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Lecture Outline (Cont’d)

Figure: Causal diagrams for MDPs, TMDPs and POMDPs. Solid lines represent the causal relationships.
Dashed lines indicate the information needed to implement the optimal policy. {Ht}t denotes latent
variables. The parallel sign ∥ indicates that the conditional probability function given parent nodes is equal.
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Sequential Decision Making
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Atari Games

• St : images

• At : Legal game actions

• Rt : Scores & lives
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Diabetes

• Management of Type-I diabetes

• Subject: Patients with diabetes.

• Objective: Develop treatment
policy to determine whether
patients need to inject insulin at
each time to improve their health

• St : Patient’s glucose levels, food
intake, exercise intensity

• At : Insulin doses injected

• Rt : Index of Glycemic Control
(function of patient’s glucose level)
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Intern Health Study

• Physical & mental health
management

• Subject: First-year medical interns

• Objective: Develop treatment policy
to determine whether to send certain
text messages to interns to improve
their health

• St : Interns’ mood scores, sleep
hours and step counts

• At : Send text notifications or not

• Rt : Mood scores or step counts
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Ridesharing: Order-Dispatching

• St : Supply (drivers: availability, location) and demand (call orders: origin,
destination)

• At : Order-dispatching: match a driver with an order

• Rt : Answer rate/Completion rate/Drivers’ income
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RL v.s. Supervised Learning

Supervised learning consider

• Prediction problems

• examples provided by a supervisor

• Independent data
• Applications:

• Voice recognition
• Image classification

RL is concerned with

• Sequential decision making

• No supervisor, only a reward signal

• Time-dependent data
• Applications:

• Games
• Robotics
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Introduction to MDPs

• Markov decision processes formally describe an environment for reinforcement
learning where the environment is fully-observable

• The current state-action pair completely characterizes the process (Markov
property)

• Most RL problems can be formalised as MDPs, e.g.,
• Bandits are MDPs with independent transitions
• Many non-Markov decision processes (e.g., time-varying MDPs) can be converted

into MDPs by
• including time in the state
• concatenating measurements over multiple times

12 / 59



(Time-Homogeneous) Markov Chains

Definition

{St}t forms a time-homogeneous Markov chain if and only if

• Pr(St+1|St) = Pr(St+1|S1, · · ·,St) (Markov property)

• Pr(St+1|St = s) = Pr(St |St−1 = s) (time-homogeneity)

More on the Markov property:

• The future is independent of the past given the present

• The current state captures all relevant information from the history

• Once the state is known, the history may be thrown away

• The state can be viewed as a sufficient statistic of the history
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Example: Random Walk on a Line

• You go into a casino with £k, and at each time step, you bet £1 on a fair game

• For each game, you win or lose with probability 0.5. The outcomes are independent
across different games.

• You leave when you are broke or have £n

• A very popular model in finance to model stock price
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Example: Two-Dimensional Random Walk

• The drunkard starts at a
“home” vertex 0

• Then independently
chooses at random a
neighbouring vertex (left,
right, forward, backward)
to walk next at each time
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Example: High-Dimensional Random Walk

• A drunk man will find his way home, but a drunk bird may get lost forever

• In a two-dimensional space, the drunkard will return home infinitely many times∑
t≥0

I(St = S0) = ∞

• In a three-dimensional space, the bird can only return home some finite number of
times. After its last return home the bird then flies off never to return again∑

t≥0

I(St = S0) < ∞
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Causal Diagram

• Markov chain

• X → Y if and only if X directly impacts Y
• X and Y are independent if and only if (iff) X and Y are d-separated
i.e., there does not exist a connecting path between X and Y

• X and Y are conditionally independent given Z iff X and Y are d-separated by
Z . In our examples, it requires Z to block every path between X and Y .
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Causal Diagram (Cont’d)

Without the Markov property
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Markov Decision Processes

Definition

{St ,At ,Rt}t forms a Markov decision process if and only if

• Pr(St+1,Rt |At ,St) = Pr(St+1,Rt |At ,St ,Rt−1,At−1,St−1, · · ·) (Markovianity)

• Pr(St+1,Rt |At = a,St = s) = Pr(St ,Rt−1|At−1 = a,St−1 = s)
(time-homogeneity)

• The current state-action pair captures all relevant information from the history

• When At depends the history only through St , {St ,At ,Rt}t forms a Markov chain.
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Markov Assumption
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Markov Assumption
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Stationarity Assumption
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OpenAI Gym Example: CartPole

• St : x (Position); v (velocity); θ
(Angle); ϖ (Angular velocity)

