Reinforcement Learning

Lecture 2: Foundations of Reinforcement Learning
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Lecture QOutline

1. General Reinforcement Learning (RL) Problems

Markov Decision Processes (MDPs)
Time-Varying MDPs and Partially Observable MDPs

Policy, Return and Value

@ & b

The Existence of the Optimal Policy
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Lecture Outline (Cont’d)

Model I: MDP Model II: Time-Varying MDP Model lil: Partially Observable MDP

Figure: Causal diagrams for MDPs, TMDPs and POMDPs. Solid lines represent the causal relationships.

Dashed lines indicate the information needed to implement the optimal policy. {H:}: denotes latent

variables. The parallel sign || indicates that the conditional probability function given parent nodes is equal.
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1. General Reinforcement Learning (RL) Problems
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Sequential Decision Making

Time t-1 Time t Time t+1
? ? ?
- ﬂ a a
- - -
Action R,_, Action R, Action R,
Ay Reward A, Reward A Reward ...
Environment \Q _— \Q —_— \{/ _—
State S,_, State S, State S,

Objective: find an optimal policy that maximizes the cumulative reward
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Atari Games

NN

wim

e S;: images
e A;: Legal game actions

® R;: Scores & lives
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Diabetes

® Management of Type-I diabetes
e Subject: Patients with diabetes.

® Objective: Develop treatment
policy to determine whether
patients need to inject insulin at
each time to improve their health

e S,: Patient's glucose levels, food
intake, exercise intensity

e A;: Insulin doses injected

® R;: Index of Glycemic Control
(function of patient’s glucose level)
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Intern Health Study

® Physical & mental health

Dashboard

® Subject: First-year medical interns On a scale of 1-10 how
was your mood today?

® Objective: Develop treatment policy
to determine whether to send certain
text messages to interns to improve . = = highest
their health i

® S;: Interns’ mood scores, sleep
hours and step counts

Cance!

e A;: Send text notifications or not

(i) App Dashboard (ii) Mood EMA

® R;: Mood scores or step counts
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Ridesharing: Order-Dispatching

Centralized Decision Platform
Trips/year Order list Drlver list
Passenger Occupancy
3 Request Status
Matching
& 10678+ 487578+ & 40billion+ | W a

vehicle trajectory data/day data processed/day routing requests/day
Pickup & Delivery

® S;: Supply (drivers: availability, location) and demand (call orders: origin,
destination)
e A;: Order-dispatching: match a driver with an order

® R;: Answer rate/Completion rate/Drivers’ income
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RL v.s. Supervised Learning

Supervised learning consider RL is concerned with
¢ Prediction problems ® Sequential decision making
® examples provided by a supervisor ® No supervisor, only a reward signal
¢ Independent data ¢ Time-dependent data
® Applications: ® Applications:
® \oice recognition ® Games
® Image classification ® Robotics
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2. Markov Decision Processes (MDPs)
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Introduction to MDPs

® Markov decision processes formally describe an environment for reinforcement
learning where the environment is fully-observable

® The current state-action pair completely characterizes the process (Markov
property)

® Most RL problems can be formalised as MDPs, e.g.,

® Bandits are MDPs with independent transitions
® Many non-Markov decision processes (e.g., time-varying MDPs) can be converted
into MDPs by
® including time in the state
® concatenating measurements over multiple times
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(Time-Homogeneous) Markov Chains

{S¢}+ forms a time-homogeneous Markov chain if and only if
® Pr(S:+1|St) = Pr(S¢+1/S1,- -+, St) (Markov property)
® Pr(S:4+1|St = s) = Pr(S¢|S¢—1 =s) (time-homogeneity)

More on the Markov property:
® The future is independent of the past given the present
® The current state captures all relevant information from the history

® Once the state is known, the history may be thrown away

The state can be viewed as a sufficient statistic of the history
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Example: Random Walk on a Line

® You go into a casino with £k, and at each time step, you bet £1 on a fair game

For each game, you win or lose with probability 0.5. The outcomes are independent
across different games.

