
ST455: Reinforcement Learning
Lecture 3: Elementary Solution Methods
Dynamic Programming and Monte Carlo

Chengchun Shi

1 / 65

Lecture Outline

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

2 / 65

Lecture Outline (Cont’d)

Dynamic Programming (DP) Monte Carlo (MC)

3 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

4 / 65

Learning v.s. Planning

Two fundamental problems in sequential decision making
• Planning

• A model of the environment (e.g., state transition, reward function) is known
• The agent performs computations with its model, without any external interaction
• a.k.a. deliberation, reasoning, introspection, pondering, thought, search
• Example: Dynamic Programming

• Learning
• The environment is initially unknown
• The agent interacts with the model
• The agent learns the optimal policy from experience
• Example: Monte Carlo methods, temporal difference learning, policy-based

learning, model-based learning

5 / 65

Example: Go Game

• Planning: Rules of Go are known

• Exhaustive search of the optimal move

• No need to play Go with others

• Learning: No need to know the rules

• Learn the optimal move from experience

• Practice makes perfect

6 / 65

Models: Finite MDPs

• Environment modelled by a finite MDP ⟨S,A,P,R, γ⟩
• MDP model assumption: Markovianity & time-homogeneity

• S: state space (a finite set of states)

• A: action space (a finite set of actions)

• P : state transition probability matrix, Pa
ss′ = Pr(St+1 = s′|At = a,St = s)

• R: reward function, Ra
s = E(Rt |At = a,St = s)

• γ: discounted factor ∈ [0, 1], allowed to be 1 if all sequences terminate (e.g., finite
horizons)

• Dynamic Programming (DP) and Monte Carlo methods (MC) are equally
applicable to settings with continuous state or action space

7 / 65

Bellman Equations

• Bellman equation for the (state) value function:

V π(s) = Eπ[Rt + γV π(St+1)|St = s],

• or equivalently,

V π(s) =
∑
a∈A

π(a|s)
[
Ra

s + γ
∑
s′
Pa

ss′V
π(s′)

]
.

• Bellman optimality equation for the optimal value function:

V πopt
(s) = max

a
E[Rt + γV πopt

(St+1)|At = a,St = s],

• or equivalently,

V πopt
(s) = max

a∈A

[
Ra

s + γ
∑
s′
Pa

ss′V
πopt

(s′)
]
.

8 / 65

Bellman Equation: The Random Walk Example

• Consider a simple random walk on a path:

• Reward for transition to State S of value 1, zero reward for other transitions
• Bellman equations:

Vπ(A) = Eπ[Rt + γVπ(St+1)|St = A] = γVπ(B)

Vπ(B) = Eπ[Rt + γVπ(St+1)|St = B] =
γ

2
Vπ(C) +

γ

2
Vπ(A)

...

Vπ(S) = Eπ[Rt + γVπ(St+1)|St = S] = 1

9 / 65

Bellman Optimality Equation: Random Walk

• The random walk example:

• Reward for transition to State S of value 1, zero reward for other transitions
• Bellman optimality equations:

Vπopt

(A) = max
a

E[Rt + γVπopt

(St+1)|At = a,St = A] = γVπopt

(B)

Vπopt

(B) = max
a

E[Rt + γVπopt

(St+1)|At = a,St = B] = γVπopt

(C)

...

Vπopt

(S) = max
a

E[Rt + γVπopt

(St+1)|At = a,St = S] = 1

10 / 65

State-Action Value Function

Definition

The state-action value function (better known as the Q-function) is expected return
starting from s and a under π,

Qπ(s, a) = Eπ(Gt |At = a,St = s) = Eπ

(
+∞∑
i=0

γ iRi+t |At = a,St = s

)
.

