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So Far, We Focused on Online RL Applications

(a) Video Games (b) AlphaGo
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This Lecture Considers Offline Settings

(a) Health Care (b) Robotics

(c) Ridesharing (d) Auto-driving
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This Lecture Considers Offline Settings (Cont’d)

• What is offline RL?
• RL with a pre-collected historical dataset

• Why offline RL?
• Online interaction with the environment is impractical
• Either because online data collection is expensive (e.g., robotics or healthcare); rely on

historical data
• Or dangerous (e.g., healthcare, ridesharing or auto-driving)
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Online v.s. Offline RL

Online RL:

• Data are adaptively generated, i.e.,
able to select any action at each time

• Data are cheap to generate, i.e., able
to simulate numerous observations

• Likely to satisfy MDP assumption
(Markovianity & time-homogeneity)

Offline RL:

• Data are pre-collected, i.e., from an
observational study

• Size of data is limited

• MDP assumption likely to be violated
(Non-Markovianity or Non-stationarity)
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Offline RL Challenges and Solutions

• Data are pre-collected
• Learning relies entirely on the historical data
• Not possible to improve exploration
• For actions that are less-explored, difficult to accurately learn their values
• Solution: the pessimistic principle (focus of this lecture)

• Size of data is limited
• Solution: develop sample-efficient RL algorithms (to be discussed in Lecture 11)

• Violation of MDP assumption
• Cannot directly apply existing state-of-the-art RL algorithms
• Solution: statistical hypothesis testing for model selection (to be covered in this

lecture)
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Recap: Multi-Armed Bandit Problem

• The simplest RL problem

• A casino with multiple slot
machines

• Playing each machine yields an
independent reward.

• Limited knowledge (unknown
reward distribution for each
machine) and resources (time)

• Objective: determine which
machine to pick at each time to
maximize the expected cumulative
rewards
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Offline Multi-Armed Bandit Problem

• k-armed bandit problem (k machines)

• At ∈ {1, · · · , k}: arm (machine) pulled
(experimented) at time t
• Rt ∈ R: reward at time t
• Q(a) = E(Rt |At = a) expected reward

for each arm a (unknown)

• Objective: Given {At ,Rt}0≤t<T ,
identify the best arm
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Greedy Action Selection

• Action-value methods:

Q̂(a) = N−1(a)
T−1∑
t=0

RtI(At = a)

where N(a) =
∑T−1

t=0 I(At = a)
denotes the action counter

• Greedy policy: argmaxa Q̂(a)
• Less-explored action → N(a) is small

→ inaccurate Q̂(a) → suboptimal
policy (see the plot on the right)
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Recap: The Optimistic Principle

• Used in online settings to balance
exploration-exploitation tradeoff

• The more uncertain we are about
an action-value

• The more important it is to
explore that action

• It could be the best action

• Likely to pick blue action

• Forms the basis for upper
confidence bound (UCB)
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Recap: Upper Confidence Bound

• Estimate an upper confidence Ut(a) for each action value such that

Q(a) ≤ Q̂t(a)+ Ut(a),

with high probability.
• Ut(a) quantifies the uncertainty and depends on Nt(a) (number of times arm a has
been selected up to time t)
• Large Nt(a)→ small Ut(a);
• Small Nt(a)→ large Ut(a).

• Select actions maximizing upper confidence bound

a∗ = argmax
a

[Q̂t(a)+ Ut(a)].

• Combines exploration (Ut(a)) and exploitation (Q̂t(a)).
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The Pessimistic Principle

• In offline settings

• The less uncertain we are about
an action-value

• The more important it is to use
that action

• It could be the best action

• Likely to pick red action

• Yields the lower confidence
bound (LCB) algorithm
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Lower Confidence Bound

• Estimate an lower confidence L(a) for each action value such that

Q(a) ≥ Q̂(a)− L(a),

with high probability.
• L(a) quantifies the uncertainty and depends on N(a) (number of times arm a has
been selected in the historical data)
• Large N(a)→ small L(a);
• Small N(a)→ large L(a).