• At : Pushing to the right or left

• Rt : Binary, depending on whether
|θ| > 15 deg or not

• Rt depends on the history only through θt
• (St ,At) captures all relevant information (position, velocity, acceleration)
• The dependencies are homogeneous over time (according to laws of physics)
• Most OpenAI Gym Examples satisfy the MDP model assumption
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Bandits Example: Precision Medicine

• Patients’ states (baseline characteristics) are independent
• A patient’s reward (outcome) depends only on their own state-treatment pair
• State-treatment-reward triples are identically distributed
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MDP vs Contextual Bandits
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MDP v.s. Contextual Bandits (Cont’d)
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Time-Varying MDPs

• The time-homogeneity assumption is likely to be violated in real applications (e.g.,
mobile health, ridesharing)

• Nonstationarity is the case most commonly encountered in reinforcement learning
[Sutton and Barto, 2018]

Definition

{St ,At ,Rt}t forms a time-varying Markov decision process iff

Pr(St+1,Rt |At ,St) = Pr(St+1,Rt |At ,St ,Rt−1,At−1,St−1, · · ·) (Markovianity)
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Causal Diagram: TMDP

Figure: Causal diagrams for MDPs. Solid lines represent causal relationships. The parent nodes for the
action is not specified in the model. At could either depend on St or the history.
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Mobile Health Example: Intern Health Study

• Physical & mental health
management

• Subject: First-year medical interns

• St : Interns’ mood scores, sleep
hours and step counts

• At : Send text notifications or not

• Rt : Mood scores or step counts

• The study lasts for half an year

• Treatment effects are usually time-inhomogeneous (decays over time)

• Leading to TMDPs
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Ridesharing Example: Order-Dispatching

• St : Supply (drivers: availability, location) and demand (call orders: origin,
destination)

• At : Order-dispatching: match a driver with an order
• Rt : Answer rate/Completion rate/Drivers’ income
• Weekday-weekend differences, peak and off-peak differences lead to
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Partially Observable MDPs

• Difference between MDPs and POMDPs: states fully-observable or
partially-observable

• The fully-observability assumption might be violated in practice

• In healthcare, patients’ characteristics might not be fully recorded
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Causal Diagram: POMDP

Figure: Causal diagrams for MDPs. Solid lines represent causal relationships. {Ht}t denotes latent states.
The parent nodes for the action is not specified in the model. At could either depend on St or the history.
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Example: the Tiger Problem
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Example: the Tiger Problem (Cont’d)

Suppose we choose to listen at each time

Figure: Causal diagram for the tiger problem. TL denotes the tiger location. St denotes the inferred
location of the tiger at time t.
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Converting non-MDPs into MDPs

• MDP assumptions: Markovianity & time-homogeneity

• To ensure time-homogeneity: include time variables in the state

• In ridesharing, include dummy variables weekdays/weekends & peak/off-peak hours

• In mobile health, use more recent observations

• To ensure Markovianity: concatenate measurements over multiple time steps
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Stacking Frames in Atari Games

Input is a stack of 4 most recent frames [Mnih et al., 2015]
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Concatenating Observations in Diabetes Study

• Management of Type-I diabetes

• Subject: Patients with diabetes.

• St : Patient’s glucose levels, food
intake, exercise intensity

• At : Insulin doses injected

• Rt : Index of Glycemic Control
(function of patient’s glucose level)

• Markovianity holds when concatenating 4 most recent observations [Shi et al., 2020]

• Concatenating observations also yield better policies
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The Agent’s Policy

• The agent implements a mapping πt from the observed data to a probability
distribution over actions at each time step

• The collection of these mappings π = {πt}t is called the agent’s policy:

πt(a|s̄) = Pr(At = a|S̄t = s̄),

where S̄t = (St ,Rt−1,At−1,St−1, · · ·,R0,A0,S0) is the set of observed data
history up to time t.

• History-Dependent Policy: πt depends on S̄t .

• Markov Policy: πt depends on S̄t only through St .

• Stationary Policy: π is Markov & πt is homogeneous in t, i.e., π0 = π1 = · · ·.
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The Agent’s Policy (Cont’d)
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The Agent’s Policy (Cont’d)

• The collection of these mappings π = {πt}t is called the agent’s policy:

πt(a|s̄) = Pr(At = a|S̄t = s̄),

where S̄t = (St ,Rt−1,At−1,St−1, · · ·,R0,A0,S0).

• Random Policy: πt(•|s̄) is a probability distribution over the action space

• Deterministic Policy: each probability distribution is degenerate
• i.e., for any t and s̄, πt(a|s̄) = 1 for some a and 0 for other actions
• use πt(s̄) to denote the action that the agent selects
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Goals, Objectives and the Return

The agent’s goal: find a policy that maximizes the expected return received in long run

Definition (Return, Average Reward Setting)

The return Gt is the average reward from time-step t.