• Qπ is independent of the time t in its definition, under time-homogeneity

• Qπ is the state value V π under a Markov policy that implements a at the first time
and follows π afterwards

• Reduces to action value function Eπ(Rt |At = a) in Lecture 1 when γ = 0, S = ∅

11 / 65

State-Action Value Function (Cont’d)

Relationships between V π and Qπ

• Qπ → V π:

V π(s) = Eπ(Gt |St = s) =
∑
a∈A

π(a|s)Eπ(Gt |At = a,St = s) =
∑
a∈A

π(a|s)Qπ(s, a)

• V π → Qπ:

Qπ(s, a) = E(Rt |At = a,St = s)+ γE(Gt+1|At = a,St = s)
= E(Rt |At = a,St = s)+ γE[Eπ(Gt+1|St+1)|At = a,St = s]
= E[Rt + γV π(St+1)|At = a,St = s]

12 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

13 / 65

Dynamic Programming

Definition (Dynamic Programming)

A collection of algorithms used to compute optimal policies given perfect knowledge of
the environment

• Dynamic: sequential or temporal component to the problem

• Programming: optimise a “program”, i.e., a policy

• Dynamic programming (DP) is rarely used in practice (the environment is usually
unknown)

• However, they provide a foundation for other solution methods

14 / 65

Dynamic Programming (Cont’d)

“Dynamic programming” is used to solve many other statistical learning problems

• Learning optimal dynamic treatment regimes (DTRs)

• Multi-scale change point detection

• De Boor algorithm for evaluating B-spline basis functions

Also used in bioinformatics, optimisation, control theory (see wiki page)

15 / 65

https://en.wikipedia.org/wiki/Dynamic_programming

Dynamic Programming Methods

• Policy Iteration: an iterative method that alternates between
• Policy Evaluation
• Policy Improvement

• Value Iteration: simultaneously combine policy evaluation and policy
improvement

16 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

17 / 65

Policy Iteration: Policy Evaluation

• Computation of the (state) value function V π for a given π

• According to the Bellman equation, for any s,

V π(s) =
∑
a∈A

π(a|s)
[
Ra

s + γ
∑
s′
Pa

ss′V
π(s′)

]
,

• written in matrix form, V π =R+ γPV π

• V π is a column vector with one entry per state V π(1)
...

V π(n)

 =
∑
a∈A

 π(a|1)Ra
1

...
π(a|n)Ra

n

+ γ

 P11 · · · P1n
...

...
Pn1 · · · Pnn


 V π(1)

...
V π(n)

 ,

where P ij =
∑

a∈A π(a|i)Pa
ij

18 / 65

Policy Evaluation (Cont’d)

• V π is a solution of a system of n linear equations with n unknowns

• It can be computed directly

V π = R+ γPV π

(I − γP)V π = R
V π = (I − γP)−1R

• I − γP is invertible when γ is strictly smaller than 1, since

x⊤(I − γP)x = (1− γ)∥x∥22 + γ
∑
i ,j

P ij (xi − xj)
2 > 0,

when x ̸= 0. The equality holds due to that each row of P sums up to 1.

19 / 65

Policy Evaluation: Algorithm

• Iterative Policy Evaluation: an iterative method that outputs a sequence of value
functions V0, V1, V2, · · ·,Vk → V π

• Initial value function V0 is chosen arbitrarily subject to the constraint that at
terminal state it has value 0

• Iterative update rule (according to the Bellman equation):

Vk+1 =R+ γPVk

• Convergence is guaranteed when γ is strictly smaller than 1 (more in appendix), or
eventual termination is guaranteed from all states under π

20 / 65

Policy Evaluation: Pseudocode

• Input: a policy π, a threshold parameter ϵ > 0

• Initialization: V (s) = 0 for any s ∈ S
• Repeat:

∆← 0
For each s ∈ S

ν ← V (s)
V (s)←

∑
a∈A π(a|s)

[
Ra

s + γ
∑

s′ P
a
ss′V (s′)

