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Deterministic Schur Problems

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) € N such that any
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Deterministic Schur Problems

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) € N such that any
k-colouring of [S(k)] :={1,...,S(k)} contains a monochromatic sum.

The only known values are S(1) =2, S(2) =5, S(3) =14, S(4) =45
and S(5) = 161.

Thm. (Abbott and Moser, 1966)

For any k and [ positive integers we have:
S(k+1) >2S(k)S() + S(k)+ S().

Paired with S(5) = 161 (Heule, 2018), this gives S(k) > ¢ - 321%/5.
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) € N such that any
k-colouring of [S(k)] :={1,...,S(k)} contains a monochromatic sum.

The only known values are S(1) =2, S(2) =5, S(3) =14, S(4) =45
and S(5) = 161.

Corollary. (Abbott and Moser, 1966)

Finding additional values (e.g. S(6)) would improve the lower bound.

The upper bound is |k!(e — 5;)] and due to Irving (1974).
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For any positive integer k there is a (smallest) S(k) € N such that any
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We cannot partition [S(k)] in k-many sum-free sets.

Abbott-Wang Variation

How large is the largest subset of [n] that can be partitioned into &
sum-free sets?

The Abbott-Wang construction is optimal. l.e. n — L%J
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Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) € N such that any
k-colouring of [S(k)] :={1,...,S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Graham, Rodl and Ruciriski (1996)

Any 2-colouring of [n] contains n?/19 monochromatic Schur triples.
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Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of [n] contains n?/11 monochromatic Schur triples.

Product Schur Triples in the Integers

L. Mattos, D. M. C., O.



Deterministic Schur Problems

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) € N such that any
k-colouring of [S(k)] :={1,...,S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of [n] contains n?/11 monochromatic Schur triples.

For k > 3 only ©(n?) is known.

Product Schur Triples in the Integers

L. Mattos, D. M. C., O.



Deterministic Schur Problems

Lemma (Schur, 1917)

For any positive integer k there is a (smallest) S(k) € N such that any
k-colouring of [S(k)] :={1,...,S(k)} contains a monochromatic sum.

We cannot partition [S(k)] in k-many sum-free sets.

Schoen (1999), Robertson and Zeilberger (1999)

Any 2-colouring of [n] contains n?/11 monochromatic Schur triples.

For k > 3 only ©(n?) is known. Which colourings attain the minimum?
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For which values of p does [n], contain a Schur triple?

- There are ~ n?/4 sums in [n].
- Let X count the sums in [n], and p = E[X]. We have

p=0(n’p?).

- For p < n™2/3, = o(1) and thus P[X > 1] = o(1).
- For p > n=2/3 we have Var(X) < p? as

Var(X) ~n?p*(1 — p®) + p°n® + p*n?.
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Random Schur Problems

Question

For which values of p does [n], contain a Schur triple? p > n=2/3.

Thm. (Graham, Radl, Ruciriski, 2000)

W.h.p. any 2-colouring of [n], with p > n~'/2 contains ©(n?p?)
monochromatic sums.

Question

Let o, € (0, 1), what p,, guarantees that if |C,,| > (1 — ay,)n then

lim P[C),, U [n], is 2-Schur] = 17

n— oo
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Random Schur Problems

Question

For which values of p does [n], contain a Schur triple? p > n=2/3.

Thm. (Graham, Radl, Ruciriski, 2000)

W.h.p. any 2-colouring of [n], with p > n~'/2 contains ©(n?p?)
monochromatic sums.

Thm. (Das, Knierim, and Morris, 2024)

If C is dense and p > n=2/3, then w.h.p. every 2-colouring of C' U [n],
contains a monochromatic sum.
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Summary.
Value of S(k) difficult to bound, impossible to determine.
Largest subsets of [n] that can be k-partitioned in sum-free sets.

- Is modular arithmetic the best we can do?

- k-colourings of [n] with minimal number of monochromatic sums.

Which [n], cannot be partitioned into k sum-free sets?

What's the interplay between deterministic and random?
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Product Schur Problems
Thm. (Mattos, MC, Parczyk, 2025)

Let ¢ > 0 and k € NT. For n large enough,

n—n'/5® < g.(k,n) <n—(1—¢e)n/5®:

Thm. (Aragdo, Chapman, Ortega, Souza, 2024+ )

Any 2-colouring of [2,n] contains (ﬁ —o(1))n'/?log(n)
monochromatic products.

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2, n], to contain a product Schur triple is
(nlog(n))~1/3.

Thm. (Mattos, MC, Parczyk, 2025)

Po(n) = n=1/2+o(1) is the threshold for the a-randomly perturbed
product Schur property (for a in a wide range).
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Thm. (Mattos, MC, Parczyk, 2025)

Let ¢ > 0 and k € NT. For n large enough,
n—nt/5® < ge(k,n) <n— (1 —e)nt/5®):

Proof. Upper bound first.

- Fora, let P(a) :={a':i=1,...,5(k)}.

- P(a) cannot be partitioned into k product-free sets.

