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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.
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For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

The only known values are S(1) = 2, S(2) = 5, S(3) = 14, S(4) = 45
and S(5) = 161.
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

The only known values are S(1) = 2, S(2) = 5, S(3) = 14, S(4) = 45
and S(5) = 161.

Thm. (Abbott and Moser, 1966)

For any k and l positive integers we have:

S(k + l) ≥ 2S(k)S(l) + S(k) + S(l).

Paired with S(5) = 161 (Heule, 2018), this gives S(k) ≥ c · 321k/5.
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Corollary. (Abbott and Moser, 1966)

Finding additional values (e.g. S(6)) would improve the lower bound.
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

The only known values are S(1) = 2, S(2) = 5, S(3) = 14, S(4) = 45
and S(5) = 161.

Corollary. (Abbott and Moser, 1966)

Finding additional values (e.g. S(6)) would improve the lower bound.

The upper bound is ⌊k!(e− 1
24 )⌋ and due to Irving (1974).
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We cannot partition [S(k)] in k-many sum-free sets.
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For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Abbott-Wang Variation

How large is the largest subset of [n] that can be partitioned into k
sum-free sets?
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Abbott-Wang Variation

How large is the largest subset of [n] that can be partitioned into k
sum-free sets?

Abbott-Wang Conjecture

The Abbott-Wang construction is optimal. I.e. n− ⌊ n
H(k)⌋
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Graham, Rödl and Ruciński (1996)

Any 2-colouring of [n] contains n2/19 monochromatic Schur triples.
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) ∈ N such that any
k-colouring of [S(k)] := {1, . . . , S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of [n] contains n2/11 monochromatic Schur triples.

For k ≥ 3 only Θ(n2) is known. Which colourings attain the minimum?
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For which values of p does [n]p contain a Schur triple?
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- Let X count the sums in [n]p and µ = E[X]. We have

µ = Θ(n2p3).
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- Let X count the sums in [n]p and µ = E[X]. We have

µ = Θ(n2p3).

- For p ≪ n−2/3, µ = o(1) and thus P[X ≥ 1] = o(1).
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Question

For which values of p does [n]p contain a Schur triple?

- There are ∼ n2/4 sums in [n].
- Let X count the sums in [n]p and µ = E[X]. We have

µ = Θ(n2p3).

- For p ≪ n−2/3, µ = o(1) and thus P[X ≥ 1] = o(1).
- For p ≫ n−2/3 we have V ar(X) ≪ µ2 as

V ar(X) ∼ n2p3(1− p3) + p5n3 + p4n2.
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Question

For which values of p does [n]p contain a Schur triple? p ≫ n−2/3.
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Question

For which values of p does [n]p contain a Schur triple? p ≫ n−2/3.

Thm. (Graham, Rödl, Ruciński, 2000)

W.h.p. any 2-colouring of [n]p with p ≫ n−1/2 contains Θ(n2p3)
monochromatic sums.



Random Schur Problems

Product Schur Triples in the Integers

L. Mattos, D. M. C., O. Parczyk 2 of 6

Question

For which values of p does [n]p contain a Schur triple? p ≫ n−2/3.

Thm. (Graham, Rödl, Ruciński, 2000)

W.h.p. any 2-colouring of [n]p with p ≫ n−1/2 contains Θ(n2p3)
monochromatic sums.

Question

Let αn ∈ (0, 1), what pn guarantees that if |Cn| ≥ (1− αn)n then

lim
n→∞

P[Cn ∪ [n]p is 2-Schur] = 1?
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Question

For which values of p does [n]p contain a Schur triple? p ≫ n−2/3.

Thm. (Graham, Rödl, Ruciński, 2000)

W.h.p. any 2-colouring of [n]p with p ≫ n−1/2 contains Θ(n2p3)
monochromatic sums.

Thm. (Das, Knierim, and Morris, 2024)

If C is dense and p ≫ n−2/3, then w.h.p. every 2-colouring of C ∪ [n]p
contains a monochromatic sum.



Summary.

- Value of S(k) difficult to bound, impossible to determine.

- Largest subsets of [n] that can be k-partitioned in sum-free sets.

- Is modular arithmetic the best we can do?

- k-colourings of [n] with minimal number of monochromatic sums.

- Which [n]p cannot be partitioned into k sum-free sets?

- What’s the interplay between deterministic and random?
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0 and k ∈ N+. For n large enough,

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k).
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0 and k ∈ N+. For n large enough,

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k).

Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0. For n large enough, any 2-colouring of [2, n] contains
n1/3−ε monochromatic products.
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0 and k ∈ N+. For n large enough,

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k).

Thm. (Aragão, Chapman, Ortega, Souza, 2024+)

Any 2-colouring of [2, n] contains ( 1
2
√
2
− o(1))n1/2 log(n)

monochromatic products.
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The threshold for [2, n]p to contain a product Schur triple is
(n log(n))−1/3.