You leave when you are broke or have £n
0.5 0.5 0.5 0.5 A/Om
0.5 0.5 0.5 0.5 0.5

A very popular model in finance to model stock price
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Example: Two-Dimensional Random Walk

® The drunkard starts at a
“home” vertex 0

® Then independently
chooses at random a
neighbouring vertex (left,
right, forward, backward)
to walk next at each time
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Example: High-Dimensional Random Walk

® A drunk man will find his way home, but a drunk bird may get lost forever

® |n a two-dimensional space, the drunkard will return home infinitely many times

> (St = Sp) = oo

>0

® In a three-dimensional space, the bird can only return home some finite number of
times. After its last return home the bird then flies off never to return again

> (St = Sp) < oo
t>0
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Causal Diagram

Markov chain

O—O—0O—E

X — Y if and only if X directly impacts Y

X and Y are independent if and only if (iff) X and Y are d-separated
i.e., there does not exist a connecting path between X and Y

X and Y are conditionally independent given Z iff X and Y are d-separated by
Z. In our examples, it requires Z to block every path between X and Y.
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Causal Diagram
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Causal Diagram (Cont’d)

Without the Markov property
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Markov Decision Processes

Definition
{S8¢, A¢, R: }+ forms a Markov decision process if and only if
® Pr(St+1, Re|A¢, St) = Pr(Set1, Re|Ae, St Re—1,At—1,Se—1,+++) (Markovianity)
® Pr(St+1, Rt|A: = a,St = s) = Pr(S¢, Re—1|A—1 = a,5;—1 = s)
(time-homogeneity)
® The current state-action pair captures all relevant information from the history

® When A; depends the history only through S, {S¢, A¢, R} forms a Markov chain.
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Markov Assumption
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Markov Assumption
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Stationarity Assumption
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OpenAl Gym Example: CartPole

frame: 53, Obs: (0.018, 0.669, 0.286, 0.618)
Action: 1.0, Cumulative Reward: 47.0, Done: 1

¢ S;: x (Position); v (velocity); 6
(Angle); =o (Angular velocity)

9 N ® A;: Pushing to the right or left
:7\ ® R;: Binary, depending on whether
OI - |0| > 15deg or not
X v
Action=1

R: depends on the history only through 6,

(S¢, A¢) captures all relevant information (position, velocity, acceleration)
The dependencies are homogeneous over time (according to laws of physics)
Most OpenAl Gym Examples satisfy the MDP model assumption
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Bandits Example: Precision Medicine

Patients

—
—
—

® Patients’ states (baseline characteristics) are independent

e A patient’s reward (outcome) depends only on their own state-treatment pair

e State-treatment-reward triples are identically distributed

-\
v
Treatment A

Treatment B

Treatment C

25 /59



MDP vs Contextual Bandits




MDP v.s. Contextual Bandits (Cont’d)

Contextual Bandits

Multi-Armed
Bandits
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3. Time-Varying MDPs and Partially Observable MDPs
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Time-Varying MDPs

® The time-homogeneity assumption is likely to be violated in real applications (e.g.,
mobile health, ridesharing)

® Nonstationarity is the case most commonly encountered in reinforcement learning
[Sutton and Barto, 2018]

Definition

{St, A¢, R: }+ forms a time-varying Markov decision process iff

Pr(St11, Rt|At, St) = Pr(Siy1, Re|At, St, Re—1, At—1,S¢-1,°*+) (Markovianity)
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Causal Diagram: TMDP

Figure: Causal diagrams for MDPs. Solid lines represent causal relationships. The parent nodes for the
action is not specified in the model. A; could either depend on S; or the history.

30/59



Mobile Health Example: Intern Health Study

® Physical & mental health
management

® Subject: First-year medical interns

e S;: Interns’ mood scores, sleep
hours and step counts

e A;: Send text notifications or not
® R;: Mood scores or step counts

® The study lasts for half an year

131PM

Dashboard

On a scale of 1-10 how
was your mood today?