- Fix A" = [Jenl/S(k) nl/S(k)],

- For a,b € A’ distinct, P(a) N P(b) = 0 and P(a), P(b) C [n].
Any subset of [n] that can be partitioned into k product-free sets
must avoid an element of P(a) for each a in A’.
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Thm. (Mattos, MC, Parczyk, 2025)

Let ¢ > 0 and k € NT. For n large enough,
n—nt/5® < ge(k,n) <n— (1 —e)nt/5®):

Proof. Lower bound next.

- Let x : [S"(k) — 1] — [k] without monochromatic a +b = ¢ or
a+b=c—1

- Colour a € (n/5"®) n] with colour x([S'(k) - log,, (a)] — 1).

- If ab = ¢, then let o’ = [S'(k) - log,,(a)] — 1,
b =15(k) log,(b)] — 1, and ¢ = [S'(k) - log, (c)] — 1 and note
that log,, (a) + log,,(b) = log,,(¢c) implies ¢’ + ¥ = ¢’ or
a+b=d-1.
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Let € > 0. For n large enough, any 2-colouring of [2,n] contains
n'/3=¢ monochromatic products.

Proof.

Lemma. If A C [2,n] has size n — /i, it contains n/8 products.
Let R be the red elements of [n'/?], B the blue ones. By Lemma,
wlog we have |R| > |B| > n'/¢/2.

Let P :={ab:a,b € R} and Pp := {ab:a,b € B}.

Note |Pg|, |Pg| > n'/37%. Also, Pr contains n'/3~¢ blue
elements and Pg contains n!/3=¢ red elements.

To each {7’1,7'2,[)17172} with 71,79 € R, b1,by € B, r1ry blue and
b1bs red we can associate a monochromatic product.
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Thm. (Mattos, MC, Parczyk, 2025)

Let € > 0. For n large enough, any 2-colouring of [2,n] contains
n'/3=¢ monochromatic products.

Proof.
- Lemma. If A C [2,n] has size n — 4/, it contains n/8 products.
- Let R be the red elements of [n!/3], B the blue ones. By Lemma,
wlog we have |R| > |B| > n'/¢/2.
- Let Pg:={ab:a,b € R} and Pg := {ab:a,b € B}.
- Note | Pr|,|Pg| > n'/3=¢. Also, Pg contains n'/?~¢ blue
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- Take care of double-counting.




Deterministic Product Schur 11

Thm. (Aragdo, Chapman, Ortega, Souza, 2024+ )

Any 2-colouring of [2,n] contains (ﬁ —o(1))n'/?log(n)
monochromatic products.

Proof.
- Lemma. If A C [2,n] has size n — 4/, it contains n/8 products.
- Let R be the red elements of [n!/3], B the blue ones. By Lemma,
wlog we have |R| > |B| > n'/¢/2.
- Let Pg:={ab:a,b € R} and Pg := {ab:a,b € B}.
- Note | Pr|,|Pg| > n'/3=¢. Also, Pg contains n'/?~¢ blue
elements and Pg contains n!/3=¢ red elements.

- To each {7’1,7'2,[)17172} with 71,79 € R, b1,by € B, r1ry blue and
b1bs red we can associate a monochromatic product.

- Take care of double-counting.




Random Product Schur

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2,n], to contain a product Schur triple is
(nlog(n))~1/3.




Random Product Schur

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2,n], to contain a product Schur triple is
(nlog(n))~1/3.

Proof. Lower bound first.




Random Product Schur

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2,n], to contain a product Schur triple is
(nlog(n))~1/3.

Proof. Lower bound first.

- The number of products is
/n n
> —+0(n) = (1+ o(1))nlog(n).

a=2




Random Product Schur

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2,n], to contain a product Schur triple is
(nlog(n))~1/3.

Proof. Lower bound first.

- The number of products is
/n n
> —+0(n) = (1+ o(1))nlog(n).

a=2

- The expected number of products in [2,n], is:

p*(1+ o(1))nlog(n) + p*v/n.




Random Product Schur

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2,n], to contain a product Schur triple is
(nlog(n))~1/3.

Proof. Lower bound first.

- The number of products is
/n n
> —+0(n) = (1+ o(1))nlog(n).

a=2

- The expected number of products in [2,n], is:

p*(1+o(1))nlog(n) +p*v/n.
- For p < (nlog(n))~1/3, there are no products.
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Random Product Schur

Thm. (Mattos, MC, Parczyk, 2025)

The threshold for [2,n], to contain a product Schur triple is
(nlog(n))~1/3.

Proof. Upper bound next (very sketched).
- Take p = (nlog(n))~*/3w(n), and let ¢ be such that
(1-q?=1-p)
- Let A,B:=[2,n],, and C = AU B. Note C' ~ [2,n],.
- This reduces to show |42 N [2,n]| > 1/q w.h.p.

- A useful tool is that no ¢ can be written as the product of
elements of A in more than 2 ways w.h.p.
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Open questions.
- Is there an ¢ such that S’(k) < (1 —)S(k) for large k?
- What is the k-colouring of n with the fewest monochromatic

products?
- What is the threshold for any k-colouring of [2,n], to contain a
monochromatic product?




Product Schur Triples in the Integers

L. Mattos, D. M. C., O. Parczyk 6 0of 6




