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Abstract

Given a graph G, a subset S of its vertex set is called a separator
if G \ S does not have connected components of size bigger than 2n/3.
Separators are an object of great interest both from a theoretical and an
algorithmic point of view. In this paper we analyze separators for selected
families of graphs, inspired by the geometric model of intersection graphs
of ground configurations. Along the way we give relevant examples, study
the possible extensions of the various results and present some of the main
tools for dealing with separators.
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1 Introduction

A separator of a graph G is a subset S of its vertex set such that no connected
component of G \ S has size bigger than 2 |G| /3. Separators have been studied
extensively both from a practical and a theoretical point of view [12], [2], [8].

Indeed, a useful method in solving algorithmically many kinds of graph-
related problems is the so-called “divide and conquer” [1]. In this method, the
problem of interest is divided into two or more smaller problems, which are then
solved recursively; when the recursion stops, the smaller solutions are combined
to solve the original problem. For this method to be efficient, each subproblem
must be significantly smaller than the original one. One way to guarantee that
this happens is to make all subproblems roughly the same size, and hence the
importance of separators.

1.1 Separators in literature

One of the first results about separators is due to Lipton and Tarjan, who proved
in 1977 [12] that any planar graph on n vertices has a separator of size

√
8n. In

their article, geometric properties of planar graphs are used to explicitly con-
struct such separator; for example, Jordan’s curve theorem is used to separate
the planar graph along cycles. Because geometry is used in important points of
the proof of Lipton and Tarjan, it is surprising that Alon, Seymour and Thomas
[2] were able to prove using only combinatorial means that a much more general
theorem holds.

Theorem 1.1 (Alon, Seymour and Thomas, [2]). Let H be a simple graph on
h vertices, and let G be a graph on n vertices with no H-minor. Then there
exists a separator of G of size at most h3/2n1/2.

This theorem is indeed an extended version of Lipton and Tarjan theorem,
because of Kuratowski’s theorem; moreover, it also answers the separator prob-
lem for graphs embedded in other surfaces because of the characterization of
such graphs due to Robertson and Seymour [15]. But the link established by
Lipton and Tarjan between graph separators and geometry survives, as it is
shown by many recent articles among which two by Pach and Fox [8], [9]; this is
because many classes of graphs which have small separators arise from geomet-
ric problems or have strong geometric properties as in the theorem by Lipton
and Tarjan. One class of special interest is the one of intersection graphs; given
a family of geometrical objects C, it is natural to define its intersection graph as
the graph with vertex set C and with edges that connects intersecting objects;
it is often the case that graphs defined in this way have separators which are,
in some sense that we are going to define, small.

1.2 Ground configuration and graph avoidance

As we said, intersection graphs are an interesting family of graphs when studying
separators, and surely among them string graphs, which are intersection graphs
of a set of curves in the plane, hold a special position (by curve in a plane we
mean the image of a continuous, injective map c : [0, 1] → R2; we say that c
starts at c(0)). Our topic of interest is better explained by an example.
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Example 1.2 (Ground configuration). In the semiplane R × R+, consider a set
of curves C = {`1, . . . , `n} such that `i has the point of coordinates (i, 0) as a
starting point. Let GC be the intersection graph of C; as in the following figure.

1 2 3 4 5

1 2 3 4 5

GC

Even if the complete graph on n vertices Kn is a particular case of intersec-
tion graph of ground configuration and it does not have small separators, if we
consider the number of edges we are still able to prove that graphs defined in
this way have separators which are in some sense small. It would be interesting
to justify combinatorially the presence of small separators in this kind of graphs,
and we are going to do that to some extent.

We give precise definitions in the next sections, but one remark that can help
us understand how we may proceed is the following. Consider the intersection
graph GC of a ground configuration and suppose (1, 3), (2, 4) ∈ GC , as it is in
the previous figure. Then by Jordan’s curve theorem, (`2 ∪ `4) ∩ (`1 ∪ `3) 6= ∅,
and therefore there is at least another edge between the considered four vertices.
Equivalently, the intersection graph of a ground configuration avoids as an
induced subgraph if we consider the ordering of the vertices.

Our main focus in this paper will be studying separators of graphs avoiding
specific subgraphs.

