Lecture 10: Offline Reinforcement Learning

Chengchun Shi

- 1. Introduction to Offline RL
- 2. The Pessimistic Principle
- 3. Model-based Offline Policy Optimization (MOPO)
- 4. An Overview of My Research

1. Introduction to Offline RL

- 2. The Pessimistic Principle
- 3. Model-based Offline Policy Optimization (MOPO)
- 4. An Overview of My Research

So Far, We Focused on Online RL Applications

(a) Video Games

(b) AlphaGo

This Lecture Considers Offline Settings

(b) Robotics

(c) Ridesharing

(d) Auto-driving

This Lecture Considers Offline Settings (Cont'd)

- What is offline RL?
 - RL with a pre-collected historical dataset
- Why offline RL?
 - Online interaction with the environment is impractical
 - Either because online data collection is **expensive** (e.g., robotics or healthcare); rely on historical data
 - Or dangerous (e.g., healthcare, ridesharing or auto-driving)

Online RL:

- Data are **adaptively** generated, i.e., able to select **any** action at each time
- Data are **cheap** to generate, i.e., able to simulate **numerous** observations
- Likely to **satisfy** MDP assumption (Markovianity & time-homogeneity)

Offline RL:

- Data are **pre-collected**, i.e., from an observational study
- Size of data is **limited**
- MDP assumption likely to be **violated** (Non-Markovianity or Non-stationarity)

Offline RL Challenges and Solutions

• Data are pre-collected

- · Learning relies entirely on the historical data
- Not possible to improve exploration
- For actions that are less-explored, difficult to accurately learn their values
- Solution: the pessimistic principle (focus of this lecture)
- Size of data is **limited**
 - Solution: develop sample-efficient RL algorithms (to be discussed in Lecture 11)
- Violation of MDP assumption
 - Cannot directly apply existing state-of-the-art RL algorithms
 - **Solution**: statistical hypothesis testing for model selection (to be covered in this lecture)

1. Introduction to Offline RL

2. The Pessimistic Principle

3. Model-based Offline Policy Optimization (MOPO)

4. An Overview of My Research

Recap: Multi-Armed Bandit Problem

- The simplest RL problem
- A casino with **multiple** slot machines
- Playing each machine yields an independent **reward**.
- Limited knowledge (unknown reward distribution for each machine) and resources (time)
- **Objective**: determine which machine to pick at each time to maximize the expected **cumulative rewards**

Offline Multi-Armed Bandit Problem

- k-armed bandit problem (k machines)
- *A_t* ∈ {1, · · · , *k*}: arm (machine) pulled (experimented) at time *t*
- $R_t \in \mathbb{R}$: reward at time t
- $Q(a) = \mathbb{E}(R_t | A_t = a)$ expected reward for each arm a (unknown)
- Objective: Given {A_t, R_t}_{0≤t<T}, identify the best arm

Greedy Action Selection

• Action-value methods:

$$\widehat{Q}(a) = N^{-1}(a) \sum_{t=0}^{T-1} R_t \mathbb{I}(A_t = a)$$

where
$$N(a) = \sum_{t=0}^{T-1} \mathbb{I}(A_t = a)$$
 denotes the action counter

- Greedy policy: $\arg \max_{a} \widehat{Q}(a)$
- Less-explored action $\rightarrow N(a)$ is small \rightarrow inaccurate $\widehat{Q}(a) \rightarrow$ suboptimal policy (see the plot on the right)

Recap: The Optimistic Principle

- Used in **online** settings to balance exploration-exploitation tradeoff
- The more **uncertain** we are about an action-value
- The more **important** it is to explore that action
- It could be the **best** action
- Likely to pick blue action
- Forms the basis for **upper confidence bound** (UCB)

Recap: Upper Confidence Bound

• Estimate an upper confidence $U_t(a)$ for each action value such that

 $Q(a) \leq \widehat{Q}_t(a) + U_t(a),$

with high probability.

- $U_t(a)$ quantifies the **uncertainty** and depends on $N_t(a)$ (number of times arm a has been selected up to time t)
 - Large $N_t(a) \rightarrow \text{small } U_t(a)$;
 - Small $N_t(a) \rightarrow \text{large } U_t(a)$.
- Select actions maximizing upper confidence bound

$$m{a}^* = rg\max_{m{a}} [\widehat{m{Q}}_t(m{a}) + m{U}_t(m{a})].$$

• Combines exploration $(U_t(a))$ and exploitation $(\widehat{Q}_t(a))$.

