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Course Information

• Lectures: Tue 14 – 16:00 pm, PAR 1.02 (zoom: 985 785 4435)

• Seminars: Wed 13 – 14:30 pm, CBG 1.05 (zoom: 985 785 4435; lead by CS)
Fri 15 – 16:30 pm, CLM 5.02 (lead by Domenico)

You may join lecture and seminar via zoom as well
• Office Hours:

• Chengchun Shi (c.shi7@lse.ac.uk): Tue & Wed 10-11:00 am, COL 8.08 or ZOOM
• Domenico Mergoni (d.mergoni@lse.ac.uk): Fri 10:30-11:30 am
• Please use LSE Student Hub to book slots

• Assessment:
• Two summative assignments at Weeks 4 & 7 (10% each)
• A final project (group project) to apply/develop RL algorithms (80%)

• We use GitHub. Please register and fill in the form

• More on Moodle (link)
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https://docs.google.com/forms/d/e/1FAIpQLScarpsO2To-BzF68aVv_gqh8u6QrxFX7clgspUfrqS7ISMz3w/viewform
https://moodle.lse.ac.uk/course/view.php?id=7855


Textbooks

• Reinforcement Learning: An Introduction
(Second Edition) by Sutton and Barto (2018)
• Hardcover £50 on Amazon
• Ebook free online (link)
• 50K citations so far

• Markov decision processes: discrete
stochastic dynamic programming by
Puterman (2014)
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http://www.incompleteideas.net/book/RLbook2020.pdf


Useful Resources

• Deepmind & UCL reinforcement
learning (RL) course by David Silver
• Course webpage link
• Videos available on Youtube
• Slides available on webpage

• UC Berkeley PhD-level deep RL course
by Sergey Levine
• Course webpage link
• Some more resources link

• Working draft on “Reinforcement
Learning: Theory and Algorithms”
by Alekh, Nan, Sham and Wen link
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https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://rail.eecs.berkeley.edu/deeprlcourse
https://rail.eecs.berkeley.edu/deeprlcourse/resources
https://rltheorybook.github.io/rltheorybook_AJKS.pdf


Applications

(a) Games (b) Health Care (c) Ridesharing

(d) Robotics (e) Finance (f) Automated Driving
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Games

Figure: AlphaGo. See Silver et al. [2016] for details. To be discussed in more detail in Lecture 9.
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Games (Cont’d)

Figure: An implementation of AlphaGo Zero on Gomoku. To be discussed in more detail in Seminar 10.
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Games (Cont’d)

Figure: Two Atari Games: Breakout (link) and Space Invaders. To be discussed in more detail in Lecture 7
& Seminar 8.
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https://elgoog.im/breakout/


Healthcare

• Management of Type-I diabetes
[Luckett et al., 2019, Shi et al., 2020,
2022, Zhou et al., 2022a]

• Subject: Patients with Type-I
diabetes

• Objective: Improve health outcomes

• Intervention: Determine whether a
patient needs to inject insulin or
not based on their glucose levels,
food intake, exercise intensity, etc.

• Data: OhioT1DM dataset Figure: OhioT1DM data. To be discussed in Lecture
10.
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Healthcare (Cont’d)

• Intern health study [NeCamp et al.,
2020, Li et al., 2022]

• Subject: First-year medical interns
working in stressful environments (e.g.,
long work hours and sleep deprivation)

• Objective: Promote physical and
mental well-beings

• Intervention: Determine whether to
send certain text message to a subject

Figure: IHS. To be discussed in Lecture 10.
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Healthcare (Cont’d)

• Other applications:
• HeartSteps [Liao et al., 2020]
• Sepsis treatment [Li et al., 2020, Chen et al., 2022, Zhou et al., 2022b]
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Ridesharing

Figure: Ridesharing. To be discussed in more detail in Lecture 7 & Seminar 7.
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Ridesharing (Cont’d)
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Robotics

Figure: See https://www.youtube.com/watch?v=gn4nRCC9TwQ
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https://www.youtube.com/watch?v=gn4nRCC9TwQ


RL as a Research Topic

• One of the most vibrant research topics in machine learning
• Over 100 papers accepted at ICML 2020, accounting for more than 10% in total
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Roadmap
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Roadmap (Cont’d)
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Multi-Armed Bandit (MAB) Problem

• The simplest RL problem

• A casino with multiple slot
machines

• Playing each machine yields an
independent reward.

• Limited knowledge (unknown
reward distribution for each
machine) and resources (time)

• Objective: determine which
machine to pick at each time to
maximize the expected cumulative
rewards
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Multi-Armed Bandit Problem (Cont’d)

• k-armed bandit problem (k machines)

• At ∈ {1, · · · , k}: arm (machine) pulled
(experimented) at time t
• Rt ∈ R: reward at time t
• Q(a) = E(Rt |At = a) expected reward

for each arm a (unknown)

• Objective: maximize
∑T

t=1 ERt .
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Greedy Action Selection

• Action-value methods: estimate the
expected reward (i.e., value) of actions
and use these estimates to select actions

• Estimated reward at time t:

Q̂t(a) =
∑t

i=1 Ri I(Ai = a)∑t
i=1 I(Ai = a)

• Greedy policy:

At = argmax
a

Q̂t−1(a).