1.3 Some extremal result from literature

The following theorem by Lipton, Rose and Tarjan [11], that we are going to
prove following the steps of Fox and Pach [8], tells us more about the correlation
between graph separators and extremal functions.

Theorem 1.3 (Lipton, Rose, Tarjan [11]). Let G be a family of graphs closed
under taking induced subgraphs and let ε > 0. Suppose every G in G has a

separator of size O
(

|G|
(log(|G|))(1+ε)

)
. Then there exists a constant M such that

every graph in G on n vertices has at most Mn edges.

Therefore, given a family of graphs G closed under taking subgraphs, if we
already know that there are elements in G with more than linearly many edges,
then Theorem 1.3 allows us to conclude that not all the members of G have small
separators. This can be useful sometimes to direct our attention, but we have
to be careful not to believe that the converse is also true. Indeed, in general,
it is not true that families graphs with linearly many edges have separators of
sublinear size, as Erdös, Graham and Szemerédi proved.

Theorem 1.4 (Erdös, Graham and Szemerédi [5]). For every ε > 0 there exists
c = c(ε) such that almost all graphs G with (2+ε)k vertices and ck edges have the
property that after the omission of any k of its vertices, a connected component
of at least k vertices remains.
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1.4 The ordered case and our results

Before continuing, and to avoid any possible confusion, we now introduce some
terminology.

Definition 1.5. An ordered graph is a simple graph G = (V,E) with a total
order defined on its vertex set; because of the uniqueness of finite total orders,
we assume V = [n]. Given H,H ′ ordered graphs on the same number of vertices,
we say that H is isomorphic to H ′ if the monotone bijection between V (H) and
V (H ′) is a graph isomorphism. Given H,G two ordered graphs, we call H a
subgraph of G if there exists a monotone injective function f : V (H) → V (G)
such that (x, y) ∈ E(H) implies (f(x), f(y)) ∈ E(G); in the particular case in
which f is an isomorphism of ordered graphs between H and G[f(V (H))] we
say that H is an induced subgraph of G.

We are also going to use often the following notation.

Notation. For an ordered graph H, we denote with A<,IH the family of graphs
which avoid H as an induced, ordered, subgraph; similar symbols such as A<H ,
AIH and AH are also used, respectively for the family of ordered graphs without
H as a subgraph and for the families of unordered graphs which avoids H as an
induced subgraph or simply as a subgraph.

With this notation, we can easily reformulate the remark we did about the
ground configuration example; we were simply pointing out that if G is the
intersection graph of a ground configuration, then G ∈ A<,I .

One natural question in this setting is whether this kind of separator result
also holds for A<,IH or A<H for general ordered graphs H. The next theorem,
which is a variation of a result by Erdös, Stone and Simonovits [7], [6], answers
in the negative.

Before introducing the result, we define the interval chromatic number of
an ordered graph H as the minimum number of intervals χ<(H) in which the
vertex set of H can be divided in such a way that no edge has its two vertices
in the same interval. If χ<(H) = 2 we say that H is bipartite.

Theorem 1.6 (Pach and Tardos, [14]). Let H be an ordered graph and r+ 1 =
χ<(H) its interval chromatic number. We have:

ex<(n,H) =

(
1− 1

r

)
n2

2
+ o(n2).

This theorem, combined with Theorem 1.3, implies that there is no chance
of finding separators of sublinear size for the family A<H , unless H bipartite; in

which case, Theorem 1.6 only tells us that ex<(n,H) is o(|G|2). Under further
assumptions, we can say more about ex<(n,H).

Theorem 1.7 (Corollary of a result by Marcus and Tardos [13]). Let M be an
ordered bipartite matching (an ordered matching that is bipartite as an ordered
graph). Then

ex<(n,M) = O(n).

Strong of these premises, we are going to prove the existence of separators
in some particular cases. The result is as follows.
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Theorem 1.8. a) Each G ∈ A< has a separator of size 2.

b) Each G ∈ A< on n vertices has a separator of size at most 4
√
n.