The Pessimistic Principle

- In offline settings
- The less **uncertain** we are about an action-value
- The more **important** it is to use that action
- It could be the **best** action
- Likely to pick red action
- Yields the **lower confidence bound** (LCB) algorithm

Lower Confidence Bound

• Estimate an lower confidence L(a) for each action value such that

$$Q(a) \geq \widehat{Q}(a) - L(a),$$

with high probability.

- L(a) quantifies the uncertainty and depends on N(a) (number of times arm a has been selected in the historical data)
 - Large $N(a) \rightarrow \text{small } L(a)$;
 - Small $N(a) \rightarrow \text{large } L(a)$.
- Select actions maximizing lower confidence bound

$$oldsymbol{a}^* = rg\max_{oldsymbol{a}} [\widehat{oldsymbol{Q}}(oldsymbol{a}) - oldsymbol{L}(oldsymbol{a})].$$

- Set $L(a) = \sqrt{c \log(T)/N(a)}$ for some positive constant c where T is the sample size of historical data
- According to **Hoeffding's inequality** (<u>link</u>), when rewards are bounded between **0** and **1**, the event

$$|\boldsymbol{Q}(\boldsymbol{a}) - \widehat{\boldsymbol{Q}}(\boldsymbol{a})| \leq \boldsymbol{L}(\boldsymbol{a}),$$

holds with probability at least $1 - 2T^{-2c}$ (converges to 1 as $T \to \infty$).

Lower Confidence Bound (Cont'd)

- $\widehat{Q}(4) > \widehat{Q}(3)$
- T = 1605. Set c = 1
- $L(3) = \sqrt{\log(T)/N(3)} = 0.272$
- $L(4) = \sqrt{\log(T)/N(4)} = 1.215$
- $\hat{Q}(3) L(3) > \hat{Q}(4) L(4)$
- $\widehat{Q}(3) L(3) > \max(\widehat{Q}(1), \widehat{Q}(2))$
- Correctly identify optimal action

Algorithm

- Input: some positive constant c, offline data $\{(A_t, R_t)\}_{0 \le t < T}$.
- Initialization: t = 0, $\widehat{Q}(a) = 0$, N(a) = 0, for $a = 1, 2, \cdots, k$.
- While t < T:
 - Update $N: N(A_t) \leftarrow N(A_t) + 1.$
 - Update \widehat{Q} :

$$\widehat{Q}(oldsymbol{A}_t) \leftarrow rac{oldsymbol{N}(oldsymbol{A}_t)-1}{oldsymbol{N}(oldsymbol{A}_t)} \widehat{Q}(oldsymbol{A}_t) + rac{1}{oldsymbol{N}(oldsymbol{A}_t)} R_t.$$

- Update $t: t \leftarrow t + 1$.
- LCB action selection:

$$oldsymbol{a}^* \leftarrow rg\max_{oldsymbol{a}} [\widehat{oldsymbol{Q}}(oldsymbol{a}) - \sqrt{oldsymbol{c}\log(oldsymbol{T})/oldsymbol{N}(oldsymbol{a})}].$$

Theory

Define the regret, as the difference between the expected reward under the **best arm** and that under the **selected arm**.

Theorem (Greedy Action Selection)

Regret of greedy action selection is upper bounded by $2 \max_{a} |\widehat{Q}(a) - Q(a)|$, whose value is bounded by $2\sqrt{c \log(T) / \min_{a} N(a)}$ (according to Hoeffding's inequality) with probability approaching 1

- The upper bound depends on the estimation error of each Q-estimator
- The regret is small when **each** arm has sufficiently many observations
- However, it would yield a large regret when one arm is less-explored
- This reveals the **limitation** of greedy action selection
- Proof is simple (see Appendix)

Theorem (LCB; see also Jin et al. [2021])

Regret of the LCB algorithm is upper bounded by $2\sqrt{c \log(T)/N(a^{opt})}$ where a^{opt} denotes the best arm with probability approaching 1

- The upper bound depends on the estimation error of best arm's Q-estimator **only**
- The regret is small when the **best** arm has sufficiently many observations
- This is much weaker than requiring each arm to have sufficiently many observations
- This reveals the **advantage** of LCB algorithm
- Proof given in the Appendix