]
∆← max(∆, |ν − V (s)|)

until ∆ < ϵ

• Output V

21 / 65

GridWorld Example

• Undiscounted, episodic, finite MDP task

• A = {up, down, right, left}. Actions leading out of the grid leave state unchanged

• Rewards: for each transition, the reward of value −1
22 / 65

GridWorld Example (Cont’d)

Figure: Values of uniform random policy

π(n|·) = π(s|·) = π(w |·) = π(e|·) = 0.25

23 / 65

GridWorld Example (Cont’d)

By symmetry and Bellman equation,

24 / 65

GridWorld Example (Cont’d)

Figure: Value functions at each iteration

25 / 65

Policy Iteration: Policy Improvement

• Identify some π′ that is no worse than π based on V π

• For any s, consider a hybrid policy
• implements a at the first time
• follows π afterwards

• Its value is given by Qπ(s, a) (can be computed based on V π)

• Select π′ among the class of hybrid policies that maximizes the value

π′(s) = argmax
a

Qπ(s, a)

• Its value is given by Qπ(s,π′(s)) ≥ V π(s), since the hybrid policy class contains π

• Surprisingly, according to policy improvement theorem, V π′
(s) ≥ V π(s) for any

s!

26 / 65

Policy Improvement (Cont’d)

Given a policy π, improve π by acting greedily with respect to V π,

π′(s) = argmax
a

Qπ(s, a) = argmax
a

E[Rt + γV π(St+1)|At = a,St = s]

= argmax
a

[Ra
s + γ

∑
s′

Pa
ss′V

π(s′)]

Theorem

The greedy policy π′ with respect to V π is as good as or better than π,

V π′
(s) ≥ V π(s),

for any s ∈ S.

Proof can be found in the Appendix.

27 / 65

GridWorld Example

28 / 65

Policy Iteration: Revisit

• Policy Evaluation: Compute V π via iterative policy evaluation

• Policy Improvement: Generate π′ via greedy policy improvement

29 / 65

Policy Iteration: Pseudocode
• Initialization: V (s) = 0, π(s) ∈ A arbitrarily for any s ∈ S
• Repeat:

∆← 0
For each s ∈ S

ν ← V (s)
V (s)←

∑
a∈A π(a|s)

[
Ra

s + γ
∑

s′ P
a
ss′V (s′)

]
∆← max(∆, |ν − V (s)|)

until ∆ < ϵ
• policystable← True
• For each s ∈ S:

b← π(s)
π(s)← argmaxa[Ra

s + γ
∑

s′ Pa
ss′V (s′)]

If b ̸= π(s) then policystable← False
• If policystable, then Return π, else go to bullet point #2

30 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

31 / 65

Value Iteration
• Policy iteration is computationally inefficient, as each iteration requires executing

policy evaluation which requires multiple iterations
• According to the Bellman optimality equation,

V πopt
(s) = max

a∈A

[
Ra

s + γ
∑
s′
Pa

ss′V
πopt

(s′)
]
.

• Value iteration idea: iteratively apply the above updates

Vk+1(s) = max
a∈A

[
Ra

s + γ
∑
s′
Pa

ss′Vk(s′)
]
.

• Drive the optimal deterministic policy

πopt(s) = argmax
a∈A

[
Ra

s + γ
∑
s′
Pa

ss′V
πopt

(s′)
]
.

• Convergence is guaranteed when γ is strictly smaller than 1 (more in Appendix), or
eventual termination is guaranteed from all states.

32 / 65

Value Iteration: Pseudocode

• Initialization: V (s) = 0, π(s) ∈ A arbitrarily for any s ∈ S
• Repeat:

∆← 0
For each s ∈ S

ν ← V (s)
V (s)← maxa∈A

[
Ra

s + γ
∑

s′ P
a
ss′V (s′)

]
∆← max(∆, |ν − V (s)|)

until ∆ < ϵ

• Output: optimal deterministic policy given by

πopt(s) = argmax
a∈A

[
Ra

s + γ
∑
s′
Pa

ss′V
πopt

(s′)
]
.