• Select actions maximizing lower confidence bound

a∗ = argmax
a

[Q̂(a)− L(a)].
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Lower Confidence Bound (Cont’d)

• Set L(a) =
√

c log(T )/N(a) for some positive constant c where T is the sample
size of historical data

• According to Hoeffding’s inequality (link), when rewards are bounded between 0
and 1, the event

|Q(a)− Q̂(a)| ≤ L(a),

holds with probability at least 1− 2T−2c (converges to 1 as T →∞).
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Lower Confidence Bound (Cont’d)

• Q̂(4) > Q̂(3)

• T = 1605. Set c = 1

• L(3)=
√
log(T )/N(3) = 0.272

• L(4)=
√

log(T )/N(4) = 1.215

• Q̂(3)−L(3)> Q̂(4)−L(4)
• Q̂(3)−L(3)> max(Q̂(1), Q̂(2))

• Correctly identify optimal action
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Algorithm

• Input: some positive constant c , offline data {(At ,Rt)}0≤t<T .

• Initialization: t = 0, Q̂(a) = 0, N(a) = 0, for a = 1, 2, · · · , k .
• While t < T :

• Update N : N(At)← N(At) + 1.
• Update Q̂:

Q̂(At)←
N(At)− 1

N(At)
Q̂(At) +

1

N(At)
Rt .

• Update t: t ← t + 1.

• LCB action selection:

a∗ ← argmax
a

[Q̂(a)−
√

c log(T )/N(a)].
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Theory

Define the regret, as the difference between the expected reward under the best arm and
that under the selected arm.

Theorem (Greedy Action Selection)

Regret of greedy action selection is upper bounded by 2maxa |Q̂(a)− Q(a)|, whose
value is bounded by 2

√
c log(T )/mina N(a) (according to Hoeffding’s inequality) with

probability approaching 1

• The upper bound depends on the estimation error of each Q-estimator

• The regret is small when each arm has sufficiently many observations

• However, it would yield a large regret when one arm is less-explored

• This reveals the limitation of greedy action selection

• Proof is simple (see Appendix)
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Theory (Cont’d)

Theorem (LCB; see also Jin et al. [2021])

Regret of the LCB algorithm is upper bounded by 2
√

c log(T )/N(aopt) where aopt

denotes the best arm with probability approaching 1

• The upper bound depends on the estimation error of best arm’s Q-estimator only

• The regret is small when the best arm has sufficiently many observations

• This is much weaker than requiring each arm to have sufficiently many observations

• This reveals the advantage of LCB algorithm

• Proof given in the Appendix
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Offline RL and Fitted Q-Iteration

• Offline data: {(St ,At ,Rt) : 0 ≤ t ≤ T}
• Fitted Q-Iteration can be naturally applied by repeating

1. Compute Q̂ as the argmin of

argmin
Q

∑
t

[
Rt + γmax

a
Q̃(St+1, a)−Q(St ,At)

]2
2. Set Q̃ = Q̂

• Limitation: for less-explored state-action pairs, their Q-values cannot be learned
accurately

• Solution: the pessimistic principle

23 / 61



Pessimistic Principle in RL

• In multi-armed bandit, we select action to maximize lower confidence bound

a∗ = argmax
a

[Q̂(a)− L(a)]

• In more general RL, we can adopt a similar principle by setting

π(a|s) =
{

1, if a = argmax Q̂(a, s)− L(a, s)
0, otherwise

where the lower bound satisfies that with probability approaching 1,

Qπopt
(a, s) ≥ Q̂(a, s)− L(a, s), ∀a, s.

• Many offline algorithms [see e.g., Wu et al., 2019, Kumar et al., 2020, Levine et al.,
2020] adopt similar ideas, but do not directly use the above formula
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Model-based Offline Policy Optimisation (MOPO)

• As we discussed in Lecture 9, model-based method is preferred in offline settings

• Online RL algorithms are not applicable, as adaptive interaction is not feasible
• Model-based method

• learns a model using the offline data
• allows to adaptively generate data based on the model
• applies online RL algorithms to simulated data for policy optimisation
• embraces the power of online RL algorithms for offline policy optimisation