Theorem 1.8 does not prove our original claim that ground configuration
graphs have small separators. In order to do so, we have to modify our statement
(and most importantly, its proof) to hold for the class A<,I . More generally,
it would be interesting to understand when it is possible to extend separator
results in A<H to theorems about separators of A<,IH . As we mentioned before, a
different notion of small separator is needed when dealing with the induced case,
because the complete graph Kn only has complete graphs as induced subgraphs.
Therefore, any separator result for families in the form A<,IH has also to depend
on some other parameter.

Anyway, as we are going to see, the method used to find separators for A<
can also be used to study separators of A<,I with some success.

Theorem 1.9. Let G ∈ A<,I with n vertices and m edges. There exists a
separator for G of size O(

√
m).

Because the method used for A< seems quite versatile, a natural question
is whether we can solve similar problems both in the induced and not induced
case. We denote with Rk the “rainbow” with k edges, i.e. the ordered bipartite
graph over [2k] in which i ∼ n+1− i. By Theorem 1.7 we know that, for any k,
graphs in A<Rk

have at most linearly many edges; still, for big k we can expect

graphs in A<Rk
without small separators, as the following result shows.

Theorem 1.10. There exist graphs in A<Rk+1
on N vertices with no separator

of size N1−1/k.

Indeed, let Qk(n) be the k-dimensional grid of size n (over the vertex set
[n]×. . .×[n], with nk vertices). As we are going to show, there exists an ordering
of the vertices of Qk(n) such that the resulting graph Gk(n) is in A<Rk+1

. By a

result of Bollobás and Leader [4], the size of the smallest separator of Qk(n) is
Θ(nk−1).

One last example of how it is not always possible to generalize a result from
AH to AIH is the following.

Theorem 1.11. There exists G ∈ AI with n3/2 edges and without separators
of sublinear size.

Paper organization. The rest of the paper is organized as follows. In the
next section, we present separator result for some examples of general interest
such as trees. In section 3 we present some extremal result for certain families
of ordered graphs. In section 4 we start the construction of separators for the
families of graphs in which we are interested, in the unordered case. In section
5 we introduce the induced case and we present some modifications to the cases
analyzed in the Section 4. In the last section, we present some open problems
and some concluding remarks.

2 Some first result about separators

In this section, our goal is to familiarize with the concept of separator by showing
some meaningful examples. But before we start, a clarification is needed; indeed,
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in the literature, often a different definition of separator is given. We want to
settle any confusion with the following remark.

Remark 2.1. Let G = (V,E) be a graph on n vertices, S ⊆ V . The two following
conditions are equivalent.

- All connected components of V \ S have size at most 2n/3.

- V \ S = A t B where |A| , |B| ≤ 2n/3 and there are no edges between A
and B.

Often the second condition is used as definition of separator.

A class of graphs which behaves extremely well with respect to separators is
the class of trees. This should not surprise: in a tree, every vertex is a vertex
cut, and hence small separators should be expected.

Proposition 2.2. Let T be a forest. Then T has a separator of size at most 1.

Proof. Without loss of generality, we can assume T is a tree because if this is
not the case at most one connected component of T can have size bigger than
2 |T | /3; separating this connected component would separate the whole forest.

For x ∈ V (T ) let us denote with Cx the biggest connected component of
T \ x. Let x0 be such that for any y ∈ N(x0) we have |Cy| ≥ |Cx0

|. Assume by
contradiction |Cx0 | > 2 |T | /3 and let y be the only neighbour of x0 in Cx0 .

x y

Cx

There are two possible cases:

a) Cy ⊂ Cx0
, but in this case |Cy| < |Cx0

|, which is a contradiction.

b) Cy ⊂ {x0} ∪ (V (T ) \ Cx0). In this case, |Cy| ≤ |T | /3 which is again a
contradiction.

This is a first, easy example of a subgraph-avoiding family which has small
separators. Indeed forests are graphs avoiding cycles, and we proved here that
they have separators of just one vertex. There is another example in which a
similar result holds.

Proposition 2.3. Let G ∈ A . Then G has a separator of size at most 2.