33 / 65

Example: Gambler’s Problem

• A gambler makes bets on the outcomes of a sequence of coin flips

• The gambler must decide for each coin flip what proportion of capital to stake

• If the outcome of the coin flip = heads, then:
The gambler wins as much money as they have staked on this flip

• Else:
The gambler loses their stake

• The game ends when the gambler reaches the goal of £100 or runs out of money

34 / 65

Example: Gambler’s Problem (Cont’d)

• Undiscounted, episodic, finite MDP task

• S: {0, 1, · · ·, 99, 100}, termination states 0 and 100

• A(s): {1, 2, · · ·,min(s, 100− s)}, depends on the state

• Pr(outcome of coin flip is heads) = p (known parameter)
• Seminars:

• Show the value function for different iterations
• Show the optimal policy

35 / 65

Example: Gambler’s Problem, the Optimal Policy

36 / 65

Some Technical Questions

• How do we know that value iteration converges to V πopt
?

• Or that iterative policy evaluation converges to V π?

• And therefore that policy iteration converges to V πopt
?

• Is the solution unique?

• These questions are resolved by Banach fixed-point theorem (or contraction
mapping theorem), mentioned in Seminar 2 (more in the appendix)

37 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

38 / 65

Monte Carlo (MC) Methods

• Learning methods for solving the RL problem based on averaging sample returns
• Estimating value functions and discovering optimal policies
• Not assuming a model of the environment, based only on experiences (model free)

• Defined for episodic tasks
• Value functions and policies are updated upon completion of an episode
• Different from step-by-step methods (e.g., temporal difference learning)

39 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

40 / 65

MC Policy Evaluation

• Objective: estimate the value function V π for a given policy π, from a set of
episodes obtained by following π

S0,A0,R0, · · ·,ST ∼ π

• V π is the expected return Eπ(
∑

0≤t≤T γtRt |S0 = s)
• Monte Carlo idea: use empirical mean return to approximate expected return

• Convergence is guaranteed by law of large numbers
• Types of MC methods:

• First-visit MC method: Vπ(s) estimated by the average of returns following each
first visit to s in a set of episodes

• Every-visit MC method: Vπ(s) estimated by the average of returns following each
visit to s in a set of episodes

41 / 65

First-Visit MC Policy Evaluation: Pseudocode

• Initialization:
N (counter), N(s)← 0 for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

• Repeat:
Generate an episode following policy π
For each distinct s appearing in the episode

G ← return following the first occurrence of s
N(s)← N(s)+ 1
Returns(s)← Returns(s)+ G

• Output:
For each distinct s

N−1(s)Returns(s)

42 / 65

Every-Visit MC Policy Evaluation: Pseudocode

• Initialization:
N ← counter, N(s)← 0 for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

• Repeat:
Generate an episode following policy π
For each s appearing in the episode

G ← return following the occurrence of s
N(s)← N(s)+ 1
Returns(s)← Returns(s)+ G

• Output:
For each distinct s

N−1(s)Returns(s)

43 / 65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value Iteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

44 / 65

MC Control

• Objective: use MC estimation to learn the optimal policy.

• Recall the policy iteration algorithm

• Policy Evaluation: Compute V π via iterative policy evaluation

• Policy Improvement: Generate π′ via greedy policy improvement

45 / 65

MC Control with Generalized Policy Iteration

• Objective: use MC estimation to learn the optimal policy.

• Integrate policy iteration with MC methods

• Policy Evaluation: Compute V π via MC policy evaluation

• Policy Improvement: Generate π′ via greedy policy improvement?