Gt = lim
T→∞

1

T

t+T−1∑
i=t

Ri .

Definition (Return, Discounted Reward Setting)

The return Gt is the cumulative discounted reward from time-step t.

Gt =

+∞∑
i=0

γ iRi+t .
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Discounted Reward Setting (Our Focus)

Definition (Return)

The return Gt is the cumulative discounted reward from time-step t.

Gt =

+∞∑
i=0

γ iRi+t .

• The discount factor 0 ≤ γ < 1 represents the trade-off between immediate and
future rewards.

• The value of receiving reward R after k time steps is γkR.

• γ = 0 leads to “myopic” evaluation

• γ close to 1 leads to “far-sighted” evaluation (close to the average reward)
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Why Discount?

• Mathematically convenient: avoids infinite returns.

• Computationally convenient: easier to develop practical algorithms.

• In finance, immediate rewards earn more interests than delayed rewards
• Animal/human behaviour shows preference for immediate reward

• Go to bed late and you’ll be tired tomorrow
• Eat heartily in winter and you’ll need to trim fat in summer

• Possible to set γ = 1 in finite horizon settings (number of decision steps is finite;
e.g., precision medicine applications where patients receive only a finite number of
treatments)
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(State) Value Function

Definition

The (state) value function V π(s) is expected return starting from s under π,

V π(s) = Eπ(Gt |St = s) = Eπ

(
+∞∑
i=0

γ iRi+t |St = s

)
.

• V π is independent of the time t in its definition, under time-homogeneity

• Eπ denotes the expectation assuming the system follows π
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Bellman Equation

Definition

The Bellman equation for the state value function is given by

V π(s) = Eπ{Rt + γV π(St+1)|St = s}.

• The value function can be decomposed into two parts:
• Immediate reward R
• discounted value of success state γVπ(St+1)

• Forms the basis for value evaluation (more in later lectures)
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Bellman Equation (Proof)

V π(s) = Eπ(Gt |St = s)
= Eπ(Rt + γ(Rt+1 + γRt+2 + · · ·)|St = s)
= Eπ(Rt |St = s)+ γEπ(Gt+1|St = s)
= Eπ(Rt |St = s)+ γEπ{Eπ(Gt+1|St+1,St)|St = s}
= Eπ(Rt |St = s)+ γEπ{Eπ(Gt+1|St+1)|St = s}
= Eπ(Rt |St = s)+ γEπ{V π(St+1)|St = s},

The second last equation holds due to the Markov assumption.
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Bellman Optimality Equation

Definition

The Bellman optimality equation for the state-value function is given by

V πopt
(s) = max

a
E{Rt + γV πopt

(St+1)|At = a,St = s}.

• According to the Bellman equation,

V πopt
(s) = Eπopt{Rt + γV πopt

(St+1)|St = s}.

• The optimal policy selects the action that maximizes the value: Eπopt
= maxa E
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Existence of Optimal Stationary Policy in MDPs

Theorem (See also Puterman [2014], Theorem 6.2.10)

Assume the state-action space is discrete and the rewards are bounded. Then there
exists an optimal stationary policy πopt = {πopt

t }t such that

• πopt
1 = πopt

2 = · · · = πopt
t = · · ·

• EπoptG0 ≥ EπG0 for any history-dependent policy π

• When the system dynamics satisfies the Markov and time-homogeneity
assumption, so does the optimal policy.

• Lay the foundation for most existing RL algorithms

• Simplify the calculation since it suffices to focus on stationary policies
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Existence of Optimal Markov Policy in TMDPs

Theorem (See also Puterman [2014], Theorem 5.5.1)

Assume the state-action space is discrete. Then there exists an optimal Markov policy
πopt = {πopt

t }t such that

• each πopt
t depends on the data history only through St

• EπoptG0 ≥ EπG0 for any history-dependent policy π

When the system dynamics satisfies the Markov assumption, so does the optimal policy.
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In TMDPs
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In MDPs
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Summary

Figure: Causal diagrams for MDPs, TMDPs and POMDPs. Solid lines represent the causal relationships.
Dashed lines indicate the information needed to implement the optimal policy. {Ht}t denotes latent
variables. The parallel sign ∥ indicates that the conditional probability function given parent nodes is equal.
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Seminar

• Solution to HW1 (Deadline: Web 12pm)

• Demonstrating the difference between the form of optimal policy in MDPs and that
in POMDPs using the Tiger problem

• A sketch of the proof of the Existence of the Optimal Stationary Policy
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Questions
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