Proof. The maximal degree of G is at most 2 and hence G is vertex-disjoint
union of paths and cycles. If every connected component of G has size smaller
than 2 |G| /3, then the empty set is a separator. If this is not the case, let C be
the connected component with size bigger than 2 |G| /3. C is either a cycle or
a path; in both cases, it has a separator of size at most 2.
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Even if these results may let us think that graph avoidance is a property
which allows us to have small separators quite often, this is not the case. Indeed,
there are also many results in the other direction. Among all, we present two
for their relevance.

But before proving the next result, we need a Lemma of an unknown author
that we found on [16].

Lemma 2.4. Let G be an α-expander on n vertices, and let S be a separator
in G; then |S| ≥ αn

3(1+α) . In particular, expander graphs do not have separators

of sublinear size.

Proof. Let S be a separator of size s separating A of size a and B of size b; we
may assume a ≤ b ≤ 2n/3 and hence a + s ≥ n/3. Because N(A) \ A ⊆ S, we
must have s − αa ≥ 0 by definition of α-expander. Dividing by α and adding
a+ s ≥ n/3 we obtain our result.

Proposition 2.5. Not every graph in A have separators of sublinear size.

Proof. Following one of the exercises of a book by Alon and Spencer [3], we are
going to prove that there exists c′ > 0 and G ∈ A such that G is a c′ expander.
Let π1, π2, π3 be three random permutations between two disjoint sets A and
B, both of size n; consider the random bipartite graph with vertiex set A t B
and with edge set {(a, πi(a)) : a ∈ A, i ∈ 1, 2, 3}. We want to prove that G is
a c′-expander for some c′ > 0 with positive probability; to do so, it suffices to
show that, with positive probability, for some c > 0, any L ⊂ A of size at most
n/2 has |N(L)| ≥ c |L| (this is because for any set S ⊂ V of size ≤ n we can
assume S ∩ A ≥ S ∩ B, and in the case S ∩ A ≥ n/2 we have anyway that
N(S) \ S ≥ cn/2).

Therefore, fix L ⊆ A, |L| ≤ n/2. To simplify the notation we use: ` =
|L| , k = (1 + c)`, m = c`. Then:

P [N(L) ≤ k] ≤
(
m
k

)
k!
m!

3

n!3
=

n!k!3

k!(n− k)!m!3n!2
=

k!2

(n− k)!m!3n!2
.

Because we have to consider the event for any L of size less or equal than n/2,
we have to bound:

P [∃L : N(L) ≤ k] =

n/2∑
`=1

(
n

`

)
k!2

(n− k)!m!3n!2
≤

n/2∑
`=1

k!2

`!(n− `)!(n− k)!m!3n!

≤ n

2
max
`≤n

2

((1 + c)`)!2

`!(n− `)!(n− (1 + c)`)!(c`)!3n!
.

Which is strictly smaller than 1 for some c > 0 small enough. Therefore with
positive probability our graph is expander. By construction it also is in A .

The following example shows how similar families can have different sep-
arator results. We do not prove this result, which can be proved using the
probabilistic method and Theorem 1.3.

Proposition 2.6. There exist graphs without k-cycles as induced subgraphs and
without small separators.

At this point it should be clear that, given a graph H, it is not trivial to
decide whether AH has small separators or not.
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3 Extremal Theory and Separators

We said that the study of the separators of a family of graphs is strongly related
to the study of its extremal properties. In this section, we present some results
of extremal theory that are relevant for us.

For any graph H, the family AH is closed under taking subgraphs. This is
also true if H is ordered and we consider A<H . Hence Theorem 1.3 is of great
interest in our case, as we already saw for example in Proposition 2.6.

Proof of Theorem 1.3. Let G = (V,E) be in G with n vertices and average
degree d, and denote φ(n) = 1

log(n)1+ε . Let n0 such that φ(n0) ≤ 1
12 and assume

n > n0 (we can do it because we are only interested in the behaviour for large
n, as we can set the constant M as we like). Because we assume that any graph
in G on n vertices has a separator of size φ(n)n and because of remark 2.1, we
can write V = S ∪ A ∪ B with |S| ≤ nφ(n), |A| , |B| ≤ 2n/3 and no vertices
between A and B. Let d′ and d′′ be the average degrees respectively of G[S∪A]
and G[S ∪ B]. Because in G there are no edges between A and B, every edge
of G is contained in one of these graphs. Therefore:

d′(|S|+ |A|) + d′′(|S|+ |B|) ≥ 2 |E| = d |V |

so that

d′
|S|+ |A|
|V |+ |S|

+ d′′
|S|+ |B|
|V |+ |S|

≥ d |V |
|V |+ |S|

.

