Product Schur Triples in the Integers

L. Mattos, **D. Mergoni Cecchelli**, O. Parczyk

Lemma (Schur, 1917)

Lemma (Schur, 1917)

Lemma (Schur, 1917)

Lemma (Schur, 1917)

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

The only known values are $S(1)=2,\ S(2)=5,\ S(3)=14,\ S(4)=45$ and S(5)=161.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

The only known values are S(1)=2, S(2)=5, S(3)=14, S(4)=45 and S(5)=161.

Thm. (Abbott and Moser, 1966)

For any k and l positive integers we have:

$$S(k+l) \ge 2S(k)S(l) + S(k) + S(l).$$

Paired with S(5) = 161 (Heule, 2018), this gives $S(k) \ge c \cdot 321^{k/5}$.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

The only known values are $S(1)=2,\ S(2)=5,\ S(3)=14,\ S(4)=45$ and S(5)=161.

Corollary. (Abbott and Moser, 1966)

Finding additional values (e.g. S(6)) would improve the lower bound.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

The only known values are $S(1)=2,\ S(2)=5,\ S(3)=14,\ S(4)=45$ and S(5)=161.

Corollary. (Abbott and Moser, 1966)

Finding additional values (e.g. S(6)) would improve the lower bound.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

The only known values are $S(1)=2,\ S(2)=5,\ S(3)=14,\ S(4)=45$ and S(5)=161.

Corollary. (Abbott and Moser, 1966)

Finding additional values (e.g. S(6)) would improve the lower bound.

The upper bound is $\lfloor k!(e-\frac{1}{24}) \rfloor$ and due to Irving (1974).

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Abbott-Wang Variation

How large is the largest subset of $\left[n\right]$ that can be partitioned into k sum-free sets?

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \ldots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Abbott-Wang Variation

How large is the largest subset of [n] that can be partitioned into k sum-free sets?

Abbott-Wang Conjecture

The Abbott-Wang construction is optimal. I.e. $n-\lfloor \frac{n}{H(k)} \rfloor$

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Graham, Rödl and Ruciński (1996)

Any 2-colouring of [n] contains $n^2/19$ monochromatic Schur triples.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of $\left[n\right]$ contains $n^2/11$ monochromatic Schur triples.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of $\left[n\right]$ contains $n^2/11$ monochromatic Schur triples.

For $k \geq 3$ only $\Theta(n^2)$ is known.

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) $S(k) \in \mathbb{N}$ such that any k-colouring of $[S(k)] := \{1, \dots, S(k)\}$ contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of $\left[n\right]$ contains $n^2/11$ monochromatic Schur triples.

For $k \geq 3$ only $\Theta(n^2)$ is known. Which colourings attain the minimum?

Question

For which values of p does $[n]_p$ contain a Schur triple?

Question

For which values of p does $[n]_p$ contain a Schur triple?

- There are $\sim n^2/4$ sums in [n].

Question

For which values of p does $[n]_p$ contain a Schur triple?

- There are $\sim n^2/4$ sums in [n].
- Let X count the sums in $[n]_p$ and $\mu = \mathbb{E}[X]$. We have

$$\mu = \Theta(n^2 p^3).$$

Question

For which values of p does $[n]_p$ contain a Schur triple?

- There are $\sim n^2/4$ sums in [n].
- Let X count the sums in $[n]_p$ and $\mu=\mathbb{E}[X].$ We have

$$\mu = \Theta(n^2 p^3).$$

- For $p \ll n^{-2/3}$, $\mu = o(1)$ and thus $\mathbb{P}[X \geq 1] = o(1)$.

Question

For which values of p does $[n]_p$ contain a Schur triple?

- There are $\sim n^2/4$ sums in [n].
- Let X count the sums in $[n]_p$ and $\mu=\mathbb{E}[X]$. We have

$$\mu = \Theta(n^2 p^3).$$

- For $p \ll n^{-2/3}$, $\mu = o(1)$ and thus $\mathbb{P}[X \ge 1] = o(1)$.
- For $p\gg n^{-2/3}$ we have $Var(X)\ll \mu^2$ as

$$Var(X) \sim n^2 p^3 (1 - p^3) + p^5 n^3 + p^4 n^2.$$

Question

For which values of p does $[n]_p$ contain a Schur triple? $p \gg n^{-2/3}$.