• Might be suboptimal in the long run.
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Exploration-Exploitation Dilemma

• Exploitation: To maximize reward, the agent prefers the greedy policy that selects
actions that maximizes the estimated expected reward.

• Exploration: To discover which actions yield a higher reward, the agent must try
actions that it has less selected to improve the estimation accuracy.
• Trade-off between exploration and exploitation:

• Neither exploration nor exploitation can be used exclusively.
• The agent must try various actions and progressively favour high-reward actions.

• Practical algorithms: ε-greedy, upper confidence bound (UCB), Thompson
sampling.
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ε-Greedy

• Input: Choose a small value parameter ε ∈ (0, 1).
• At each step perform:

• With probability 1− ε: adopt the greedy policy;
• With probability ε: choose a randomly selected arm from the set of all arms.

• Combines exploration and exploitation:
• At each time, each arm is selected with probability at least k−1ε.
• Greedy action is selected with probability 1− ε+ k−1ε.
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Incremental Implementation
• Average reward received from arm a by time t:

Q̂t(a) = N−1
t (a)

t∑
i=1

I(Ai = a)Ri ,

where Nt(a) =
∑t

i=1 I(Ai = a).
• If arm a is selected at time t + 1, then

Q̂t+1(a) = {Nt(a) + 1}−1

{ t∑
i=1

I(Ai = a)Ri + Rt+1

}

=
Nt(a)

Nt(a) + 1

{
N−1

t (a)
t∑

i=1

I(Ai = a)Ri

}
+

Rt+1

Nt(a) + 1

=
Nt(a)

Nt(a) + 1
Q̂t(a) +

Rt+1

Nt(a) + 1
.
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Algorithm

• Input: 0 < ε < 1, termination time T .

• Initialization: t = 0, Q̂(a) = 0, N(a) = 0, for a = 1, 2, · · · , k .
• While t < T :

• Update t: t ← t + 1.
• ε-greedy action selection:

a∗ ←
{

argmaxa Q̂(a), with probabiltiy 1− ε,
random arm, with probabiltiy ε.

• Receive reward R from arm a∗.
• Update N(a∗): N(a∗)← N(a∗) + 1.
• Update Q̂(a∗):

Q̂(a∗)← N(a∗)− 1

N(a∗)
Q̂(a∗) +

1

N(a∗)
R.
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Example: Four Bernoulli Arms
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Example: Four Bernoulli Arms (Cont’d)

29 / 58



Tracking Nonstationarity
• Incremental update:

Q̂(a∗)← N(a∗)− 1

N(a∗)
Q̂(a∗) +

1

N(a∗)
R.

• Alternatively, for a given step size parameter 0 < α < 1,

Q̂(a∗)← (1−α)Q̂(a∗) +αR.

• Give more weight to recently observed reward. Handles nonstationarity (reward
distribution varies over time).

• Exponential weighted moving average:

Q̂(a∗)← αR + (1−α)Q̂(−1)(a∗)← αR +α(1−α)R(−1) + (1−α)2Q̂(−2)(a∗)

← αR +α

J∑
i=1

(1−α)iR(−i ).
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Optimism in the Face of Uncertainty

• The optimistic principle:

• The more uncertain we are about
an action-value;

• The more important it is to
explore that action;

• It could be the best action.

• Likely to pick blue action.

• Different from ε-greedy which
selects arms uniformly random.
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Optimism in the Face of Uncertainty (Cont’d)

• After picking blue action;

• Become less uncertain about the
value;

• More likely to pick other actions;

• Until we home in on best action.
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Upper Confidence Bound

• Estimate an upper confidence Ut(a) for each action value such that

Q(a) ≤ Q̂t(a)+ Ut(a),

with high probability.
• Ut(a) quantifies the uncertainty and depends on Nt(a) (number of times arm a has
been selected up to time t)
• Large Nt(a)→ small Ut(a);
• Small Nt(a)→ large Ut(a).

• Select actions maximizing upper confidence bound

a∗ = argmax
a

[Q̂t(a)+ Ut(a)].

• Combines exploration (Ut(a)) and exploitation (Q̂t(a)).
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Upper Confidence Bound (Cont’d)

• Set Ut(a) =
√

c log(t)/Nt(a) for some positive constant c .
• According to Hoeffding’s inequality (link), when rewards are bounded between 0
and 1, the event

Q(a) ≤ Q̂t(a)+ Ut(a),

holds with probability at least 1− t−2c (converges to 1 as t →∞).
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https://en.wikipedia.org/wiki/Hoeffding%27s_inequality


Algorithm

• Input: some positive constant c , termination time T .

• Initialization: t = 0, Q̂(a) = 0, N(a) = 0, for a = 1, 2, · · · , k .
• While t < T :

• Update t: t ← t + 1.
• UCB action selection:

a∗ ← argmax
a

[Q̂(a) +
√

c log(t)/Nt(a)].