Since |V | = |S| + |A| + |B|, then |S|+|A|
|V |+|S| + |S|+|B|

|V |+|S| = 1 and the left hand side

of the inequality is a weighted mean of d′ and d′′. Consequently d′ or d′′, and
without loss of generality we assume d′, is at least

d
|V |

|V |+ |S|
≥ d 1

1 + φ(n)
.

Let G1 = G[S ∪ A]. By assumption, φ(n) < 1/12 and |S| ≤ nφ(n). Therefore
G1 has at most φ(n)n+ 2n/3 ≤ 3n/4 vertices.

We can use recursion to find a sequence of induced subgraphs G = G0 ⊃
G1 ⊃ . . . with the property that if Gi has ni vertices and average degree di then
Gi+1 has at most 3ni/4 vertices and average degree at least di/(1 + φ(ni)). We
stop with Gj if the number of vertices of Gj is less or equal than n0. Then, the
average degree of Gj is at least d/K, where K is any finite number such that:

∞∏
i=0

(1 + φ(d(4/3)in0e)) ≤ K

Suppose by sake of contradiction that d ≥ Kn0, then we have dj ≥ d/k ≥
n0 ≥ |Gj |, which is absurd because of graph theoretical reasons. Hence we have
d < Kn0, and therefore the number of edges of G is at most Kn0

2 n.

Therefore, families of graphs with small separators have linearly many edges.
It suffices Proposition 2.5 to convince us that it is not a sufficient condition, but
we are going to see another proof.
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Proof of Theorem 1.4. Consider a random graph G over the vertex set V of size
n = (2 + ε)k and with ck edges, where c = c(ε) is independent from G and to
be determined. There are

(
n
k

)
ways in which we can choose S ⊆ V of size k; we

want to prove that almost surely, for any of these choices, V \S has a connected
component of size at least k. Choose A,B one of the 2n−k possible partitions
of V \ S. It suffices to show that if |A| , |B| ≥ εk, there is an edge between A
and B. Indeed, if this holds, at most εk vertices can be disconnected from the
rest.

Because |A| , |B| ≥ εk, the probability that there are no edges between A

and B is less than
(
1− c

n

)εk2
. We want that this event does not occur for any

of the possible choices of S,A and B. Therefore, if we choose c such that(
n

k

)
2n−k

(
1− c

n

)εk2
≤ 23(n−k)

(
1− c

n

)εk2 k→∞−−−−→ 0

then we obtain that almost surely G does not have separators of sublinear size.
Setting c large enough (c > 20(ε+ ε−1) should suffice), we obtain:(

1− c

n

)εk2 k→∞−−−−→ e−(εc/(2+ε))k < e−3(1+ε)k.

4 Construction of separators

In this section, we present a first result towards our goal of finding separators
for the intersection graph of a ground configuration. In particular, we focus on
the study of separators for the classes A< and A< .

Before continuing with the proof of the first theorem, some notation is nec-
essary.

Notation. First, recall that we consider ordered graphs to be over the vertex
set [n]. Moreover, given two edges e = (i1, i2), f = (j1, j2) in an ordered graph,
we say that e is contained in f if j1 ≤ i1 < i2 ≤ j2, in this case we write e ≺ f ;
the relation ≺ defines a partial order on the edge set. With length of an edge
e = (i, j) we mean |e| = |i− j|. Moreover, we say that e = (i, j) with i < j
is a left edge for j and a right edge for i. Finally, we denote by [i, j] the set
{i, i+ 1, . . . , j}.

Proof of Theorem 1.8. a) Let G ∈ A< on n vertices; because of the equiva-
lence in Remark 2.1, we may assume G connected. Moreover, we can also
assume that G is maximal in A< with respect to graph containment, i.e.
that adding any edge to G would add a copy of .

