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Lecture QOutline

1. Off-Policy Evaluation (OPE) Introduction
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What is Off-Policy Evaluation

® Objective: Evaluate the impact of a target policy offline using historical data
generated from a different behavior policy

e Setting: Offline RL with a precollected data

(c) Ridesharing (d) Auto-driving
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Why Off-Policy Evaluation

In many applications, it can be dangerous to evaluate a target policy by directly
running this policy

® Healthcare: which medical treatment to suggest for a patient

¢ Ridesharing: which driver to assign for a call order

e Eduction: which curriculum to recommend for a student
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Causal Inference

Off-policy evaluation is closely related to causal inference, whose objective is to learn
the difference between a new treatment and a standard treatment

Causal
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Causal Inference (Cont’d)

home / insights / agenda / causality and natural experiments the 2021 nobel prize in economic

Causality and natural

experiments: the 2021 Nobel
Prize in Economic Sciences
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OPE and Offline Policy Optimisation

e Off-policy evaluation is also related to offline policy learning (Lecture 10), whose
objective is to learn an optimal policy offline using historical data

® Suppose we are able to evaluate the value of any policy, it suffices to pick the policy
that maximises the value
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Lecture QOutline

2. OPE in Contextual Bandits
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Recap: Contextual Bandits

e Extension of MAB with contextual information.

A widely-used model in medicine and technological industries.
At time t, the agent

® Observe a context S;;
® Select an action A;;
® Receives a reward R, (depends on both S; and A;).

Objective: Given an i.i.d. offline dataset {(S¢, A¢, Rt) : 0 < t < T} generated by a
behavior policy b, i.e.,

Pr(A; = a|S: = s) = b(als),
we aim to evaluate the mean outcome under a target policy m, i.e.,
Pr(A; = a|S; = s) = w(als).
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Application I: Precision Medicine
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Application Il: Personalized Recommendation




Challenge

e Confounding: State serves as confounding variables that confound the
action-reward pair

e Distributional shift: The target policy generally differs from the behavior policy

r r
r r
historical data what we want to evaluate
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Challenge (Cont’d)

® Suppose 7 is a nondynamic policy, i.e., there exists some a such that w(als) = 1 for
any s. We aim to evaluate the value under a given action a. A naive estimator is

YL RI(A, = a)
Yo I(A: = a)

® This estimator is valid only when no confounding variables exist

S E(RIA= a)
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Challenge (Cont’d)

r r
r

r

historical data what we want to evaluate

According to the causal diagram, the target policy's value equals

E[E(R|A = a, S)] # E(R|A = a)
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OPE Estimators

® With a general target policy 7, the target policy's value equals
S Eln(alS)E(R|A = 2, 5)] = 3 E[n(a|S)r(S. a)]
a a

where r(s,a) = E(RIA=a,S =)

Direct estimator

Importance sampling estimator

Doubly robust estimator
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Direct Estimator

® Given that the target policy’s value is given by
> E[n(alS)r(S, a)]
a

® The expectation can be approximated by the sample average, i.e.,

1 T—1
=30 Y In(alSsor(Se a)]
t=0

a

® The reward function can be replaced with some estimator r. This yields the direct
estimator

T-1
23 Y Ir(alS)R(Se. )
t=0

a
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Direct Estimator (Cont’d)

® r estimated using supervised learning

S(),Ag — Ro
51,A1 — R1

St_1,Ar_1 — Rt

® |oss function: least square/Huber loss

e Computer parameter that minimizes empirical loss
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Importance Sampling Estimator

® Given that the target policy’s value is given by
> E[r(alS)r(S, a)]
a

® By the change of measure theory, it equals

815) ] [TF(A\S) } [TF(A\S) }
E r(S,a)| =E r(S,A)| =E R
Sk [pefaigis ] =[5 e o] == 53
® This yields the following importance sampling (IS) estimator [Zhang et al., 2012]
1 = m(ASe)
- ~ ty
T = b(A:|S:)

for a given estimator b
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Importance Sampling Estimator (Cont’d)