Question

For which values of p does $[n]_p$ contain a Schur triple? $p \gg n^{-2/3}$.

Thm. (Graham, Rödl, Ruciński, 2000)

W.h.p. any 2-colouring of $[n]_p$ with $p\gg n^{-1/2}$ contains $\Theta(n^2p^3)$ monochromatic sums.

Question

For which values of p does $[n]_p$ contain a Schur triple? $p \gg n^{-2/3}$.

Thm. (Graham, Rödl, Ruciński, 2000)

W.h.p. any 2-colouring of $[n]_p$ with $p\gg n^{-1/2}$ contains $\Theta(n^2p^3)$ monochromatic sums.

Question

Let $\alpha_n \in (0,1)$, what p_n guarantees that if $|C_n| \geq (1-\alpha_n)n$ then

$$\lim_{n\to\infty} \mathbb{P}[C_n \cup [n]_p \text{ is } 2\text{-Schur}] = 1?$$

Question

For which values of p does $[n]_p$ contain a Schur triple? $p \gg n^{-2/3}$.

Thm. (Graham, Rödl, Ruciński, 2000)

W.h.p. any 2-colouring of $[n]_p$ with $p\gg n^{-1/2}$ contains $\Theta(n^2p^3)$ monochromatic sums.

Thm. (Das, Knierim, and Morris, 2024)

If C is dense and $p\gg n^{-2/3}$, then w.h.p. every 2-colouring of $C\cup [n]_p$ contains a monochromatic sum.

- Value of S(k) difficult to bound, impossible to determine.

- Value of S(k) difficult to bound, impossible to determine.
- Largest subsets of $\left[n\right]$ that can be k-partitioned in sum-free sets.

- Value of S(k) difficult to bound, impossible to determine.
- Largest subsets of [n] that can be k-partitioned in sum-free sets.
- Is modular arithmetic the best we can do?

- Value of S(k) difficult to bound, impossible to determine.
- Largest subsets of [n] that can be k-partitioned in sum-free sets.
- Is modular arithmetic the best we can do?
- k-colourings of [n] with minimal number of monochromatic sums.

- Value of S(k) difficult to bound, impossible to determine.
- Largest subsets of [n] that can be k-partitioned in sum-free sets.
- Is modular arithmetic the best we can do?
- k-colourings of [n] with minimal number of monochromatic sums.
- Which $[n]_p$ cannot be partitioned into k sum-free sets?

- Value of S(k) difficult to bound, impossible to determine.
- Largest subsets of [n] that can be k-partitioned in sum-free sets.
- Is modular arithmetic the best we can do?
- k-colourings of [n] with minimal number of monochromatic sums.
- Which $[n]_p$ cannot be partitioned into k sum-free sets?
- What's the interplay between deterministic and random?

What about PRODUCTS?

Product Schur Problems

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0$. For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Thm. (Aragão, Chapman, Ortega, Souza, 2024+)

Any 2-colouring of [2,n] contains $(\frac{1}{2\sqrt{2}}-o(1))n^{1/2}\log(n)$ monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Thm. (Aragão, Chapman, Ortega, Souza, 2024+)

Any 2-colouring of [2,n] contains $(\frac{1}{2\sqrt{2}}-o(1))n^{1/2}\log(n)$ monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$

Thm. (Aragão, Chapman, Ortega, Souza, 2024+)

Any 2-colouring of [2,n] contains $(\frac{1}{2\sqrt{2}}-o(1))n^{1/2}\log(n)$ monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

Thm. (Mattos, MC, Parczyk, 2025)

 $\hat{p}_{\alpha}(n) = n^{-1/2 + o(1)}$ is the threshold for the α -randomly perturbed product Schur property (for α in a wide range).