Consider now an edge (i, j) ∈ E(G) and the graph G′ = G\{i, j}. Because
G avoids as a subgraph, we have that there are no edges in G′ between
[1, i− 1] t [j + 1, n] and [i+ 1, j − 1]. Therefore to conclude it suffices to
find an edge of length between n/3 and 2n/3.

Suppose there are no such edges, i.e. that the edge set can be partitioned
in the set A of those that have length strictly more than 2n/3 (A =
{e ∈ E(G) : |e| > 2n/3}) and the set B = {e ∈ E(G) : |e| < n/3} of those
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that have length strictly less than n/3. Because by maximality of G both
(1, n) and (i, i + 1) are edges in G, this partition is non trivial. Let f =
(x, y) be any edge of minimal length in A and let e1 = (u11, u

2
1), . . . , em =

(u1m, u
2
m) be ≺-maximal edges in B contained in f (contained in [x, y]

but not contained in any other edge of B). Because G avoids , we
can assume u11 < u21 ≤ u12 < u22 ≤ . . . . Because G1 is maximal we have
u11 < u21 = u12 < u22 = . . . , moreover we have m ≥ 3 (because every edge in
B is shorter than n/2 and |f | > 2n/3). But this contradicts maximality
of G1, because (u11, u

2
2) is not an edge of G1, and adding it does not add

any copy of .

f

e1 e2
e3

b) Let G ∈ A< on n vertices; as in point a), we can assume G is connected
and maximal. Moreover, we can notice that if e = (x, y) is any edge of
G, then there are no edges between [1, x] and [y, n]. Therefore, we may
assume that every edge e = (x, y) with a vertex in [n/3, 2n/3] is of length
strictly bigger than

√
n. Because otherwise S = [x, y] would be a separator

of size O(
√
n). We are going to need the following claims.

Claim. 1. Because G is maximal and connected, each vertex (with the
possible exception of 1 and n) has degree at least 2. In particular,
each vertex has both a left and a right edge. To show that v has a left
edge consider the set Dv = {i ∈ V (G) : i < v, ∃j > v s.t. (i, j) ∈ E}.
Then because G is connected, Dv is non empty and because G is
maximal, (v,minDv) is an edge.

2. If (i, j1), (i, j2) ∈ E(G2) with i < j1 < j2, then by maximality of G
we have that for any j ∈ [j1, j2], (i, j) ∈ E(G). The symmetric case
with j2 < j1 < i also holds.

3. By maximality of G and by point 2. of this claim, we can say that if
x0 < y0 < x1 < y1 < x2 (assume them sufficiently distant) are such
that (x0, x1), (x1, x2), (y0, y1) are all edges in G, then at least one of
(y0 − 1, y1) and (y0, y1 − 1) is an edge in G. Also, at least one of
(y0 + 1, y1) and (y0, y1 + 1) is an edge in G.

The proof proceeds as follows. Firstly, we find a relatively small set of
vertices S such that G \S has at least two distinct connected components
A and B; then we modify S to obtain S′ such that A and B have roughly
the same size. We are able to find easily such a construction only in the
case in which every edge is sufficiently large. For this reason, we restrict
our attention to [z1, z2] for some carefully chosen z1, z2 which allows us to
extend our result to the whole graph as follows.

Let [z1, z2] be the maximal set containing [n/3, 2n/3] such that no edge
with one vertex in [z1, z2] has length smaller than

√
n. For how we defined

[z1, z2] it should be clear that if S0 = ([z1 −
√
n, z1] ∪ [z2, z2 +

√
n]) ∩

[1, n], then in G \ S0 the central component [z1, z2] and the two lateral

10



components are not connected. Indeed, there are edges strictly contained
both in [z1−

√
n, z1] and in [z2, z2+

√
n], and G has no as subgraphs.

We are now ready to divide the central part [z1, z2].