• MOPO [Yu et al., 2020] integrates model-based method with pessimistic principle
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MOPO: Offline Model Learning

• Learn the conditional distribution of (St+1,Rt) given (At ,St)

• Approximate the conditional distribution using Gaussian, i.e.,

(St+1,Rt)|(At ,St) ∼ N(µθ(At ,St),Σϕ(At ,St))

• Parametrize µθ and Σϕ using e.g., neural networks

• Use bootstrap to learn N different models {Mi}i=1,···,N
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MOPO: The Pessimism Principle

• Penalize reward to incorporate pessimism

• Simulate reward r given the state-action pair (s, a) from model

• Define the transformed reward

r̃ = r − L(a, s),

for some lower bound L(a, s) that quantifies the uncertainty of model

• More uncertain → smaller transformed reward

• Less uncertain → larger transformed reward

• Apply online RL to transformed data (see next slide)
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MOPO: Adaptive Data Simulation

1. Action simulation
• For value-based method, sample actions using ε-greedy policy
• For policy-gradient method, sample actions using the estimated policy

2. Reward and next-state simulation
• Randomly pick a model Mi = N(µθi (At ,St),Σϕi (At ,St))
• Sample (St+1,Rt) from this Gaussian model
• Compute transformed reward R̃t = Rt − L(At ,St)
• Use (St ,At , R̃t ,St+1) to update the policy/Q-function

3. Repeat the above two steps for data simulation and policy learning
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MOPO: Pseudocode
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Recap: The Agent’s Policy
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Recap: Foundations of RL

• RL algorithms: policy iteration, value iteration (Lecture 3), SARSA, Q-learning
(Lecture 4), gradient-based methods, fitted Q-iteration (Lecture 5), deep Q-network
(Lecture 7), REINFORCE, actor critic (Lecture 8), Dyna-Q (Lecture 9)
• Foundations of aforementioned algorithms:

• Markov decision process [MDP, Puterman, 2014]: ensures the optimal policy is
stationary, and is not history-dependent

• Markov assumption: conditional on the present (e.g., St ,At), the future (e.g.,
Rt ,St+1) and the past data history are independent

• Time-homogeneity assumption: The conditional distribution of (Rt ,St+1) given
(St = s,At = a) is time-homogeneous
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Recap: Markov Assumption
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Recap: Markov Assumption
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Recap: Time-Homogeneity Assumption
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Violation of MDP Assumption

• Violation of Markov assumption
• Statistical hypothesis testing for model selection: MDP, high-order MDP (kth order for

k ≥ 2), POMOP (∞th order MDP)

• Violation of time-homogeneity assumption
• Statistical hypothesis testing for selecting the “best data segment”
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Markov and Non-Markov Models

Figure: Causal diagrams for MDPs, HMDPs and POMDPs. The solid lines represent the causal
relationships and the dashed lines indicate the information needed to implement the optimal policy. {Ht}t

denotes latent variables. 37 / 61



Test Markov Assumption [Shi et al., 2020]

• Develop a forward-backward learning procedure to test the Markov assumption
(MA) in RL
• Null hypothesis H0: MA holds (MDP)
• Alternative hypothesis H1: MA is violated (high-order MDP, POMDP)

• Sequentially apply the test for model selection
• Suppose the data follows a K th order MDP
• Sequentially test whether it is kth order for k = 1, 2, · · ·
• by concatenating St with {(St−j ,At−j ,Rt−j )} for 1 ≤ j < k
• H0 holds when k ≥ K and H1 holds otherwise
• Select the model when H0 is not rejected for the first time
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Test Markov Assumption (Cont’d)
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Test Markov Assumption (Cont’d)
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Test Markov Assumption (Cont’d)
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Test Markov Assumption (Cont’d)

• Uncritical to online domains:
• Try different models online and see which model yields the best reward

• Critical to offline domains:
• K remains unknown without prior knowledge
• Cannot adaptively generate data
• For under-fitted models (k < K ), any stationary policy is not optimal
• For over-fitted models (k > K ), the estimated policy might be very noisy due to the

inclusion of many irrelevant lagged variables
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Diabetes

• Management of Type-I diabetes

• Subject: Patients with diabetes.

