ST455: Reinforcement Learning

Lecture 3: Elementary Solution Methods
Dynamic Programming and Monte Carlo

Chengchun Shi

1/65

Lecture QOutline

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value lteration

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

2/65

Lecture Outline (Cont’d)

DP 2 v(s;) « Eqlrgr + Av(si41)] MC :v(s;) < v(se) + (R — v(s;))

Dynamic Programming (DP) Monte Carlo (MC)

3/65

1. Preliminaries

4/65

Learning v.s. Planning

Two fundamental problems in sequential decision making
® Planning

® A model of the environment (e.g., state transition, reward function) is known
® The agent performs computations with its model, without any external interaction
® a.k.a. deliberation, reasoning, introspection, pondering, thought, search
® Example: Dynamic Programming
® |earning

® The environment is initially unknown

® The agent interacts with the model

® The agent learns the optimal policy from experience

® Example: Monte Carlo methods, temporal difference learning, policy-based
learning, model-based learning

5/65

Example: Go Game

* Planning: Rules of Go are known ® Learning: No need to know the rules

® Exhaustive search of the optimal move o | carn the optimal move from experience

® No need to play Go with others e Practice makes perfect

6/65

Models: Finite MDPs

Environment modelled by a finite MDP (S, A, P, R,~)
MDP model assumption: Markovianity & time-homogeneity

S: state space (a finite set of states)

A: action space (a finite set of actions)

® P: state transition probability matrix, P2, = Pr(S;41 = s’|A; = a,5; = s)

R: reward function, RZ = E(R:|A; = a,85; = s)

® ~: discounted factor € [0, 1], allowed to be 1 if all sequences terminate (e.g., finite
horizons)

® Dynamic Programming (DP) and Monte Carlo methods (MC) are equally
applicable to settings with continuous state or action space

7/65

Bellman Equations

® Bellman equation for the (state) value function:
V™(s) = E™[R: + vV™(S¢+1)|St = 9],
® or equivalently,
ve(s)= 3 m(als) [Ra +Y P vT)}.
acA s’

® Bellman optimality equation for the optimal value function:
V™ (s) = maxE[R; + V™" (S¢11)|Ar = a, S = 5],
a
® or equivalently,

V™ (s) = max [RE 47 Y PL V().

SI

8/65

Bellman Equation: The Random Walk Example

® Consider a simple random walk on a path:
0.5 0.5 0.5 0.5
OSOoBOoHONOoN
1 0.5 0.5 0.5 05
® Reward for transition to State S of value 1, zero reward for other transitions
® Bellman equations:

V7(A) = ET[R:+V™(St41)|Se = Al = V7 (B)
V7(B) = E"[Ri+ V7 (S5t41)|S: = B] = EV’T(C) + EV”(A)

V™(S) = E"[R.+~V™(5:41)|S: = S] =1

9/65

Bellman Optimality Equation: Random Walk

® The random walk example:

® Reward for transition to State S of value 1, zero reward for other transitions
® Bellman optimality equations:

v™(A) = maxE[R, + V™ (Sey1)|Ar = a, S, = Al =~V™" (B)
V™"(B) = maxE[R: + V™" (Si+1)|A: = a,S; = B] = V™" (C)
V™(S) = maxE[R 4+~ V™" (Sey1)|Ar=a,S5 =S| =1

10/65

State-Action Value Function

Definition
The state-action value function (better known as the Q-function) is expected return
starting from s and a under ,

“+oo
Q™ (s,a) =E™(G:|Ar = a,5; =s) =E" (Z 'Ri+¢|A: = a,S: = s) .
i=0
® Q7 is independent of the time t in its definition, under time-homogeneity

® Q7 is the state value V™ under a Markov policy that implements a at the first time
and follows 7r afterwards

® Reduces to action value function E™(R;|A; = a) in Lecture 1 when v =0, S =0

11/65

State-Action Value Function (Cont’d)

Relationships between V™ and Q™
° QT —» VT
V™(s) =E™(Gi|S: =s) = > _ m(als)E™(Gi|A: = a,5; =s) = Y _=(als)Q" (s, a)
acA acA
e VT - Q™
Q" (s,a) = E(RA:=a,S:=5s)+ VE(Gt+1|Ar = a,5: = s)