- 1. Introduction to Offline RL
- 2. The Pessimistic Principle

3. Model-based Offline Policy Optimization (MOPO)

4. An Overview of My Research

Offline RL and Fitted Q-Iteration

- Offline data: $\{(\boldsymbol{S}_t, \boldsymbol{A}_t, \boldsymbol{R}_t) : \boldsymbol{0} \leq t \leq T\}$
- Fitted Q-Iteration can be naturally applied by repeating $\hat{\boldsymbol{\varphi}}$
 - 1. Compute $\widehat{\boldsymbol{Q}}$ as the argmin of

$$rgmin_{oldsymbol{Q}} \sum_{oldsymbol{t}} \left[oldsymbol{R}_t + \gamma \max_{oldsymbol{a}} \widetilde{oldsymbol{Q}}(oldsymbol{S}_{t+1},oldsymbol{a}) - oldsymbol{Q}(oldsymbol{S}_t,oldsymbol{A}_t)
ight]^2$$

2. Set $\widetilde{\pmb{Q}} = \widehat{\pmb{Q}}$

- Limitation: for less-explored state-action pairs, their Q-values cannot be learned accurately
- Solution: the pessimistic principle

Pessimistic Principle in RL

• In multi-armed bandit, we select action to maximize lower confidence bound

$$\mathbf{a}^* = \arg\max_{\mathbf{a}} [\widehat{\mathbf{Q}}(\mathbf{a}) - \mathbf{L}(\mathbf{a})]$$

• In more general RL, we can adopt a similar principle by setting

$$\pi(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} \boldsymbol{1}, & \text{if } \boldsymbol{a} = \arg \max \widehat{\boldsymbol{Q}}(\boldsymbol{a}, \boldsymbol{s}) - \boldsymbol{L}(\boldsymbol{a}, \boldsymbol{s}) \\ \boldsymbol{0}, & \text{otherwise} \end{cases}$$

where the lower bound satisfies that with probability approaching $\mathbf{1}$,

$$Q^{\pi^{\mathrm{opt}}}(a,s) \geq \widehat{Q}(a,s) - L(a,s), \quad \forall a,s.$$

• Many offline algorithms [see e.g., Wu et al., 2019, Kumar et al., 2020, Levine et al., 2020] adopt similar ideas, but do not directly use the above formula

- As we discussed in Lecture 9, model-based method is preferred in offline settings
- Online RL algorithms are **not** applicable, as adaptive interaction is not feasible
- Model-based method
 - learns a model using the offline data
 - allows to adaptively generate data based on the model
 - applies online RL algorithms to simulated data for policy optimisation
 - embraces the power of online RL algorithms for offline policy optimisation
- MOPO [Yu et al., 2020] integrates model-based method with pessimistic principle

- Learn the conditional distribution of (S_{t+1}, R_t) given (A_t, S_t)
- Approximate the conditional distribution using Gaussian, i.e.,

 $(S_{t+1}, R_t)|(A_t, S_t) \sim N(\mu_{\theta}(A_t, S_t), \Sigma_{\phi}(A_t, S_t))$

- Parametrize $\mu_{ heta}$ and Σ_{ϕ} using e.g., neural networks
- Use bootstrap to learn N different models $\{\mathcal{M}_i\}_{i=1,\dots,N}$

MOPO: The Pessimism Principle

- Penalize reward to incorporate pessimism
- Simulate reward *r* given the state-action pair (*s*, *a*) from model
- Define the transformed reward

 $\widetilde{r} = r - L(a, s),$

for some lower bound L(a, s) that quantifies the **uncertainty** of model

- More uncertain \rightarrow smaller transformed reward
- Less uncertain \rightarrow larger transformed reward
- Apply online RL to transformed data (see next slide)

- 1. Action simulation
 - For value-based method, sample actions using ε -greedy policy
 - For policy-gradient method, sample actions using the estimated policy
- 2. Reward and next-state simulation
 - Randomly pick a model $\mathcal{M}_i = N(\mu_{\theta_i}(\mathbf{A}_t, \mathbf{S}_t), \Sigma_{\phi_i}(\mathbf{A}_t, \mathbf{S}_t))$
 - Sample (S_{t+1}, R_t) from this Gaussian model
 - Compute transformed reward $\widetilde{R_t} = R_t L(A_t, S_t)$
 - Use $(S_t, A_t, \widetilde{R_t}, S_{t+1})$ to update the policy/Q-function
- 3. Repeat the above two steps for data simulation and policy learning

Algorithm 2 MOPO instantiation with regularized probabilistic dynamics and ensemble uncertainty

Require: reward penalty coefficient λ rollout horizon h, rollout batch size b.