Let x0 = z1, and let x1 be the smallest vertex such that (x0, x1) is an
edge and, inductively, xi the smallest vertex such that (xi−1, xi) is an
edge. Let xm be the last of those vertices in [z1, z2] and Sx0

be the set
{x0, . . . , xm}. We have m ≤

√
n, because each edge is of length bigger

than
√
n. Now consider [z1, z2] \ Sx0

; take y0 ∈ [x0, x1] and define in the
same way y1, . . . , ym (we do all this in [z1, z2] \ Sx0 , it is possible we have
to stop at ym−1, but it does not change much), note that yi ∈ [xi−1, xi]
because G ∈ A< . Let Sy0 be {y0, . . . , ym} and S1 = Sx0

∪ Sy0 . The
situation is roughly as follows.

x0 y0 n
3

2n
3

z2

We are now ready to partition [z1, z2] \ S1. Let A = [x0, y0] ∪ [x1, y1] ∪
. . . ∪ [xm, ym], B = [y0, x1] ∪ [y1, x2] ∪ . . . ∪ [ym, z2]. It should be clear
that S1 separates A and B in [z1, z2].

We now have to modify S1 to have A and B roughly of the same size.
Suppose that we want to decrease the size of B (the procedure for A is
similar). If (y0 + 1, y1) is an edge in G we are done because we can take
y0 + 1 instead of y0, if this is not the case, then by claim 3. we have
(y0, y1 + 1) is an edge in G. Again, if (y1 + 1, y2) is an edge we are done,
else (y1, y2 +1) is an edge in G. We can iterate the reasoning until we find
two edges in the form (yi, yi+1 + 1), (yi+1 + 1, yi+2) or we substitute ym
with ym + 1.

Let S = S0 ∪ S1 be our separating set, then its size is smaller than 4
√
n.

5 Variations to the previous methods

5.1 The induced case

Finally, we can return to our original problem and study separators for the
ground configuration. As we mentioned before, a quick reality check tells us we
cannot expect to have a sublinear function f(n) for which any element of A<,IH

has a separator of size f(n), and this is because the complete graph on n vertices
Kn is in every interesting family of this kind, and it does not have separators
of sublinear size. More realistically, in this section we prove the existence a
separators of size f(n,m) for every graph in A<,IH with n vertices and m edges,
where f(n,m) is a function sublinear in n and smaller than

√
m.

Proof of Theorem 1.9. As before, we can assume our graphs connected, but not
maximal.

BecauseG hasm edges, at most
√
m vertices in V (G) have degree bigger than√

m. Therefore S0 = {v ∈ V (G) : d(v) >
√
m} has size at most

√
m; consider
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G′ = G \ S0, take x1 near n/3 in G′ and let e1 = (w1, w2) be the longest
edge which contains it. Let S1 = N(w1) ∪ N(w2). The interesting idea here
is to notice that in G′ \ S1 there are no in which one of the edges is e1.
We can repeat the same construction with G′ \ S1 for x2 near 2n/3, e2 =
(w3, w4) the maximal edge which contains it, and S2 = N(w3)∪N(w4). Notice
that S = S0 ∪ S1 ∪ S2 ∪ {w1, w2, w3, w4} has size at most 4

√
m. Let G′′ be

G \ S; in G′′ there are no edges between the remaining vertices of the intervals
[1, w1], [w1, w2], [w2, w3], [w3, w4] and [w4, n] (we can suppose w1 < . . . < w4).
Therefore G′′ has at least five connected components, all of size smaller than
n/3.

5.2 Two counterexample

In this last part we show two families that do not have small separators.

Proof of Theorem 1.10. Let Qk(n) be the grid of dimension k on N = nk ver-
tices. By a famous result by Bollobás and Leader [4], the smallest separator
of Qk(n) has size Θ(nk−1) = Θ(N1−1/k). Therefore, it suffices to show that
there exists an ordering ≺ on the vertex set of Qk(n) for which Qk(n) avoids
Rk+1. We consider ≺ the alphabetic order; in particular, given two distinct
u, v ∈ Qk(n) with u = (u1, . . . , uk) and v = (v1, . . . , vk), we have that u ≺ v if
the nonzero entry with the smallest index in v − u is positive. What we have
to show is that if u1 ≺ . . . ≺ us ≺ vs ≺ . . . ≺ v1 and ui ∼ vi in Qk(n) for
any i ∈ [s], then s ≤ k. Let ui = (ui1, . . . , u

i
k) and similarly for vi, we de-

fine `i = min
{
j : uij 6= vij

}
, in particular, because ui ≺ vi we have ui`i < vi`i ;

moreover, because ui ∼ vi we have that

vij =

{
uij if j 6= `i
uij + 1 if j = `i

.