E(Re|Ac = a,S¢ = s) + VE[E™(Ge41(Se+1)|Ae = a, St = 5]
= E[R: +7V7(St41)|A: = a,S¢ = s]

12/65

2. Dynamic Programming
2.1 Policy Iteration
2.2 Value lteration

13/65

Dynamic Programming

Definition (Dynamic Programming)

A collection of algorithms used to compute optimal policies given perfect knowledge of
the environment

® Dynamic: sequential or temporal component to the problem
® Programming: optimise a “program”, i.e., a policy

¢ Dynamic programming (DP) is rarely used in practice (the environment is usually
unknown)

However, they provide a foundation for other solution methods

14 /65

Dynamic Programming (Cont’d)

“Dynamic programming” is used to solve many other statistical learning problems
® |earning optimal dynamic treatment regimes (DTRs)
® Multi-scale change point detection

® De Boor algorithm for evaluating B-spline basis functions

Also used in bioinformatics, optimisation, control theory (see wiki page)

15/65

https://en.wikipedia.org/wiki/Dynamic_programming

Dynamic Programming Methods

® Policy lteration: an iterative method that alternates between

® Policy Evaluation
® Policy Improvement

t
ﬂo—»V”0—>ﬂ1—>Vﬂl—>..._>n.0pt_,Vﬂ017

® Value Iteration: simultaneously combine policy evaluation and policy
improvement

V”0—>Vﬂl—>Vﬂ2—>o-o—>Vﬂ0pt—>][0pt

16 /65

1. Preliminaries

2. Dynamic Programming
2.1 Policy Iteration

3. Monte Carlo Methods

17/65

Policy Iteration: Policy Evaluation

e Computation of the (state) value function V™ for a given =

® According to the Bellman equation, for any s,
ve(s)= 3 w(als) [Rﬁ + > P v"(s')},
acA s’

® written in matrix form, V* =R +~PV™

® V7 is a column vector with one entry per state

V7(1) m(a|l)R{ P11 -+ Pin V7™(1)

=3 5 +| 5 ro

V™(n) a€A | m(aln)R2 Po1 -+ Paon V™(n)

where Pjj = ZaeAﬂ'(a]i)’P;}

18/65

Policy Evaluation (Cont’d)

® V7 is a solution of a system of n linear equations with n unknowns

® |t can be computed directly
VT = RA4+~PVT™
(I —~P)v™ R
Vvt = (I—-9P) 'R

e | — ~P is invertible when ~ is strictly smaller than 1, since

xT(I=7P)x =1 =) x5+~) Pi(x — x)°> >0,
ij

when x 7% 0. The equality holds due to that each row of P sums up to 1.

19/65

Policy Evaluation: Algorithm

¢ |terative Policy Evaluation: an iterative method that outputs a sequence of value
functions Vg, V1, Vo, -+, V) —> VT

e Initial value function Vj is chosen arbitrarily subject to the constraint that at
terminal state it has value 0

e |terative update rule (according to the Bellman equation):
Vig1 =R +7PVi

e Convergence is guaranteed when - is strictly smaller than 1 (more in appendix), or
eventual termination is guaranteed from all states under 7

20/65

Policy Evaluation: Pseudocode

® Input: a policy 7, a threshold parameter € > 0
Initialization: V(s) =0 foranys € S
® Repeat:
A+0
For eachs € S
v+ V(s)
V(s) = Loeam(als)|[RE+7 Xy Pl V(s)]
A +— max(A, v — V(s)])
until A < e
Output V

21/65

GridWorld Example

4 5 6 7
S

8 9 10 1Ll

12 13 14

e Undiscounted, episodic, finite MDP task

terminal state

e A = {up, down, right, left}. Actions leading out of the grid leave state unchanged

® Rewards: for each transition, the reward of value —1

22/65

GridWorld Example (Cont’d)

0 -14 -20 25!
1 2 3
-14 -18 -20 -20
4 5 6 7
-20 -20 -18 -14
8 9 10 11
-22 -20 -14 0
12 13 14

Figure: Values of uniform random policy

n(nl-) = m(s]-) = m(w|-) = (e|-) = 0.25

23 /65

GridWorld Example (Cont’d)