The ratio 7(als)/b(a|s) is referred to as the importance sampling ratio

® |t measures the difference between the behavior and target policies

When m = b, the ratio equals 1 for any a and s

In general, the ratio centres at 1
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Importance Sampling Estimator (Cont’d)

® |n randomized studies, b is known

® |n observational studies, b needs to be estimated from data

e b estimated using supervised learning
S() — A
51 — A1

St—1 — At

® |oss function: logistic regression loss

e Computer parameter that minimizes empirical loss

21/60



Direct Estimator v.s. IS Estimator

¢ Bias/Variance Trade-Off

® The direct estimator has some bias, since r needs to be estimated from data

® The IS estimator has zero bias when b is known as in randomized studies

® The IS estimator might have a large variance when 7 differs significantly from b
® Suppose R = r(S, A) + € for some e independent of (S, A),

m(AS) o] _ 5 [(AIS) i
Var [b(A|S) R] =E [b(A|S) {R — r(S,A)}] + some term

2
= o’E [7;2((:\‘2))] + some term,

where o2 = Var(e)
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Extensions

® When 7 differs from b significantly, IS estimator suffers from large variance and
becomes unstable

Solutions sought by using self-normalized and/or truncated IS

Self-normalized 1S

T-1

Z At|st
At|st

t=

Z At|5t)
22 b(A/]S:)
® Equivalent to IS estimator in large samples, by noting that

Z At\St 7r(A|5) .
T b( At\St b(A|S) N

Stabilize the important sampling ratio in finite samples
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Extensions (Cont’d)

® Truncated IS

1 = x(AlS)

max(b(A¢|S;), €)

ts
t=0

for some e > 0
® Truncate the behavior policy whose value is smaller than &

® Avoid extremely large ratio, thus reducing the variance of the estimator
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Doubly Robust Estimator

® Direct estimator

1 T-1
=30 Y Im(alSR(S: )]
a t=0

requires r to be consistent

® |S estimator

requires b to be consistent

® Doubly robust (DR) estimator combines both, and requires either r or b to be
consistent (“doubly-robustness” property)
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Doubly Robust Estimator (Cont’d)

Consider the estimating function

= w(a|S)r(S, a m(AlS) — 7
¢(57A7R)—Za: (a|S)r(S,a) + B(A\S)[R (S, A)]

First term on the RHS is the estimating function of the direct estimator

Second term corresponds to the augmentation term

® Zero mean when F=r
® Debias the bias of the direct estimator
® Offering additional robustness against model misspecification of ¥

® DR estimator given by T—1 ZZ—:_OI &(St, At, Ry)
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Fact 1: Double Robustness

® The estimating function
qb S.AR)= g w(alS A\E;,a + ::EAAJAAE R — A\E;,ll

® In large sample size, DR estimator converges to E¢(S, A, R)
e When r = r, the augmentation term has zero mean. It follows that

E¢(S, A R) = ZE[T&'(a]S)r(S, a)] = target policy’s value

® \When B = b, it has the same mean as the IS estimator

E$(S,A R) =E [Z((:‘“;) R] +E Z =(alS)F(S, a) — ZE;"?; 7S, A)
_ o |7(AS) ] _ .
=E [b(A|S) R] = target policy’s value
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Fact 2: Efficiency

® When b = b, the estimating function

m(A[S)
b(A[S)

®(S,A,R) =) m(a|S)F(S,a) + [R —F(S,A)]

a

The MSE of DR estimator is proportional to the variance of ¢(S, A, R)

Var(¢(S, A, R)) = E[Var(¢(S, A, R)|S, A)] + Var[E(¢(S, A, R)|S, A)]