• Objective: Develop treatment
policy to determine whether
patients need to inject insulin at
each time to improve their health

• St : Patient’s glucose levels, food
intake, exercise intensity

• At : Insulin doses injected

• Rt : Index of Glycemic Control
(function of patient’s glucose level)
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Diabetes (Cont’d)

• Analysis I:
• sequentially apply our test to determine the order of MDP
• conclude it is a fourth-order MDP

• Analysis II:
• split the data into training/testing samples
• policy optimization based on fitted-Q iteration, by assuming it is a k-th order MDP

for k = 1, · · · , 10
• policy evaluation based on fitted-Q evaluation (to be covered in Lecture 11)
• use random forest to model the Q-function
• repeat the above procedure to compute the average value of policies computed under

each MDP model assumption
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Tiger
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Tiger (Cont’d)
• Under the alternative hypothesis (MA is violated). α = (0.05, 0.1) from left to right.

• Under the null hypothesis (MA holds). α = (0.05, 0.1) from left to right.
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Test Time-Homogeneity [Li et al., 2022]

• Under time-inhomogeneity, using all data is not reasonable

• Natural to use more recent observations for policy optimisation
• Challenging to select the best data “segment”

• Including too many past observations yields a suboptimal policy
• Using only a few recent observations results in a very noisy policy

• Develop a test procedure for the time-homogeneity assumption (THA) in RL
• Null hypothesis H0: THA holds (MDP)
• Alternative hypothesis H1: THA is violated (Time-Varying MDP)

• Sequentially apply the test for selecting the best data “segment”
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Test Time-Homogeneity (Cont’d)

• Sequentially apply the test for selecting the best data “segment”
• Sequentially test whether THA holds on the data interval [T − κ,T ] for

κ1 < κ2 < κ3 < · · ·
• Suppose THA is first rejected at some κ = κj0
• Use the data subset within the interval [T − κj0−1,T ] for policy optimisation
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Intern Health Study

• Subject: First-year medical interns

• Objective: Develop treatment policy
to determine whether to send certain
text messages to interns to improve
their health

• St : Interns’ mood scores, sleep
hours and step counts

• At : Send text notifications or not

• Rt : Step counts
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Intern Health Study (Cont’d)
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Intern Health Study (Cont’d)

• Mean value is the weekly average step counts per day
• The proposed method improves mean value by 50 – 150 steps, compared to the
behavior policy 54 / 61



Summary

• Offline RL v.s. online RL
• The pessimistic principle
• Lower confidence bound

• Model-based offline policy optimisation

• Statistical hypothesis testing
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Seminar Exercise
• Solutions to HW9 (Deadline: Wed 12 pm)
• Implementation of AlphaZero on Gomoku
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Questions

59 / 61



Appendix: Proof of Regret

Consider the regret of greedy action selection first. Let a∗ denote the action selected by
the greedy policy. By definition, the regret is given by Q(aopt)− Q(a∗). Notice that

Q(aopt)− Q(a∗) = Q(aopt)− Q̂(aopt)+ Q̂(aopt)− Q̂(a∗)+ Q̂(a∗)− Q(a∗)

≤ Q(aopt)− Q̂(aopt)+ Q̂(a∗)− Q(a∗),

as a∗ maximizes argmaxa Q̂(a) by definition.
It is immediate to see that the right-hand-side is upper bounded by

2maxa |Q̂(a)− Q(a)|. The proof is thus completed.
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Appendix: Proof of Regret (Cont’d)

Next, consider the regret of the LCB algorithm. Let a∗ denote the action selected by the
LCB algorithm. By definition of L(a∗), we have with probability approaching 1 that

Q(aopt)− Q(a∗) ≤ Q(aopt)− Q̂(a∗)+ L(a∗).

According to the LCB algorithm, Q̂(a∗)− L(a∗) ≥ Q̂(aopt)− L(aopt). It follows that the
right-hand-side is upper bounded by

Q(aopt)− Q̂(aopt)+ L(aopt),

which is further bounded by 2L(aopt), by definition. The proof is completed by directly
applying Hoeffding’s inequality.
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