- 1: Train on batch data \mathcal{D}_{env} an ensemble of N probabilistic dynamics $\{\widehat{T}^i(s', r \mid s, a) = \mathcal{N}(\mu^i(s, a), \Sigma^i(s, a))\}_{i=1}^N$.
- 2: Initialize policy π and empty replay buffer $\mathcal{D}_{\text{model}} \leftarrow \emptyset$.
- 3: for epoch $1, 2, \ldots$ do \triangleright This for-loop is essentially one outer iteration of MBPO
- 4: for $1, 2, \ldots, b$ (in parallel) do
- 5: Sample state s_1 from \mathcal{D}_{env} for the initialization of the rollout.
- 6: **for** j = 1, 2, ..., h **do**
- 7: Sample an action $a_j \sim \pi(s_j)$.
- 8: Randomly pick dynamics \widehat{T} from $\{\widehat{T}^i\}_{i=1}^N$ and sample $s_{j+1}, r_j \sim \widehat{T}(s_j, a_j)$.
- 9: Compute $\tilde{r}_j = r_j \lambda \max_{i=1}^N \|\Sigma^i(s_j, a_j)\|_{\mathrm{F}}$.
- 10: Add sample $(s_j, a_j, \tilde{r}_j, s_{j+1})$ to $\mathcal{D}_{\text{model}}$.
- 11: Drawing samples from $\mathcal{D}_{env} \cup \mathcal{D}_{model}$, use SAC to update π .

- 1. Introduction to Offline RL
- 2. The Pessimistic Principle
- 3. Model-based Offline Policy Optimization (MOPO)
- 4. An Overview of My Research

Recap: The Agent's Policy

History-dependent policy

Stationary policy

- **RL algorithms**: policy iteration, value iteration (Lecture 3), SARSA, Q-learning (Lecture 4), gradient-based methods, fitted Q-iteration (Lecture 5), deep Q-network (Lecture 7), REINFORCE, actor critic (Lecture 8), Dyna-Q (Lecture 9)
- Foundations of aforementioned algorithms:
 - Markov decision process [MDP, Puterman, 2014]: ensures the optimal policy is stationary, and is not history-dependent
 - **Markov assumption**: conditional on the present (e.g., S_t , A_t), the future (e.g., R_t , S_{t+1}) and the past data history are independent
 - Time-homogeneity assumption: The conditional distribution of (R_t, S_{t+1}) given $(S_t = s, A_t = a)$ is time-homogeneous

Recap: Markov Assumption

Recap: Markov Assumption

Recap: Time-Homogeneity Assumption

- Violation of Markov assumption
 - Statistical hypothesis testing for model selection: MDP, high-order MDP (*k*th order for $k \ge 2$), POMOP (∞ th order MDP)
- Violation of time-homogeneity assumption
 - Statistical hypothesis testing for selecting the "best data segment"

Markov and Non-Markov Models

Figure: Causal diagrams for MDPs, HMDPs and POMDPs. The solid lines represent the causal relationships and the dashed lines indicate the information needed to implement the optimal policy. $\{H_t\}_t$ denotes latent variables.

Test Markov Assumption [Shi et al., 2020]

- Develop a **forward-backward learning procedure** to test the Markov assumption (MA) in RL
 - Null hypothesis \mathcal{H}_0 : MA holds (MDP)
 - Alternative hypothesis \mathcal{H}_1 : MA is violated (high-order MDP, POMDP)
- Sequentially apply the test for model selection
 - Suppose the data follows a *K*th order MDP
 - Sequentially test whether it is kth order for $k = 1, 2, \cdots$
 - by concatenating S_t with $\{(S_{t-j}, A_{t-j}, R_{t-j})\}$ for $1 \leq j < k$
 - \mathcal{H}_0 holds when $k \geq K$ and \mathcal{H}_1 holds otherwise
 - Select the model when \mathcal{H}_0 is not rejected for the first time

- Uncritical to **online** domains:
 - Try different models online and see which model yields the best reward
- Critical to offline domains:
 - K remains unknown without prior knowledge
 - Cannot adaptively generate data
 - For under-fitted models (k < K), any stationary policy is not optimal
 - For over-fitted models (k > K), the estimated policy might be very noisy due to the inclusion of many irrelevant lagged variables