Therefore, if we write ‖ui‖ =
∑k
j=1 u

i
j and similarly for vi, we have ‖ui‖ =

‖vi‖− 1, and therefore every ‖ui‖ = ‖uh‖ and similarly for the vi. We conclude
by proving that i 6= j =⇒ `i 6= `j . Suppose by sake of contradiction that
`i = `j = ` for i < j; then consider that we are in one of the following cases:

a) The first non zero entry of uj −ui has index strictly smaller than `. Then
because ≺ is the alphabetic order we would have ui < vi < uj < vj , which
is a contradiction.

b) The first non zero entry of uj − ui has index `. Then we would have
ui` < uj` < vj` ≤ v`i and therefore it cannot be the case ui` = vi` − 1.

c) The first non zero entry of uj−ui has index h strictly bigger than `. Then
the ordering of the considered vectors would be ui ≺ uj ≺ vi ≺ vj because
vi and vj would be equal on the first h− 1 indices, and vih < vmh because

uih = vih and ujh = vjh.

Therefore for every case we can find a contradiction.

Now we are ready to prove our last result.
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Proof of Theorem 1.11. For any positive integer k, let Dk = (V,E) be the graph
with vertex set [k] × [k] and with (i, j) ∼ (h,m) if and only if i = h or m = j.
Because each vertex has degree 2(k − 1) and there are k2 vertices, we obtain

that |E| < |V |3/2. Moreover, suppose by contradiction that Dk contains an
copy of as an induced subgraph. Let v, w1, w2, w3 be the that span with
v ∼ wi the only edges; then without loss of generality, we can say that v, w1

and w2 are on the same column; this would imply w1 ∼ w2 which contradicts
our assumption.

By Lemma 2.4, it suffices to show that Dk is an α-expander for some α > 0.
For any A ⊆ V , we denote ∂A = N(A) \ A. Fix A ⊆ V a subset of the
vertex set of size at most k2/2 with elements from C columns and R rows. Let
Bm = {(i, j) : i ≤ m, j ≤ m} and a = d

√
|A|e. Firstly, we are going to show

that |∂A| / |A| ≥ |∂Ba| / |Ba|; indeed it holds

|∂A|
|A|

=
(k −R)k + (k − C)k +RC − |A|

|A|
(1)

which is minimized when R and C have the same size, under the constraint that
|A| is constant. Therefore, our α is:

α ≥ min
x∈[0,1/

√
2]

(1− x) + (1− x))

x2
> 0

6 Concluding remarks

The problem of estimating the size of separators has received a lot of attention,
first for planar graphs [12], then for graphs avoiding minors [2] and in general
for a lot of particular cases (regular graphs, graphs with bounded genus etc)
[10], [8], [9]. There are still instances of this problem which remain unsolved,
and some collateral problems of interest.

Problem 1. Let M be a bipartite ordered matching. Does it exist ε > 0 such
that any G in A<M has a separator of size O(|G|1−ε)?

This problem is very general and it is near to the best we can hope to get
for ordered graphs. Indeed, we already proved that if a family in the form A<H
has separators of sublinear size, then H is bipartite, and it is also known that
H has to be a tree if we want sublinear separators. Moreover, the maximum
degree of H has to be at most three, because of the existence of graphs in A
without small separators.

In particular, it might be interesting to focus firstly on some selected cases.

Problem 2. Can we find separators of sublinear size for A< ? And what

about A< ? Can we generalize these construction to Rk or Ik (the version of
on 2k vertices)?

These problems seem more feasible. As we saw, k − 1-dimensional grids,
with the right ordering, are an example of graphs in A<Rk

without separators of

size smaller than O(n1−1/k) where n is the number of vertices. Because with
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k = 2 we proved that O(n1−1/k) vertices were sufficient, it might be the case
that this holds also for general k.

One last question is the following. What conditions do we need to impose to
the graphs in AI to be able to find separators of sublinear size? In particular,
is it true that any G in AI on n vertices and with o(n3/2) edges has a separator
of sublinear size?
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