ST455: Reinforcement Learning

Lecture 4: Temporal Difference (TD) Learning

Chengchun Shi
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Lecture Outline (Cont’d)

DP : v(s;) + Eqp[re + Av(si1)] MC :v(s;) < v(sy) + (R, — v(s)) TD : v(s;) < v(s2) + q(reas + A(se1) — v(s0)

Dynamic Programming (DP) Monte Carlo (MC) Temporal Difference (TD)
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Lecture Outline (Cont’d)

D SARSA Q-Learning
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Lecture Outline (Cont’d)
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1. TD Prediction
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TD Learning v.s. MC Methods v.s. DP Methods

(TD) Learning: a learning method that combines ideas from Monte Carlo (MC) methods

and dynamic programming (DP)

Algorithms DP MC TD
Planning v X X
Learning X v v

Model-free x v v

Step-by-step 4 X v
Episode-by-episode X v X
Episodic task v v v
Continuous task 4 X v
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Recap: MC Prediction

® Objective: learns V™ from experience under 7

MC Policy Evaluation: V(s) <— average[Returns(s)]

® |ncremental update for every-visit MC prediction:
V(St) < V(St) + Oét[Gt — V(St)]

where Qg IS W at time t
® \We may regard G; as a target

The update can be performed after return G; is observed

i.e. after the episode is completed
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TD Prediction

Unlike MC methods, TD methods wait only until next time step
The simplest TD method (so called TD(0)) considers the update

V(S:) < V(St) + ae[R: + 7V(St41) — V(St)]

This update rule has Ry + 7 V/(S¢41) as the target

Considered as a bootstrap method: update in part based on an existing estimate

Different from “bootstrap” in statistics: a resampling method (e.g., sample with
replacement) for uncertainty quantification of a given estimate
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MC vs TD update

® Notice that under the MDP assumption
V™(s) = E™(GS: =s)
oo
= E™(D_ 7 RiiilSe =)
k=0
= E"[R: + V™ (S¢+1)|St = 5]

® MC methods use as the target the random variable in (1)
® TD methods use as the target the random variable in (2)
® Immediate reward and estimate of the future value
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Bootstrapping and Sampling

® Bootstrapping: update involves an estimate
® MC does not bootstrap
® DP bootstraps
® TD bootstraps
e Sampling: update samples an expectation
® MC samples
® DP does not sample
® TD samples
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TD(0): Pseudocode

® |nput: 7 policy to be evaluated, step size «
o |nitialization: V arbitrary

® Repeat for each episode:

Initialize state s

Repeat for each step of the episode:
a < action given by 7 for s
Take action a, observe reward r and next state s’
V(s) < V(s)+ alr+~V(s') — V(s)]
s« s

until s is a terminal state
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Pros & Cons of MC vs TD

® MC must wait until the end of episode @ TD can learn online after each step

o MC learns from complete sequences ® TD can learn from incomplete
e MC only works for episodic sequences
(terminating) environments ® TD works in continuing environments
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Pros & Cons of MC vs TD (Cont’d)

® Bias/Variance Trade-Off

® Return G; is unbiased estimate of V™ (S;)

® Oracle target R + V™ (S¢y1) is unbiased estimate of V™(S;)
e TD target R; 4+ 7V/(S¢+1) is biased estimate of V™(S;)

® TD target has much lower variance than the return

® Return depends on many random actions, transitions, rewards
® TD target depends on one random action, transition, reward

¢ MC has high variance, zero bias, insensitive to initialization

e TD has low variance, some bias, sensitive to initialization
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Pros & Cons of MC vs TD (Cont’d)

® TD exploits Markov & stationary
properties

® Relies on the Bellman equation
e More efficient in MDP environments

frame: 53, Obs: (0.018, 0.669, 0.286, 0.618)
Action: 1.0, Cumulative Reward: 47.0, Done: 1

w
e
N
X v

[,
Action=1

® MC does not exploit these properties

® More flexible in non-MDP
environments (e.g., POMDP)

N S1

“tiger-lef
Pr(o=TL | S0, listen)-0.85
Pr(o=TR | S1. listen)-0.15

Pro=TL | S0. listen)~0.15.
Pro=TR | S1. listen)-0.85

Actions={ 0: listen,
)9) a 1: open-lef.