Diabetes

- Management of Type-I diabetes
- Subject: Patients with diabetes.
- **Objective**: Develop treatment policy to determine whether patients need to inject insulin at each time to improve their health
- *S_t*: Patient's glucose levels, food intake, exercise intensity
- At: Insulin doses injected
- *R_t*: Index of Glycemic Control (function of patient's glucose level)

Diabetes (Cont'd)

- Analysis I:
 - sequentially apply our test to determine the order of MDP
 - conclude it is a fourth-order MDP
- Analysis II:
 - split the data into training/testing samples
 - policy optimization based on fitted-Q iteration, by assuming it is a k-th order MDP for k = 1, · · · , 10
 - policy evaluation based on fitted-Q evaluation (to be covered in Lecture 11)
 - use random forest to model the Q-function
 - repeat the above procedure to compute the average value of policies computed under each MDP model assumption

order	1	2	3	4	5	6	7	8	9	10
value	-90.8	-57.5	-63.8	-52.6	-56.2	-60.1	-63.7	-54.9	-65.1	-59.6

Reward Function

- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost for listening action: -1

Observations

- to hear the tiger on the left (TL)
- to hear the tiger on the right(TR)

Tiger (Cont'd)

• Under the alternative hypothesis (MA is violated). $\alpha = (0.05, 0.1)$ from left to right.

• Under the null hypothesis (MA holds). $\alpha = (0.05, 0.1)$ from left to right.

Test Time-Homogeneity [Li et al., 2022]

- Under time-inhomogeneity, using all data is not reasonable
- Natural to use more recent observations for policy optimisation
- Challenging to select the best data "segment"
 - Including too many past observations yields a suboptimal policy
 - Using only a few recent observations results in a very noisy policy
- Develop a test procedure for the time-homogeneity assumption (THA) in RL
 - Null hypothesis \mathcal{H}_0 : THA holds (MDP)
 - Alternative hypothesis \mathcal{H}_1 : THA is violated (Time-Varying MDP)
- Sequentially apply the test for selecting the best data "segment"

- Sequentially apply the test for selecting the best data "segment"
 - Sequentially test whether THA holds on the data interval $[T \kappa, T]$ for $\kappa_1 < \kappa_2 < \kappa_3 < \cdots$
 - Suppose THA is first rejected at some $\kappa = \kappa_{j_0}$
 - Use the data subset within the interval $[T \kappa_{j_0-1}, T]$ for policy optimisation

Test THA

$$t = 0 \qquad t = T - \kappa_3 \qquad t = T - \kappa_2 \qquad t = T - \kappa_1 \qquad t = T$$

- Sequentially apply the test for selecting the best data "segment"
 - Sequentially test whether THA holds on the data interval $[T \kappa, T]$ for $\kappa_1 < \kappa_2 < \kappa_3 < \cdots$
 - Suppose THA is first rejected at some $\kappa = \kappa_{j_0}$
 - Use the data subset within the interval $[T \kappa_{j_0-1}, T]$ for policy optimisation

Not rejected. Combine more data

- Sequentially apply the test for selecting the best data "segment"
 - Sequentially test whether THA holds on the data interval $[T \kappa, T]$ for $\kappa_1 < \kappa_2 < \kappa_3 < \cdots$
 - Suppose THA is first rejected at some $\kappa = \kappa_{j_0}$
 - Use the data subset within the interval $[T \kappa_{j_0-1}, T]$ for policy optimisation

Not rejected. Combine more data

- Sequentially apply the test for selecting the best data "segment"
 - Sequentially test whether THA holds on the data interval $[T \kappa, T]$ for $\kappa_1 < \kappa_2 < \kappa_3 < \cdots$
 - Suppose THA is first rejected at some $\kappa = \kappa_{j_0}$
 - Use the data subset within the interval $[T \kappa_{j_0-1}, T]$ for policy optimisation

Rejected. Use the last data interval

Intern Health Study

- Subject: First-year medical interns
- **Objective**: Develop treatment policy to determine whether to send certain text messages to interns to improve their health
- *S_t*: Interns' mood scores, sleep hours and step counts
- At: Send text notifications or not
- *R_t*: Step counts

Intern Health Study (Cont'd)