The first term on the RHS is independent of r

The second term is minimized when r = r

® A good working model for r improves the estimator’s efficiency

When r = r, the estimator achieves the efficiency bound [e.g., smallest MSE
among a class of regular estimators; see Tsiatis, 2007]
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Fact 3: Efficiency

® When b is estimated from data and the model is correctly specified, the estimator's

MSE would be generally smaller than the one that uses the oracle behavior policy
b [Tsiatis, 2007]

® FEstimating b yields a more efficient estimator, even if we know the oracle b
e Multi-armed bandit example without context information

® Objective: evaluate E(R|A = a) for a given a

® |S estimator with known Pr(A = a)

1A = a)R;
TPr(A; = a)

® |S estimator with estimated Pr(A = a) has a smaller asymptotic variance

T JVI(A: = a)R;
T—1
t—0 H(At = a)
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Assumption: No Unmeasured Confounders

e All three estimators (direct estimator, IS, DR) rely on the no unmeasured
confounders assumption

® They are biased when this assumption is violated

® |t requires all confounders that confound the action-reward relationship are included
in the state

® This assumption is cannot be verified in practice

® When violated, we may use some auxiliary variable (e.g., instrumental variables,
mediators) for consistent policy evaluation [Angrist et al., 1996, Pearl, 2009]
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Assumption: No Unmeasured Confounders (Cont’d)

LT
oo ao
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Lecture QOutline

3. OPE in Reinforcement Learning
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General OPE Problem

® Objective: Given an offline dataset {(S;;, Ai ¢, Ri¢) 1 <i<N,0<t< T}
generated by a behavior policy b, where i indexes the ith episode and t indexes the
tth time point, we aim to evaluate the mean return under a target policy ™

oo
E™ |> 'R | =EVT(Sp)
t=0
When ~ = 1, the task is assumed to be episodic

® We focus on the case where both 7r and b are stationary policies
® Challenge: Distributional shift
® |n the offline dataset, actions are generated according to b
® The target policy 7 we wish to evaluate is different from b
e Existing prediction algorithms (e.g., MC, TD) designed in online settings are not
applicable
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Recap: MC Prediction

Objective: learns V™ from experience under 7

MC Policy Evaluation: V(s) < average[Returns(s)]

Incremental update for every-visit MC prediction:
V(St) < V(St) + at[Gt — V(St)]

where o is ) at time t

1
#[Returns
The update can be performed after return G; is observed

i.e. after the episode is completed
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Recap: TD Prediction

Unlike MC methods, TD methods wait only until next time step
The simplest TD method (so called TD(0)) considers the update

V(St) < V(St) + at[Re + vV (Se4+1) — V(St)]

This update rule has Ry + 7 V/(S¢41) as the target

Considered as a bootstrap method: update in part based on an existing estimate
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Direct Estimator

® The target policy's value is given by EV™(Sy), or equivalently,
E[Y" n(al So) @™ (S0, )
a

® The expectation can be approximated via the empirical initial state distribution

Q-learning is an off-policy algorithm. Can be applied to learn Q™ offline

This yields the direct estimator

N
ZZ (a]Si0)Q(Si0,a)

® |t remains to compute @

36/60



Recap: Fitted Q-Ilteration in Offline Setting

Offline data: {(Sj ¢, Ait, Rit) : 0<t<T,1<i< N}
Fitted Q-lteration can be naturally applied by repeating
1. Compute Q as the argmin of

_ 2
arg mc;n Z [Ri,t + 7y max Q(Sit+1,a) — Q(Si, Ai.t)}
t

2. Seté:é

Designed for learning Q™™

® Do not require actions to follow the greedy policy
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Fitted Q-Evaluation [Le et al., 2019]

® Bellman equation

E[Re + vm(alSt4+1) Q™ (St+1, a)[Se, Al = QT (S¢, Atr)

Both LHS and RHS involves Q™
Repeat the following procedure
1. Compute Q as the argmin of