46 / 65

Policy Iteration Using State-Action Value Function

• Greedy policy improvement over V π requires model of MDP

π′(s) = argmax
a

[Ra
s + γ

∑
s′

Pa
ss′V

π(s′)]

• Greedy policy improvement over Qπ(s, a) is model free

π′(s) = argmax
a

Qπ(s, a)

47 / 65

MC Version of Policy Iteration

• Policy Evaluation: MC estimation of state-action value function

• Policy Improvement: Improve the policy wrt the current state-action value function

48 / 65

MC Estimation of State-Action Values

• Many state-action pairs may never be visited under a policy
• Ex. if π is deterministic, only one state-action pair is observed for each distinct state
• Need to ensure exploration!

• Two approaches for ensuring exploration:
• Exploring starts: the first step of each episode starts at a state-action pair and every

such pair has non-zero probability of being selected at the start
• Stochastic policies: use policies that ensures a non-zero probability of selecting each

action from the set of available actions in each given state

49 / 65

MC Control with Exploring Starts

• Initialization:
N (counter), N(s, a)← 0 for all s ∈ S, a ∈ A
Returns(s, a)← an empty list, for all s ∈ S, a ∈ A
π← arbitrary
Q ← arbitrary

• Repeat:
Generate an episode using exploring starts and policy π
For each distinct (s, a) appearing in the episode

G ← return following the first occurrence of (s, a)
N(s, a)← N(s, a)+ 1
Returns(s, a)← Returns(s, a)+ G
Q(s, a)← Returns(s, a)/N(s, a)

π(s)← argmaxa Q(s, a) for all s

50 / 65

MC Control with ε-Greedy Exploration

• Simplest idea for ensuring continual exploration

• All m actions are tried with non-zero probabilities

• With probability 1− ε choose the greedy action

• With probability ε choose an action at random

π(a|s) =
{

ε/m + 1− ε, if a = argmaxa′ Q(s, a′)
ε/m, otherwise

51 / 65

MC Control with ε-Greedy Exploration (Cont’d)

52 / 65

Pseudocode
• Initialization:

N (counter), N(s, a)← 0 for all s ∈ S, a ∈ A
Returns(s, a)← empty lists, for all s ∈ S, a ∈ A
π← arbitrary ε-greedy policy
Q ← arbitrary

• Repeat:
Generate an episode using exploring starts and policy π
For each distinct (s, a) appearing in the episode

G ← return following the first occurrence of (s, a)
N(s, a)← N(s, a)+ 1
Returns(s, a)← Returns(s, a)+ G
Q(s, a)← Returns(s, a)/N(s, a)

For each distinct s:

π(a|s)←
{

ε/m + 1− ε, if a = argmaxQ(s, a)
ε/m, otherwise

53 / 65

Summary

• Planning v.s. Learning

• Dynamic programming v.s. Monte Carlo Methods

• Policy Iteration v.s. Value Iteration

• Policy Evaluation v.s. Policy Improvement

• MC Policy Evaluation v.s. MC Control

• γ-Contraction, Banach Fixed Point Theorem

54 / 65

Summary (Cont’d)

Dynamic Programming (DP) Monte Carlo (MC)

55 / 65

Seminar

• Solution to HW2 (due Wed 12pm)

• Iterative policy evaluation: Gridworld problem

• Value iteration: Gambler’s problem

• Monte Carlo prediction & control: Black jack example

56 / 65

Questions

57 / 65

Appendix: Proof of Policy Improvement Theorem

Consider a sequence of policies:

• π0: a given stationary policy π

• πk : a Markov policy that implements π′ at the first k times and follows π afterwards

• π∞: the greedy policy π′

We show in the appendix

• Step 1: π1 is no worse than π0, i.e., Qπ(s,π′(s)) ≥ V π(s)
• Step 2: πk+1 is no worse than πk for any k ≥ 1

This proves the policy improvement theorem

58 / 65

Appendix: Policy Improvement Theorem, Step 1

• π0: a given stationary policy π

• π1: a Markov policy that implements π′ at the initial time and follows π afterwards