P Value

Intern Health Study (Cont'd)

Number of Change Points	Specialty	Method	$\gamma = 0.9$	$\gamma = 0.95$
		Proposed	8237.16	8295.99
> 1	E	Overall	8108.13	8127.55
≥ 1	Emergency	Behavior	7823.75	7777.32
		Random	8114.78	8080.27
		Proposed	7883.08	7848.57
> 0	Pediatrics	Overall	7925.44	7960.12
≥ 2		Behavior	7730.98	7721.29
		Random	7807.52	7815.30
		Proposed	8062.50	7983.69
0	Family Practice	Overall	8062.50	7983.69
0		Behavior	7967.67	7957.24
		Random	7983.52	7969.31
	TABLE 3			

Mean value estimates using decision tree in anaylsis of IHS. Values are normalised by multiplying $1 - \gamma$. All values are evaluated over 10 splits of data.

- Mean value is the weekly average step counts per day
- The proposed method improves mean value by 50 150 steps, compared to the behavior policy

- Offline RL v.s. online RL
- The pessimistic principle
- Lower confidence bound

- Model-based offline policy optimisation
- Statistical hypothesis testing

Seminar Exercise

- Solutions to HW9 (Deadline: Wed 12 pm)
- Implementation of AlphaZero on Gomoku

- Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In *International Conference on Machine Learning*, pages 5084–5096. PMLR, 2021.
- Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191, 2020.
- Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.
- Mengbing Li, Chengchun Shi, Zhenke Wu, and Piotr Fryzlewicz. Reinforcement learning in possibly nonstationary environments. *arXiv preprint arXiv:2203.01707*, 2022.
- Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.

- Chengchun Shi, Runzhe Wan, Rui Song, Wenbin Lu, and Ling Leng. Does the markov decision process fit the data: Testing for the markov property in sequential decision making. *arXiv preprint arXiv:2002.01751*, 2020.
- Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. *arXiv preprint arXiv:1911.11361*, 2019.
- Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. *Advances in Neural Information Processing Systems*, 33:14129–14142, 2020.

Questions

Consider the regret of greedy action selection first. Let a^* denote the action selected by the greedy policy. By definition, the regret is given by $Q(a^{opt}) - Q(a^*)$. Notice that

$$\begin{aligned} \boldsymbol{Q}(\boldsymbol{a}^{opt}) - \boldsymbol{Q}(\boldsymbol{a}^{*}) &= \boldsymbol{Q}(\boldsymbol{a}^{opt}) - \widehat{\boldsymbol{Q}}(\boldsymbol{a}^{opt}) + \widehat{\boldsymbol{Q}}(\boldsymbol{a}^{opt}) - \widehat{\boldsymbol{Q}}(\boldsymbol{a}^{*}) + \widehat{\boldsymbol{Q}}(\boldsymbol{a}^{*}) - \boldsymbol{Q}(\boldsymbol{a}^{*}) \\ &\leq \boldsymbol{Q}(\boldsymbol{a}^{opt}) - \widehat{\boldsymbol{Q}}(\boldsymbol{a}^{opt}) + \widehat{\boldsymbol{Q}}(\boldsymbol{a}^{*}) - \boldsymbol{Q}(\boldsymbol{a}^{*}), \end{aligned}$$

as a^* maximizes arg max_a $\widehat{Q}(a)$ by definition.

It is immediate to see that the right-hand-side is upper bounded by $2 \max_a |\widehat{Q}(a) - Q(a)|$. The proof is thus completed.

Next, consider the regret of the LCB algorithm. Let a^* denote the action selected by the LCB algorithm. By definition of $L(a^*)$, we have with probability approaching 1 that

$$Q(\mathbf{a}^{opt}) - Q(\mathbf{a}^{*}) \leq Q(\mathbf{a}^{opt}) - \widehat{Q}(\mathbf{a}^{*}) + \mathbf{L}(\mathbf{a}^{*}).$$

According to the LCB algorithm, $\widehat{Q}(a^*) - L(a^*) \ge \widehat{Q}(a^{opt}) - L(a^{opt})$. It follows that the right-hand-side is upper bounded by

$$Q(\mathbf{a}^{opt}) - \widehat{Q}(\mathbf{a}^{opt}) + L(\mathbf{a}^{opt}),$$

which is further bounded by $2L(a^{opt})$, by definition. The proof is completed by directly applying Hoeffding's inequality.