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

- For
$$a$$
, let $P(a) := \{a^i : i = 1, \dots, S(k)\}.$

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

- For a, let $P(a) := \{a^i : i = 1, \dots, S(k)\}.$
- P(a) cannot be partitioned into k product-free sets.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

- For a, let $P(a) := \{a^i : i = 1, \dots, S(k)\}.$
- P(a) cannot be partitioned into k product-free sets.
- Fix $A' = \left[\frac{1}{2}\varepsilon n^{1/S(k)}, n^{1/S(k)}\right]$.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$

- For a, let $P(a) := \{a^i : i = 1, \dots, S(k)\}.$
- P(a) cannot be partitioned into k product-free sets.
- Fix $A' = [\frac{1}{2}\varepsilon n^{1/S(k)}, n^{1/S(k)}].$
- For $a,b\in A'$ distinct, $P(a)\cap P(b)=\emptyset$ and $P(a),P(b)\subseteq [n].$

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$

- For a, let $P(a) := \{a^i : i = 1, \dots, S(k)\}.$
- P(a) cannot be partitioned into k product-free sets.
- Fix $A' = [\frac{1}{2}\varepsilon n^{1/S(k)}, n^{1/S(k)}].$
- For $a,b\in A'$ distinct, $P(a)\cap P(b)=\emptyset$ and $P(a),P(b)\subseteq [n].$
- Any subset of [n] that can be partitioned into k product-free sets must avoid an element of P(a) for each a in A'.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Proof. Lower bound next.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Proof. Lower bound next.

- Let $\chi:[S'(k)-1]\to [k]$ without monochromatic a+b=c or a+b=c-1.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Proof. Lower bound next.

- Let $\chi:[S'(k)-1]\to [k]$ without monochromatic a+b=c or a+b=c-1.
- Colour $a \in (n^{1/S'(k)}, n]$ with colour $\chi(\lceil S'(k) \cdot \log_n(a) \rceil 1)$.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon > 0$ and $k \in \mathbb{N}^+$. For n large enough,

$$n - n^{1/S'(k)} \le g_*(k, n) \le n - (1 - \varepsilon)n^{1/S(k)}$$
.

Proof. Lower bound next.

- Let $\chi:[S'(k)-1]\to [k]$ without monochromatic a+b=c or a+b=c-1.
- Colour $a \in (n^{1/S'(k)}, n]$ with colour $\chi(\lceil S'(k) \cdot \log_n(a) \rceil 1)$.
- If ab=c, then let $a'=\lceil S'(k)\cdot \log_n(a)\rceil-1$, $b'=\lceil S'(k)\cdot \log_n(b)\rceil-1$, and $c'=\lceil S'(k)\cdot \log_n(c)\rceil-1$ and note that $\log_n(a)+\log_n(b)=\log_n(c)$ implies a'+b'=c' or a'+b'=c'-1.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

Proof.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- **Lemma.** If $A \subseteq [2, n]$ has size $n \frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}]$, B the blue ones. By Lemma, wlog we have $|R| \geq |B| \geq n^{1/6}/2$.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0$. For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \geq n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \ge n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.

$$b_2 \circ r_2$$

$$b_1 \circ r_1$$

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \geq n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \geq n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- **Lemma.** If $A \subseteq [2, n]$ has size $n \frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \geq n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \geq n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- **Lemma.** If $A \subseteq [2, n]$ has size $n \frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \ge n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.
- To each $\{r_1,r_2,b_1,b_2\}$ with $r_1,r_2\in R$, $b_1,b_2\in B$, r_1r_2 blue and b_1b_2 red we can associate a monochromatic product.

Thm. (Mattos, MC, Parczyk, 2025)

Let $\varepsilon>0.$ For n large enough, any 2-colouring of [2,n] contains $n^{1/3-\varepsilon}$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}],\,B$ the blue ones. By Lemma, wlog we have $|R|\geq |B|\geq n^{1/6}/2.$
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \ge n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.
- To each $\{r_1,r_2,b_1,b_2\}$ with $r_1,r_2\in R$, $b_1,b_2\in B$, r_1r_2 blue and b_1b_2 red we can associate a monochromatic product.
- Take care of double-counting.

Thm. (Aragão, Chapman, Ortega, Souza, 2024+)

Any 2-colouring of [2,n] contains $(\frac{1}{2\sqrt{2}}-o(1))n^{1/2}\log(n)$ monochromatic products.