By symmetry and Bellman equation,

1 1 1 1
vi==—(C14+v)+-(-1+4+v5)+-(-14+0)+—-(-1+vy)
0 4 4 4 4
12 272] 1 1 1 1
4 4 4 4
4171 5175 5176 7v2 1 1 1 1
173=_(_1+v3)+_(_1+v2)+_(_1+U2)+_(_1+U3)
- . e 4 4 4 4
8 2007 |0 |1t 1 1 1 1
vs =—(=14+vg) +—(—14+vg) +—(—1+v) +-(—1+vy)
4 4 4 4
V3 | v | v; (A
12 13 14

1 1 1 1
Vg =Z(—1+‘U2)+Z(—1+U5)+Z(—1+U5)+Z(—1+‘U2)

= (v4,V,,v3,Vs,Vg) = (—14,—-20,—-22,—-18,—20)

24/ 65

GridWorld Example (Cont’d)

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

k=2 -1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

0.0

2.4

-2.9

-3.0

2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

2.4

0.0

Figure: Value functions at each iteration

0.0

-6.1

-8.4

-9.0

-6.1

-7.7

-8.4

8.4

-8.4

-8.4

-1.7

-6.1

-9.0

-8.4

-6.1

0.0

0.0

-14.

-20.

-14,

-18.

-20.

.|-18.

-22.

-20.

-14.

25 /65

Policy lteration: Policy Improvement

e |dentify some 7/ that is no worse than 7 based on V™
® For any s, consider a hybrid policy

® implements a at the first time
® follows 7 afterwards

® |ts value is given by Q™ (s, a) (can be computed based on V™)

® Select 7’ among the class of hybrid policies that maximizes the value
7'(s) = argmax Q™ (s, a)
a

e lts value is given by Q™ (s, w'(s)) > V™(s), since the hybrid policy class contains 7

® Surprisingly, according to policy improvement theorem, V™ (s) > V™ (s) for any
s!

26/65

Policy Improvement (Cont’d)

Given a policy 7, improve 7r by acting greedily with respect to V7,
w'(s) = argmax Q" (s, a) = argmaxE[R; + 7V7(S;+1)|Ar = a,S;: = s]
a a

— a a T
= arg maaX[Rs + Z ss’ 4 (S)]

sl

Theorem

The greedy policy 7w’ with respect to V™ is as good as or better than ,
VT (s) > V7 (s),

forany s € S.

Proof can be found in the Appendix.

27 /65

GridWorld Example

Vg, for the greedy policy
random policy w.rt. Vg
0.0/ 0.0 0.0 0.0 0.0[-2.4[-2.9]-3.0 il il
2.4|-29-3.0|- Pl
k=0 0.0/ 0.0{ 0.0} 0.0 mwmn k=3 2.4-2.9]-3.0[-2.9 - bﬁ |
0.0] 0.0 0.0[0.0 policy -2.9]-3.0|-2.9|-2.4 i
0.0]0.0[0.0/ 0.0 3.0]-2.9(-2.4] 0.0 L o -
0.0/-1.0[-1.0/-1.0 < 0.0[-6.1|-8.4/-9.0 < = e
k=1 -1.0}-1.0[-1.0/-1.0 ' k=10 6.1]-7.7|-8.4|-8.4 Pl g |4 | < optimal
- - N policy
-1.0/-1.0/-1.0[-1.0 | -8.4|-8.4|-7.7]-6.1 rly
-1.0/-1.0/-1.0] 0.0 - -9.0]-8.4]-6.1] 0.0 L[o] -
0.0]-1.7]-2.0[-2.0 - = | 0.0/-14.[-20.|-22 - - 9
k=2 -1.7|-2.0/-2.0[-2.0 td k= oo -14.|-18.|-20.|-20 e [
-2.0[-2.0[-2.0|-1.7 ' el -20.]-20.|-18.|-14 R
-2.0/-2.0/-1.7[0.0 | -] - -22.|-20.|-14.| 0.0 L[-] -

28 /65

Policy lteration: Revisit

’U*, 7-‘-*

— gr
ﬂ/g

® Policy Evaluation: Compute V7 via iterative policy evaluation

¢ Policy Improvement: Generate ©’ via greedy policy improvement

29 /65

Policy lteration: Pseudocode

e Initialization: V(s) =0, w(s) € A arbitrarily for any s € S
® Repeat:
A<+0
For each s € S
v+ V(s)

V(s) Loeam(als) R2+7 Ly PiV(s')|
A +— max(A, v — V(s)])
until A < e
® policystable < True
® For each s € S:
b + m(s)
m(s) < argmaxa[R2+ > . P2, V(s')]
If b # m(s) then policystable < False
¢ If policystable, then Return 7, else go to bullet point #2

30/65

1. Preliminaries

2. Dynamic Programming

2.2 Value lteration

3. Monte Carlo Methods

31/65

Value Iteration

® Policy iteration is computationally inefficient, as each iteration requires executing
policy evaluation which requires multiple iterations
According to the Bellman optimality equation,

V™ (s) = max [Ra+ Z’PSS, "t(s')}.

