Fis a graph on n vertices with A(F) < A, then:
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We are interested in improvements to the upper bound.
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- Changes in the upper bound: 7,.(F) = O(n?~ % (logn)®).
- Extended for Ka-free F'.
- Improved for A = 3 to O(n%JrO(l)).
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Thm. (Kohayakawa, Rodl, Schacht and Szemerédi, 2011)

Any graph F in G(A,n) has

We say that I' is r-partition universal for G if for any colouring of ', there
is a colour x such that I'X contains the whole G.

Thm. (Kohayakawa, Rédl, Schacht and Szemerédi, 2011)

G(Cn, (loggn)_%), a.a.s. is r-partition universal for G(A,n).




Summary

Partition




Summary

While studying upper bounds for #,.(G(A,n)) one realises that the p for
which we can prove G(Cn,p) is r size-Ramsey for G(A,n) are the same
for which G(Cn, p) is r-partition universal for G(A, n).
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Coro. (Allen, Bottcher, 2022)
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Pr(F) = O(n?H#501).
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At each step, the number of
viable embeddings of each of
the following vertices should
not decrease too much.
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