Product Schur Problems

Product Schur Triples in the Integers

L. Mattos, D. M. C., O. Parczyk 3 of 6

Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0 and k ∈ N+. For n large enough,

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k).

Thm. (Aragão, Chapman, Ortega, Souza, 2024+)

Any 2-colouring of [2, n] contains ( 1
2
√
2
− o(1))n1/2 log(n)

monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2, n]p to contain a product Schur triple is
(n log(n))−1/3.

Thm. (Mattos, MC, Parczyk, 2025)

p̂α(n) = n−1/2+o(1) is the threshold for the α-randomly perturbed
product Schur property (for α in a wide range).
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Thm. (Mattos, MC, Parczyk, 2025)
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0 and k ∈ N+. For n large enough,

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k).

Proof. Upper bound first.

- For a, let P (a) := {ai : i = 1, . . . , S(k)}.
- P (a) cannot be partitioned into k product-free sets.

- Fix A′ = [ 12εn
1/S(k), n1/S(k)].

- For a, b ∈ A′ distinct, P (a) ∩ P (b) = ∅ and P (a), P (b) ⊆ [n].

- Any subset of [n] that can be partitioned into k product-free sets
must avoid an element of P (a) for each a in A′.
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0 and k ∈ N+. For n large enough,

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k).

Proof. Lower bound next.

- Let χ : [S′(k)− 1] → [k] without monochromatic a+ b = c or
a+ b = c− 1.

- Colour a ∈ (n1/S′(k), n] with colour χ(⌈S′(k) · logn(a)⌉ − 1).

- If ab = c, then let a′ = ⌈S′(k) · logn(a)⌉ − 1,
b′ = ⌈S′(k) · logn(b)⌉ − 1, and c′ = ⌈S′(k) · logn(c)⌉ − 1 and note
that logn(a) + logn(b) = logn(c) implies a′ + b′ = c′ or
a′ + b′ = c′ − 1.
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- If ab = c, then let a′ = ⌈S′(k) · logn(a)⌉ − 1,
b′ = ⌈S′(k) · logn(b)⌉ − 1, and c′ = ⌈S′(k) · logn(c)⌉ − 1 and note
that logn(a) + logn(b) = logn(c) implies a′ + b′ = c′ or
a′ + b′ = c′ − 1.
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0. For n large enough, any 2-colouring of [2, n] contains
n1/3−ε monochromatic products.
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Thm. (Mattos, MC, Parczyk, 2025)

Let ε > 0. For n large enough, any 2-colouring of [2, n] contains
n1/3−ε monochromatic products.

Proof.

- Lemma. If A ⊆ [2, n] has size n− 1
2

√
n, it contains n/8 products.

- Let R be the red elements of [n1/3], B the blue ones. By Lemma,
wlog we have |R| ≥ |B| ≥ n1/6/2.

- Let PR := {ab : a, b ∈ R} and PB := {ab : a, b ∈ B}.
- Note |PR|, |PB | ≥ n1/3−ε. Also, PR contains n1/3−ε blue
elements and PB contains n1/3−ε red elements.
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b2 r2
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Let ε > 0. For n large enough, any 2-colouring of [2, n] contains
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- Let PR := {ab : a, b ∈ R} and PB := {ab : a, b ∈ B}.
- Note |PR|, |PB | ≥ n1/3−ε. Also, PR contains n1/3−ε blue
elements and PB contains n1/3−ε red elements.

- To each {r1, r2, b1, b2} with r1, r2 ∈ R, b1, b2 ∈ B, r1r2 blue and
b1b2 red we can associate a monochromatic product.
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- Take care of double-counting.
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2
√
2
− o(1))n1/2 log(n)
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Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2, n]p to contain a product Schur triple is
(n log(n))−1/3.
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Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2, n]p to contain a product Schur triple is
(n log(n))−1/3.

Proof. Lower bound first.

- The number of products is
√
n∑

a=2

n

a
+O(n) = (1 + o(1))n log(n).

- The expected number of products in [2, n]p is:

p3(1 + o(1))n log(n) + p2
√
n.

- For p ≪ (n log(n))−1/3, there are no products.
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Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2, n]p to contain a product Schur triple is
(n log(n))−1/3.

Proof. Upper bound next (very sketched).

- Take p = (n log(n))−1/3ω(n), and let q be such that
(1− q)2 = (1− p).

- Let A,B := [2, n]q , and C = A ∪B. Note C ∼ [2, n]p.

- This reduces to show |A2 ∩ [2, n]| ≫ 1/q w.h.p.

- A useful tool is that no c can be written as the product of
elements of A in more than 2 ways w.h.p.
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Open questions.

- Is there an ε such that S′(k) < (1− ε)S(k) for large k?

- What is the k-colouring of n with the fewest monochromatic
products?

- What is the threshold for any k-colouring of [2, n]p to contain a
monochromatic product?
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ThankYou!!
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