Value iteration idea: iteratively apply the above updates

Viera(s) = max [RS + > P V().

Drive the optimal deterministic policy

P (s) = arg max [’R + Z’Pss, opt(s')}.

Convergence is guaranteed when ~ is str|ctly smaller than 1 (more in Appendix), or

eventual termination is guaranteed from all states.
32/65

Value Iteration: Pseudocode

e Initialization: V(s) =0, m(s) € A arbitrarily for any s € S
® Repeat:
A+0
Foreachs € S
v+ V(s)
V(s) « maxaea [R2+ 7 Xg P V()|
A +— max(A, v — V(s)])
until A < e
® QOutput: optimal deterministic policy given by

o (s) = arg max [’R‘: + Z’P;’SI Vwopt(sl)}.
Sl

33/65

Example: Gambler’s Problem

A gambler makes bets on the outcomes of a sequence of coin flips

The gambler must decide for each coin flip what proportion of capital to stake

If the outcome of the coin flip = heads, then:

The gambler wins as much money as they have staked on this flip
® Else:
The gambler loses their stake

® The game ends when the gambler reaches the goal of £100 or runs out of money

34/65

Example: Gambler’s Problem (Cont’d)

Undiscounted, episodic, finite MDP task
S: {0,1,-.-,99,100}, termination states 0 and 100
A(s): {1,2,---,min(s,100 — s) }, depends on the state

Pr(outcome of coin flip is heads) = p (known parameter)

® Seminars:

® Show the value function for different iterations
® Show the optimal policy

35/65

Example: Gambler’'s Problem, the Optimal Policy

Final optimal policy

Capital

36 /65

Some Technical Questions

® How do we know that value iteration converges to VA

Or that iterative policy evaluation converges to V™7

Pt

And therefore that policy iteration converges to V

Is the solution unique?

® These questions are resolved by Banach fixed-point theorem (or contraction
mapping theorem), mentioned in Seminar 2 (more in the appendix)

37/65

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)
3.2 MC Policy Optimization (Control)

38/65

Monte Carlo (MC) Methods

® | earning methods for solving the RL problem based on averaging sample returns

® Estimating value functions and discovering optimal policies
® Not assuming a model of the environment, based only on experiences (model free)

® Defined for episodic tasks

® Value functions and policies are updated upon completion of an episode
® Different from step-by-step methods (e.g., temporal difference learning)

39/65

1. Preliminaries

2. Dynamic Programming

3. Monte Carlo Methods
3.1 MC Policy Evaluation (Prediction)

40/65

MC Policy Evaluation

® Objective: estimate the value function V™ for a given policy 7, from a set of
episodes obtained by following

507A07R07"'>ST ~ T

V7 is the expected return E™ (3 g<,;<7 7 R:|So = s)
Monte Carlo idea: use empirical mean return to approximate expected return

Convergence is guaranteed by law of large numbers

Types of MC methods:
® First-visit MC method: V7™ (s) estimated by the average of returns following each
first visit to s in a set of episodes
® Every-visit MC method: V™(s) estimated by the average of returns following each
visit to s in a set of episodes

41/65

First-Visit MC Policy Evaluation: Pseudocode

¢ |nitialization:
N (counter), N(s) <— 0 foralls € S
Returns(s) <— an empty list, for all s € S
® Repeat:
Generate an episode following policy 7
For each distinct s appearing in the episode
G < return following the first occurrence of s
N(s) < N(s)+1
Returns(s) «<— Returns(s) + G
e Qutput:
For each distinct s
N~1(s)Returns(s)

42/65

Every-Visit MC Policy Evaluation: Pseudocode

® Initialization:
N < counter, N(s) <~ 0 foralls € S
Returns(s) <— an empty list, for all s € S

® Repeat:
Generate an episode following policy 7
For each s appearing in the episode
G < return following the occurrence of s
N(s) < N(s)+1
Returns(s) «<— Returns(s) + G
e Qutput:
For each distinct s
N~1(s)Returns(s)

43/65

1. Preliminaries

2. Dynamic Programming

3. Monte Carlo Methods

3.2 MC Policy Optimization (Control)

44 /65

MC Control

® Objective: use MC estimation to learn the optimal policy.