- Lemma. If $A\subseteq [2,n]$ has size $n-\frac{1}{2}\sqrt{n}$, it contains n/8 products.
- Let R be the red elements of $[n^{1/3}]$, B the blue ones. By Lemma, wlog we have $|R| \geq |B| \geq n^{1/6}/2$.
- Let $P_R := \{ab : a, b \in R\}$ and $P_B := \{ab : a, b \in B\}$.
- Note $|P_R|, |P_B| \ge n^{1/3-\varepsilon}$. Also, P_R contains $n^{1/3-\varepsilon}$ blue elements and P_B contains $n^{1/3-\varepsilon}$ red elements.
- To each $\{r_1,r_2,b_1,b_2\}$ with $r_1,r_2\in R$, $b_1,b_2\in B$, r_1r_2 blue and b_1b_2 red we can associate a monochromatic product.
- Take care of double-counting.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

Proof. Lower bound first.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2, n]_p$ to contain a product Schur triple is $(n \log(n))^{-1/3}$.

Proof. Lower bound first.

- The number of products is

$$\sum_{a=2}^{\sqrt{n}} \frac{n}{a} + O(n) = (1 + o(1))n \log(n).$$

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2, n]_p$ to contain a product Schur triple is $(n \log(n))^{-1/3}$.

Proof. Lower bound first.

- The number of products is

$$\sum_{a=2}^{\sqrt{n}} \frac{n}{a} + O(n) = (1 + o(1))n\log(n).$$

- The expected number of products in $[2,n]_p$ is:

$$p^{3}(1 + o(1))n\log(n) + p^{2}\sqrt{n}$$
.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2, n]_p$ to contain a product Schur triple is $(n \log(n))^{-1/3}$.

Proof. Lower bound first.

- The number of products is

$$\sum_{a=2}^{\sqrt{n}} \frac{n}{a} + O(n) = (1 + o(1))n\log(n).$$

- The expected number of products in $[2,n]_p$ is:

$$p^{3}(1 + o(1))n\log(n) + p^{2}\sqrt{n}$$
.

- For $p \ll (n \log(n))^{-1/3}$, there are no products.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

Proof. Upper bound next (very sketched).

- Take $p=(n\log(n))^{-1/3}\omega(n)$, and let q be such that $(1-q)^2=(1-p)$.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2,n]_p$ to contain a product Schur triple is $(n\log(n))^{-1/3}$.

- Take $p=(n\log(n))^{-1/3}\omega(n)$, and let q be such that $(1-q)^2=(1-p)$.
- Let $A,B:=[2,n]_q$, and $C=A\cup B.$ Note $C\sim [2,n]_p.$

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2, n]_p$ to contain a product Schur triple is $(n \log(n))^{-1/3}$.

- Take $p=(n\log(n))^{-1/3}\omega(n)$, and let q be such that $(1-q)^2=(1-p)$.
- Let $A,B:=[2,n]_q$, and $C=A\cup B.$ Note $C\sim [2,n]_p.$
- This reduces to show $|A^2\cap[2,n]|\gg 1/q$ w.h.p.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for $[2, n]_p$ to contain a product Schur triple is $(n \log(n))^{-1/3}$.

- Take $p=(n\log(n))^{-1/3}\omega(n)$, and let q be such that $(1-q)^2=(1-p)$.
- Let $A,B:=[2,n]_q$, and $C=A\cup B.$ Note $C\sim [2,n]_p.$
- This reduces to show $|A^2\cap[2,n]|\gg 1/q$ w.h.p.
- A useful tool is that no c can be written as the product of elements of A in more than 2 ways w.h.p.

- Is there an ε such that $S'(k) < (1-\varepsilon)S(k)$ for large k?

- Is there an ε such that $S'(k) < (1-\varepsilon)S(k)$ for large k?
- What is the k-colouring of n with the fewest monochromatic products?

- Is there an ε such that $S'(k)<(1-\varepsilon)S(k)$ for large k?
- What is the k-colouring of n with the fewest monochromatic products?
- What is the threshold for any k-colouring of $[2,n]_p$ to contain a monochromatic product?