• By definition,

π′(s) = argmax
a

Qπ(s, a)

• This yields

Qπ(s,π′(s)) = max
a

Qπ(s, a) ≥
∑
a

π(a|s)Qπ(s, a) = V π(s)

• i.e., π1 is no worse than π0

59 / 65

Appendix: Policy Improvement Theorem, Step 2

• πk : a Markov policy that implements π′ at the first k times and follows π afterwards

• The difference between two value functions is given by

V πk+1(s)− V πk (s) = γkEπ′
[Qπ(Sk ,π

′(Sk))|S0 = s]− γkEπ′
[V π(Sk)|S0 = s]

• Results in Step 1 yield Qπ(Sk ,π
′(Sk)) ≥ V π(Sk), and hence V πk+1(s) ≥ V πk (s)

• i.e., πk+1 is no worse than πk

60 / 65

Appendix: Value Function ∞-Norm

• Measure distance between two value functions V1 and V2 by the ∞-norm

• i.e., the largest difference between state values,

∥V1 − V2∥∞ = max
s∈S

|V1(s)− V2(s)|

• Given a sequence of values {Vk}k , convergences requires ∥Vk − V ∗∥∞→ 0 for
some V ∗ as k →∞

61 / 65

Appendix: Bellman Expectation Operator

Definition

Define the Bellman Expectation Operator Tπ as a function that maps a given value
function V into another value function TπV such that

TπV (s) =
∑
a∈A

π(a|s)
[
Ra

s + γ
∑
s′
Pa

ss′V (s′)
]
, ∀s ∈ S.

• The Bellman equation can be rewritten as V π = TπV π

• This operator is a γ-contraction, i.e. it makes value function closer by at least γ

max
s

|TπV1(s)− TπV2(s)| = γmax
s

∣∣∣∑
a,s′

π(a|s)Pa
ss′ [V1(s′)− V2(s′)]

∣∣∣
≤ γmax

s
|V1(s)− V2(s)|max

s

∣∣∣∑
a,s′

π(a|s)Pa
ss′

∣∣∣ = γmax
s

|V1(s)− V2(s)|

• Iterative Policy Evaluation: V0→ TπV0→ TπTπV0→ · · ·
62 / 65

Appendix: Banach Fix Point Theorem

Theorem

Suppose T is a γ-contraction. Then under certain conditions,

• T admits a unique fix point V ∗, i.e. TV ∗ = V ∗;

• V ∗ can be found as follows: define a sequence {Vk}k such that Vk+1 = TVk .
Then V ∗ = limk Vk

• Proof can be found here

• Tπ is has a unique fix point

• V π is the fix point, according to the Bellman equation

• Iterative policy evaluation converges to V π

63 / 65

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

Appendix: Bellman Optimality Operator

Definition

Define the Bellman Expectation Operator T as a function that maps a given value
function V into another value function TV such that

TV (s) = max
a∈A

[
Ra

s + γ
∑
s′
Pa

ss′V (s′)
]
, ∀s ∈ S.

• The Bellman optimality equation can be rewritten as V πopt
= TV πopt

• This operator is a γ-contraction as well

max
s

|TV1(s)− TV2(s)| = γmax
s,a

∣∣∣∑
s′
Pa

ss′ [V1(s′)− V2(s′)]
∣∣∣

≤ γmax
s′

|V1(s′)− V2(s′)|

64 / 65

Appendix: Convergence of Dynamic Programming

• T has a unique fix point

• V πopt
is the fix point, according to the Bellman optimality equation

• According to the Banach fix point theorem, value iteration converges to V πopt

• Policy iteration (that integrates iterative policy evaluation & policy improvement)
converges to πopt

65 / 65

	Preliminaries
	Dynamic Programming
	Policy Iteration
	Value Iteration

	Monte Carlo Methods
	MC Policy Evaluation (Prediction)
	MC Policy Optimization (Control)