(i) App Dashboard (i) Mood EMA

® Treatment effects are usually time-inhomogeneous (decays over time)

® | eading to TMDPs

Notifications
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Ridesharing Example: Order-Dispatching

Centralized Decision Platform t

- . Trips/year Order list Drlver list
Passenger Occupancy aPs
Request Status
S AA
hd

Matchlng
location points/day

Pickup & Delivery

vehicle trajectory data/day data processed/day. routing requests/day

St Supply (drivers: availability, location) and demand (call orders: origin,
destination)

A;: Order-dispatching: match a driver with an order

R:: Answer rate/Completion rate/Drivers’ income

Weekday-weekend differences, peak and off-peak differences lead to
time-inhomogeneity
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Partially Observable MDPs

e Difference between MDPs and POMDPs: states fully-observable or
partially-observable

® The fully-observability assumption might be violated in practice

® In healthcare, patients’ characteristics might not be fully recorded
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Causal Diagram: POMDP

Figure: Causal diagrams for MDPs. Solid lines represent causal relationships. {H;}: denotes latent states.
The parent nodes for the action is not specified in the model. A; could either depend on S; or the history.
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Example: the Tiger Problem

SO
“tiger-left”
Pr(o=TL | SO, listen)=0.85
B IR Bl listeni 8 |5

Actions={ 0: listen,
- 1: open-left,
2: open-right}

Reward Function Observations
- Penalty for wrong opening: -100 - to hear the tiger on the lefi (TL)
- Reward for correct opening: +10 - to hear the tiger on the right(TR)

- Cost for listening action: -1
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Example: the Tiger Problem (Cont’d)

090

TL

Suppose we choose to listen at each time

Figure: Causal diagram for the tiger problem. TL denotes the tiger location. S; denotes the inferred
location of the tiger at time t.
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Converting non-MDPs into MDPs

MDP assumptions: Markovianity & time-homogeneity

To ensure time-homogeneity: include time variables in the state

In ridesharing, include dummy variables weekdays/weekends & peak/off-peak hours

In mobile health, use more recent observations

To ensure Markovianity: concatenate measurements over multiple time steps
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Stacking Frames in Atari Games

Input is a stack of 4 most recent frames [Mnih et al., 2015]

LIVES

B NI I

A0 N3 DX
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®
&
2
2
«

B NEIK
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Concatenating Observations in Diabetes Study

® Management of Type-I diabetes
® Subject: Patients with diabetes.

¢ ot
L T S T T T

e S;: Patient’s glucose levels, food
intake, exercise intensity

e A;: Insulin doses injected

* R.: Index of Glycemic Control | —_ | "™~ ">~ =~ |~
(function of patient’s glucose level)

® Markovianity holds when concatenating 4 most recent observations [Shi et al., 2020]

e Concatenating observations also yield better policies
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4. Policy, Return and Value
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The Agent’s Policy

® The agent implements a mapping 7; from the observed data to a probability
distribution over actions at each time step

® The collection of these mappings ™ = {7}, is called the agent’s policy:
7rt(a|§) = Pr(At = a|§t = §),

where S; = (S;, R;_1,A;_1,S:_1,+ -, Ro, Ag, Sp) is the set of observed data
history up to time t.

e History-Dependent Policy: 7; depends on S;.
e Markov Policy: 7r; depends on S; only through S;.

e Stationary Policy: 7 is Markov & 7 is homogeneous in t, i.e., mg =71 = - - -.
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The Agent’s Policy (Cont’d)

History-dependent policy

Markov
policy

Stationary
policy
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The Agent’s Policy (Cont’d)

® The collection of these mappings @ = {7} is called the agent’s policy:
7Tt(a|§) = Pr(At = a|§t = §),
where ~§l‘ = (St7 Rt—la At—la St—la Y RO) A07 SO)

¢ Random Policy: m¢(®|5) is a probability distribution over the action space

® Deterministic Policy: each probability distribution is degenerate

® je., for any t and §, m(als) = 1 for some a and 0 for other actions
® use m(5) to denote the action that the agent selects
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Goals, Objectives and the Return

The agent's goal: find a policy that maximizes the expected return received in long run

Definition (Return, Average Reward Setting)

The return G; is the average reward from time-step t.

Definition (Return, Discounted Reward Setting)

The return G; is the cumulative discounted reward from time-step t.

+oo

(;t = :E:: i i+t

i=0
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Discounted Reward Setting (Our Focus)

Definition (Return)

The return G; is the cumulative discounted reward from time-step t.

+ oo
Gt — Z 'Ri+t'
i—0

The discount factor 0 < v < 1 represents the trade-off between immediate and
future rewards.

The value of receiving reward R after k time steps is v¥R.

= 0 leads to "myopic”’ evaluation

close to 1 leads to “far-sighted” evaluation (close to the average reward)
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Why Discount?