• Receive reward R from arm a∗.
• Update N(a∗): N(a∗)← N(a∗) + 1.
• Update Q̂(a∗):

Q̂(a∗)← N(a∗)− 1

N(a∗)
Q̂(a∗) +

1

N(a∗)
R.
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Example: Four Bernoulli Arms (Revisited)
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Thompson Sampling

• A highly-competitive algorithm to address exploration-exploitation trade-off.

• Impose statistical models for the reward distribution with parameter θ.

• Impose prior distributions for θ.
• At time t,

• Use Bayes rule to update the posterior distribution of θ.
• Sample a model parameter θt from the posterior distribution.
• Compute action-value given θt , i.e., E(R|A = a,θt).
• Select action maximizing action-value

a∗ = argmax
a

E(R|A = a,θt).

• Posterior distribution quantifies the uncertainty of the estimated model parameter
(exploration).

• E(R|A = a,θt) estimates the oracle action value (exploitation).
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Thompson Sampling (Cont’d)
• Statistical models:

• p(r |a,θ) models the probability density/mass function of rewards under arm a.
• p(θ) models the probability density/mass function of θ.

• Bayesian inference:
• Likelihood function ℓt(θ) =

∏t
i=1 p(Ri |Ai ,θ).

• Compute the posterior distribution according to Bayes rule

pt(θ|D) =
p(θ)ℓt(θ)∫

θ
p(θ)ℓt(θ)dθ

∝ p(θ)ℓt(θ),

where D denotes the observed data.

• Compute action value:

E(R|A = a,θt) =

∫
r
rp(r |a,θt)dr .
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Thompson Sampling (Bernoulli Bandit Example)

• Statistical models:
• Reward of the ath arm follows a Bernoulli distribution with mean θ(a).
• θ(a) follows a Beta(α,β) distribution (prior).
• Why Beta distribution?

• Commonly used distribution for outcomes bounded between 0 and 1
• Reduced to uniform distribution when α = β = 1
• Conjugate distribution of binomial, i.e. posterior distribution is Beta as well
• α and β measures the beliefs for success and failure

• Bayesian inference:
• θ(a) follows a Beta(Sa +α,Fa + β) distribution (posterior) where (Sa,Fa)

corresponds to the success and failure counters under arm a.
• Compute action value:

E(R|A = a,θt) = θt(a).

39 / 58



Algorithm (Bernoulli Bandit Example1)

• Input: hyper-parameters α, β > 0, termination time T .

• Initialization: t = 0, Sa = Fa = 0, for a = 1, 2, · · · , k .
• While t < T :

• Update t: t ← t + 1.
• Posterior sampling: For a = 1, 2, · · · , k , sample

θa ∼ Beta(Sa +α,Fa + β)

• Action selection: a∗ ← argmaxa θa.
• Receive reward R from arm a∗.
• Update Sa and Fa:

• If R = 1, Sa ← Sa + 1;
• If R = 0, Fa ← Fa + 1.

1The general algorithm can be found in Chapelle and Li [2011]
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Example: Four Bernoulli Arms (Revisited)
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Example: Four Bernoulli Arms (Cont’d)

42 / 58



Theory
Define the regret T , R(T ) as the difference between the cumulative reward under the
best action and that under the selected actions, up to time T .

Theorem (UCB, Auer et al. [2002])

The expected regret of the UCB algorithm ER(T ) is upper bounded by C1 log(T ) for
some constant C1 > 0.

Theorem (TS, Agrawal and Goyal [2012])

The expected regret of the Thompson sampling algorithm ER(T ) is upper bounded by
C2 log(T ) for some constant C2 > 0.

• Both algorithms achieve logarithmic expected regret.
• Their performances are nearly the same as the oracle method that works as if the
best action were known.
• ε-Greedy algorithm with a constant ε has a linear expected regret (proportional to

T ). More to discuss in seminar class. 43 / 58
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Contextual Bandits

• Extension of MAB with contextual information.

• A widely-used model in medicine and technological industries.
• At time t, the agent

• Observe a context St ;
• Select an action At ;
• Receives a reward Rt (depends on both St and At).

• Objective: maximize cumulative reward.

• ε-greedy, UCB and Thompson sampling can be similarly adopted [see e.g., Chu
et al., 2011, Agrawal and Goyal, 2013, Zhou et al., 2020, Zhang et al., 2020].
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Application I: Precision Medicine
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One-Size-Fits-All
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Individualized Treatment Regime
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Application II: Personalized Recommendation
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Contextual Bandits Applications

• St : Patient’s or customer’s baseline characteristics

• At : Treatment (product) recommended to the patient (customer)

• Rt : Patient’s outcome or customer’s action
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Summary

• Exploration-exploitation trade-off

• ε-greedy, UCB (the optimistic principle) and Thompson sampling

• Multi-armed bandits, contextual bandits
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Seminar Exercises

• Get started with OpenAI Gym (link)

• Multi-armed bandits problem
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https://gymnasium.farama.org/
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