2

argmin > | Rie 7D m(a|Sie+1)Q(Sie41,2) — Q(Sie, A )
t a

2. St Q=Q
Designed for learning Q™

® Do not require actions to follow the target policy
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Other Direct Estimators

® Sieve-based estimator [Shi et al., 2020b]

® Use linear sieves to parametrize Q™
® Estimate regression coefficients by solving the Bellmen equation

e Kernel-based estimator [Liao et al., 2021]

® Use RHKSs to parametrize Q™
® Estimate parameters by solving a coupled optimization [Farahmand et al., 2016]

e Limiting distributions of value estimators are derived in the two papers
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Stepwise IS Estimator [Zhang et al., 2013]

® Consider episodic task where T is the termination time
e Standard MC prediction is not applicable under distributional shift

® |Importance sampling ratio needs to be employed

o [ 7(Ag|So)
E"Ry = E° b(AE\sf:)R"]
[7(Ao|So) w(A1|S1) R }
(

I _ b
ETR = B 5A[S0) b(A1/S1)

o [m(AdS))  w(AS)
ER, — gb|T(AlS0) R
‘ | b(Ao|So)  b(A]S:) "
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Stepwise IS Estimator (Cont’d)

® According to this logic, the target policy’s value can be represented by

T t
t w(AjlS;)
. LZ;, {JHO b(Aj[S;) } Rt]

® This yields the stepwise IS estimator

for a given estimator b computed using supervised learning algorithms

41/60



Limitation

Stepwise IS suffers from a large variance

In particular, the IS ratio at time t is the product of individual ratios from the initial
time to time t

® Variance of the ratio grows exponentially with respect to t, referred to as the curse
of horizon [Liu et al., 2018]

Extension: Doubly-robust estimator by [Jiang and Li, 2016]
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Pros & Cons of Direct v.s. Stepwise IS

® Stepwise IS is similar to an offline ® Direct estimator (DE) is similar to an
version of MC offline version of TD

e SIS learns from complete sequences ® DE can learn from incomplete

® SIS only works for episodic sequences
(terminating) environments ® DE works in continuing environments
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Pros & Cons of Direct v.s. Stepwise IS (Cont’d)

¢ Bias/Variance Trade-Off

® When b is known, stepwise IS is an unbiased estimator since

7(AolSo)  w(A:]St)
b(Ao[So)  b(A:|St)

E"R, = EP R:

® Direct estimator has some bias, since Q™ needs to be estimated from data

Stepwise IS suffers from curse of horizon and a large variance

® Direct estimator has a much lower variance
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Pros & Cons of Direct v.s.

Stepwise IS (Cont’d)

® Direct estimator exploits Markov &
stationary properties

® Relies on the Bellman equation
® More efficient in MDP environments

frame: 53, Obs: (0.018, 0.669, 0.286, 0.618)
Action: 1.0, Cumulative Reward: 47.0, Done: 1

w
e
N

X v

[,
Action=1

® SIS does not exploit these properties

® More flexible in non-MDP
environments (e.g., POMDP)

S0

“tiger-lef
Pr(o~TL | S0, listen)-0.85
Pr(o=TR | S1. listen)-0.15

S1

Pro=TL | S0. listen)~0.15.
Pro=TR | S1. listen)-0.85

Actions={ 0: listen,

)®) a 1: open-left,

& I 2: open-right}

Reward Function Observations

- Penalty for wrong opening: -100 - 10 hear the tiger on the left (TL)
- Reward for correct opening: +10 - to hear the tiger on the right(TR)

- Cost for listening action: -1
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Recap: RL Models

Model I: MDP Model II: Time-Varying MDP Model lil: Partially Observable MDP

Figure: Causal diagrams for MDPs, TMDPs and POMDPs. Solid lines represent the causal relationships.
Dashed lines indicate the information needed to implement the optimal policy. {H:}: denotes latent
variables. The parallel sign || indicates that the conditional probability function given parent nodes is equal.
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Marginalized IS Estimator