¢ Mathematically convenient: avoids infinite returns.
e Computationally convenient: easier to develop practical algorithms.
® In finance, immediate rewards earn more interests than delayed rewards

¢ Animal/human behaviour shows preference for immediate reward

® Go to bed late and you'll be tired tomorrow
® Eat heartily in winter and you'll need to trim fat in summer

® Possible to set v = 1 in finite horizon settings (number of decision steps is finite;
e.g., precision medicine applications where patients receive only a finite number of
treatments)
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(State) Value Function

Definition
The (state) value function V™(s) is expected return starting from s under 7,

V™(s) = E™(G;|S; = s) (Z iRii¢|S: = s)

® V7 is independent of the time t in its definition, under time-homogeneity

e [E™ denotes the expectation assuming the system follows 7
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Bellman Equation

Definition

The Bellman equation for the state value function is given by
VTr(S) = ]Eﬂ-{Rt + V"(St+1)|$t = S}.

® The value function can be decomposed into two parts:

® Immediate reward R
® discounted value of success state vV 7 (S;41)

® Forms the basis for value evaluation (more in later lectures)
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Bellman Equation (Proof)

V™ (s)

&=

E™(G¢|S: = s)

E™(R: + 7(Ret1+ YReq2 + -+ +)|Se = 5)

"(R¢|St = s) + VE™(G+1|St = s)

"(Re|St = s) + VE™{E"(Gt+1[Se+1, St)|Se = s}
T(Re|St = 5) + VE™{E"(Gt41[Se+1)[Se = s}

E™(R¢|St = s) + YE™{V™(S¢+1)|St = s},

E &

The second last equation holds due to the Markov assumption.
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Bellman Optimality Equation

Definition
The Bellman optimality equation for the state-value function is given by

V™™ (s) = maxE{R; + 7 V™" (S¢41)|Ac = a, S; = s}.

® According to the Bellman equation,
V™ (s) = E™"{R, + V™" (5:41)|S: = s}.

® The optimal policy selects the action that maximizes the value: E™™ = maxa E
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5. The Existence of the Optimal Policy

51/59



Existence of Optimal Stationary Policy in MDPs

Theorem (See also Puterman [2014], Theorem 6.2.10)

Assume the state-action space is discrete and the rewards are bounded. Then there
exists an optimal stationary policy 7wt = {w "'}, such that

[ ] ﬂ-fpt_ﬂ'gpt:...—ﬂ'?pt_...
e E™ Gy > E™Gy for any history-dependent policy 7

When the system dynamics satisfies the Markov and time-homogeneity
assumption, so does the optimal policy.

Lay the foundation for most existing RL algorithms

Simplify the calculation since it suffices to focus on stationary policies
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Existence of Optimal Markov Policy in TMDPs

Theorem (See also Puterman [2014], Theorem 5.5.1)
Assume the state-action space is discrete. Then there exists an optimal Markov policy
woPt = {7 {P*}, such that

e each wiP* depends on the data history only through S;

e E™ Gy > E™ Gy for any history-dependent policy w

When the system dynamics satisfies the Markov assumption, so does the optimal policy.
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In TMDPs

History-Dependent Policy

Markov Policy

Pt

Stationary
Policy
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In MDPs

History-Dependent Policy

Markov Policy

oPt

Stationary
Policy
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Summary

Model I: MDP Model II: Time-Varying MDP Model lil: Partially Observable MDP

Figure: Causal diagrams for MDPs, TMDPs and POMDPs. Solid lines represent the causal relationships.
Dashed lines indicate the information needed to implement the optimal policy. {H:}: denotes latent
variables. The parallel sign || indicates that the conditional probability function given parent nodes is equal.
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Seminar

e Solution to HW1 (Deadline: Web 12pm)

® Demonstrating the difference between the form of optimal policy in MDPs and that
in POMDPs using the Tiger problem

Pr(o=TL | S0, listen)-0.85
Pr(o~TR en)-0.15

Actions={ 0: listen,
)®) S 1: open-left,
2: open-right}

( ™

[(
Reward Function Observations
- Penalty for wrong opening: -100 - to hear the tiger on the lefi (TL)
- Reward for correct opening: +10 - to hear the tiger on the right(TR)

- Cost for listening action: -1

® A sketch of the proof of the Existence of the Optimal Stationary Policy
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