® Recall the policy iteration algorithm

Vs, Ty

® Policy Evaluation: Compute V7 via iterative policy evaluation
¢ Policy Improvement: Generate ©’ via greedy policy improvement

45 /65

MC Control with Generalized Policy Iteration

® Objective: use MC estimation to learn the optimal policy.

® |ntegrate policy iteration with MC methods

Vs, Ty
edy @)
<= &

® Policy Evaluation: Compute V7™ via MC policy evaluation
¢ Policy Improvement: Generate ©’ via greedy policy improvement?

46 /65

Policy lteration Using State-Action Value Function

® Greedy policy improvement over V™ requires model of MDP

7'(s) = argmax[RI + 7 Y Pe V()]

sl
® Greedy policy improvement over Q™ (s, a) is model free

7'(s) = arg max Q" (s, a)

47 /65

MC Version of Policy lteration

Evaluation

///,a*“""“-\\\‘

T Q) —» Q”O—» T — Q”l—» cor— gOPl — Qﬂgpt

r = greedy(Q)

® Policy Evaluation: MC estimation of state-action value function

¢ Policy Improvement: Improve the policy wrt the current state-action value function

48 /65

MC Estimation of State-Action Values

® Many state-action pairs may never be visited under a policy
® Ex. if is deterministic, only one state-action pair is observed for each distinct state
® Need to ensure exploration!

® Two approaches for ensuring exploration:
® Exploring starts: the first step of each episode starts at a state-action pair and every

such pair has non-zero probability of being selected at the start
® Stochastic policies: use policies that ensures a non-zero probability of selecting each

action from the set of available actions in each given state

49 /65

MC Control with Exploring Starts

¢ Initialization:
N (counter), N(s,a)«— 0O foralls€ S, ae A
Returns(s, a) < an empty list, foralls € S,ac A
7 <— arbitrary
Q < arbitrary
® Repeat:
Generate an episode using exploring starts and policy 7
For each distinct (s, a) appearing in the episode
G < return following the first occurrence of (s, a)
N(s,a) - N(s,a)+1
Returns(s, a) < Returns(s,a) + G
Q(s, a) < Returns(s,a)/N(s, a)
7(s) < argmax, Q(s, a) for all s

50 /65

MC Control with e-Greedy Exploration

Simplest idea for ensuring continual exploration

All m actions are tried with non-zero probabilities

With probability 1 — & choose the greedy action

With probability € choose an action at random

e/m+1—e, ifa=argmaxy Q(s,a’)
e/m, otherwise

m(als) = {

51/65

MC Control with -Greedy Exploration (Cont’d)

Evaluation

7

T Qz 7Tb e ngn)-->-itl — gziTl—__y ...___>.7T£LCU2L__> g2ﬂe,opt

*Jmprovement -

7 = e-greedy(Q)

52 /65

Pseudocode

¢ |nitialization:
N (counter), N(s,a) <0 foralls€ S, ac A
Returns(s, a) < empty lists, foralls € S, a€ A
T <— arbitrary e-greedy policy
Q <+ arbitrary
® Repeat:
Generate an episode using exploring starts and policy 7
For each distinct (s, a) appearing in the episode
G < return following the first occurrence of (s, a)
N(s,a) < N(s,a)+1
Returns(s, a) < Returns(s,a) + G
Q(s,a) « Returns(s,a)/N(s, a)
For each distinct s:
(als) — { e/m+1—e, ifa=argmaxQ(s,a)

e/m, otherwise
53/65

Summary

Planning v.s. Learning

® Dynamic programming v.s. Monte Carlo Methods

® Policy Iteration v.s. Value Iteration
® Policy Evaluation v.s. Policy Improvement
[]

MC Policy Evaluation v.s. MC Control

e ~._Contraction, Banach Fixed Point Theorem

54 /65

Summary (Cont’d)