® As we have discussed, stepwise IS suffers from curse of horizon

Curse of horizon is unavoidable in general Non-Markov decision processes (e.g.,
POMDP)

Under some additional model assumptions (e.g., Markovianity & time-homogeneity),
it is possible to break the curse of horizon using marginalized IS estimator

Stepwise IS does not exploit these properties
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Marginalized IS Estimator (Cont’d)

® Stepwise IS uses the cumulative IS ratio

— w(AolSo)  m(A:|St)
E"Re = B? [b(Ao|so) " Ub(AdS) Rt}

® Under Markovianity (TMDP), marginalized IS uses the marginalized IS ratio

E™R, = Eb [p;(st’At)Rt] (1)
pt (St7 At)

where pF and p? are the marginal density functions of (S;, A;) under 7 and b

® The resulting marginalized IS estimator can be derived from (1)
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Marginalized IS Estimator

® Under Markovianity and time-homogeneity (MDP),

EV™(S) = EP Z%"w(tgi(‘f’ A g 2)

where poo denotes the limiting state-action distribution under b and the numerator
corresponds to the ~y-discounted state-action visitation probability

® The resulting marginalized IS estimator can be derived from (2)

® Marginal IS ratio can be estimated via minimax learning [Uehara et al., 2019]

® Closed-form expression is available when using linear sieves

e Coupled optimization can also be employed when using RKHSs [Liao et al., 2020]
e Alternatively, we can use RKHSs to parametrize the discriminator class, use neural

networks to parametrize the ratio and apply SGD for parameter estimation
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Double RL [Kallus and Uehara, 2019]

® Double RL extends DR in contextual bandits to the general RL problem

® Similar to DR, the estimator can be represented as
Direct Estimator + Augmentation Term

® Augmentation term is to debias the bias of direct estimator and offer protection
against model misspecification of Q; it relies on the marginalized IS ratio

e Similar to DR, the estimator is doubly-robust, e.g., consistent when either Q™ or
the marginalized IS ratio is correct

e Similar to DR, the estimator achieves the efficiency bound in MDPs
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Deeply-Debiased OPE [Shi et al., 2021b]

@ Direct Method
Double RL & CI

(Kallus and Uehara)

Deeply-Debiased
Estimator & CI

Bias

Variance

Requirement of Q-estimator

® Ensures the bias decays much faster than standard deviation
e Allows to provide valid uncertainty quantification (e.g., confidence interval) 51/60



Other Topics

® Evaluation of the expected return under optimal policy

® Inference is challenging in nonregular settings where the optimal policy is not unique
m-out-of-n bootstrap [Chakraborty et al., 2013]
Martingale-based method [Luedtke and Van Der Laan, 2016, Shi et al., 2020b]
Subagging-based method [Shi et al., 2020a]
e Confounded OPE

® Confounded POMDP [Tennenholtz et al., 2020, Bennett and Kallus, 2021, Shi et al.,

2021a]

® Confounded MDPs [Zhang and Bareinboim, 2016, Wang et al., 2021, Fu et al., 2022,
Shi et al., 2022]
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Summary

Fitted Q-evaluation
Stepwise IS/Marginalized IS

Off-policy evaluation

Direct estimator

Importance sampling estimator Double reinforcement learning

Doubly robust estimator Deeply-debiased estimator
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Summary

Value Policy
Monte Carlo Iteration Iteration
Dyna-Q I AlphaGo

Tree Search

Optimistic

Foundation
Lecture 2

'alue-based R
Lectures 3-7

Model-based RL
Lecture 9

Model-free RL

Temporal Difference
., Q-Learning

MDP Order
| REINFORCE | B I

Actor-Critic |

‘I TRPO |

Policy-based R
Lecture 8

I Direct Method I
Sampling
Double Robust

Pessimistic

Moo Principle
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