DP 2 v(s;) « Eqlrgr + Av(si41)] MC :v(s;) < v(se) + (R — v(s;))

Dynamic Programming (DP) Monte Carlo (MC)

55 /65

Seminar

Solution to HW2 (due Wed 12pm)

® |terative policy evaluation: Gridworld problem

xxxxxxxxxxxxx

Value iteration: Gambler’s problem

muﬂlm W

Monte Carlo prediction & control: Black jack example

il

56 /65

Questions

Appendix: Proof of Policy Improvement Theorem

Consider a sequence of policies:
® 7r: a given stationary policy 7
® 7. a Markov policy that implements 7’ at the first k times and follows 7 afterwards

® Too: the greedy policy 7’

We show in the appendix
e Step 1: m is no worse than mg, i.e., Q™ (s, n'(s)) > V™(s)
® Step 2: w41 is no worse than 7 for any k >'1

This proves the policy improvement theorem

58 /65

Appendix: Policy Improvement Theorem, Step 1

® 7r: a given stationary policy 7

® 1. a Markov policy that implements 7’ at the initial time and follows 7 afterwards
e By definition,
7'(s) = argmax Q™ (s, a)
a
® This yields

Q™ (s, 7'(s)) = max Q™ (s,a) > Zﬂ'(a\s)Q”(s, a) = V7™(s)

a

® je., 71 is no worse than mg

59 /65

Appendix: Policy Improvement Theorem, Step 2

mk: a Markov policy that implements ©’ at the first k times and follows 7 afterwards

The difference between two value functions is given by

VTt (s) — VT (s) = 7¥E™ [Q" (Sk, 7' (Sk))|So = s] — V¥E™ [V™(Sk)|So = s]

Results in Step 1 yield Q™ (Sk, 7'(Sk)) > V™(Sk), and hence V™k+1(s) > V™k(s)

® i.e., M4 is no worse than 7y

60 /65

Appendix: Value Function co-Norm

® Measure distance between two value functions V; and V5 by the co-norm

® j.e., the largest difference between state values,

Vi — Vallco = Tea§<|V1(5) — Vu(s)|

® Given a sequence of values { Vi }, convergences requires ||V — V*| oo — 0 for
some V* as k — oo

61/65

Appendix: Bellman Expectation Operator

Definition

Define the Bellman Expectation Operator T™ as a function that maps a given value
function V into another value function T7™ V such that

T"V(s)= Y (a\s)[’Ra—l— ZPSS,)}, Vs € S.

acA

® The Bellman equation can be rewritten as V™ = T™ V7™
® This operator is a y-contraction, i.e. it makes value function closer by at least

max | T™Va(s) = T™Va(s)] = max| 3" w(als) P2y [Va(s') — Va(s")

a,s’

Z (a|5) ss’

a,s’

® |terative Policy Evaluation: Vg - TV > T™T™Vy — - -

< v max|Vj(s) — Va(s)| max
S S

= msax‘Vl(S) — Vo(s)|

62/65

Appendix: Banach Fix Point Theorem

Suppose T is a ~y-contraction. Then under certain conditions,
® T admits a unique fix point V*, ie. TV* = V*;
® V* can be found as follows: define a sequence { Vi }k such that Vi1 = TV.
Then V* = lim, Vj

Proof can be found here

T™ is has a unique fix point

V7™ is the fix point, according to the Bellman equation

Iterative policy evaluation converges to V™

63/65

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

Appendix: Bellman Optimality Operator

Definition

Define the Bellman Expectation Operator T as a function that maps a given value
function V into another value function TV such that

TV(s) = max [’R"‘—I— ZPSS,)], Vs € S.

® The Bellman optimality equation can be rewritten as v = Ty

® This operator is a -y-contraction as well

ss’[Vl(s) ()]

& g Vi(#) - V(s

msax\Tvl() TV2()

64 /65

Appendix: Convergence of Dynamic Programming

T has a unique fix point
V™™ is the fix point, according to the Bellman optimality equation
According to the Banach fix point theorem, value iteration converges to v

Policy iteration (that integrates iterative policy evaluation & policy improvement)
converges to mw°Pt

65 /65

	Preliminaries
	Dynamic Programming
	Policy Iteration
	Value Iteration

	Monte Carlo Methods
	MC Policy Evaluation (Prediction)
	MC Policy Optimization (Control)