& I 2: open-right}

Observations
- 10 hear the tiger on the left (TL)

Reward Function
- Penalty for wrong opening: -100
- Reward for correct opening: +10 - 10 hear the tiger on the right(TR)

- Cost for listening action: -1
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Rate of Convergence

® For i.i.d. random variables X, - -+, X, with mean p and variance o2,

V(X — p) — N(0,0?),

according to CLT.
e X converges to p at a rate of n=1/2.

® For n episodes with T time points per episode, first-visit MC converges at a rate of
n1/2,

® For n episodes with T time points per episode, TD converges at a rate of (nT)*l/z,
with proper choice of step sizes [see e.g., Tadi¢, 2002].

® First-visit MC requires n — oo to be consistent

® TD requires either n or T — oo to be consistent

16 /58



Backup Diagram

State Value (@)

/\
/_\5

Taken from https://towardsdatascience.com/all-about-backup-diagram-fefb25aaf804
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https://towardsdatascience.com/all-about-backup-diagram-fefb25aaf804

Backup Diagram (Cont’d)

TD

More states
and actions

Terminal state

18/58



2. SARSA
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SARSA: an On-Policy TD Control

e SARSA: a TD method for policy optimisation

® Follows the pattern of policy iteration
® Uses TD prediction method for policy evaluation
® Uses e-greedy exploration for policy improvement

e Similar to MC control, estimate state-action value Q™ (s, a) (instead of the state
value V™ (s)) for the control problem

o Different from MC control, update the state-value every time step
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Bellman Equations

® Bellman equation for the (state) value function:
V™(s) =E[R: + vV™(St+1)|St = s].
® Bellman equation for the state-action value function:

Q"(s,a) =E |Re+7 Y _m(a|Se41)Q" (Se41,a)|Ar = 2,5, = s ,

al

or equivalently,

Q7 (s,a) =E"[R: +7Q™ (St+1, Ar+1)|Ar = a, S = s].
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SARSA: Policy Evaluation

® |ncremental estimation of the state-action value function:
Q(St, At) < Q(St, At) + o[Re + vQ(St+1, Ae1) — Q(St, Ar)],

for non-terminal state S;41
® If S;41 is a terminal state, Q(S¢+1,A¢t+1) =0

® This update uses every element of the quintuple of variables:

(Sththast—l-l)At—i—l)
SAR S A
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SARSA: Pseudocode

® |nitialization: Q arbitrary

® Repeat for each episode:
Initialize state s
Choose action a from s using policy derived from Q (e-greedy)
Repeat for each step of the episode:
Take action a, observe reward r and next state s’
a’ < action from s’ using policy derived from Q (e-greedy)
Q(s,a) + Q(s,a)+ a[r+~vQ(s’,a") — Q(s, a)]
s« s’ a«a
until s is a terminal state
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Convergence of SARSA

Theorem

SARSA converges to the optimal Q-function, Q(s,a) — Q™™ (s, a) for any s and a, if

o All state-action pairs are explored infinitely many times,
oo
ZH(St =s,A; =a) =00
t=0

® The policy converges to a greedy policy,

lim m(als) = I(a = argmax Q¢(s, a’))
t—oo a’

® Robbins-Monro sequence of step-sizes [Robbins and Monro, 1951],

Zat oo and Zat < 0

t=0
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Convergence of SARSA (Cont’d)

e Condition 1: All state-action pairs are explored infinitely many times

= € to be strictly positive
e Condition 2: The policy converges to a greedy policy
=> & decays to zero as t grows to infinity

e Condition 3: Robbins-Monro sequence of step-sizes

oo oo
Zat:ooand Za%<oo
t=0 t=0

= o proportional to t7¢ for 1/2 < ¢ < 1.

Yt ¢c=oowhenc<land ), t ¢ <oowhenc>1
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Windy Gridworld Example

S | G\
Actions
|
o o0 o1 1 1 2 2 1 O
® An episodic task ® Strength of wind indicated by numbers

® Rewards of —1 until goal is reached
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Windy Gridworld Example (Cont’d)

Optimal policy is:
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3. Q-Learning
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Q-Learning

® One of the most popular class of RL algorithms

® Variants include double Q-learning, fitted Q-iteration, deep Q-network (DQN),
quantile DQN (more in later lectures)

® Main idea: learn the optimal Q-function Q™ based on the Bellman optimality
equation and derive the optimal policy (see Appendix for the proof)

woP(s) = arg max Q™" (s, a)

® Focus on tabular Q-learning in this lecture (finite MDP, discrete state and action)
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Bellman Optimality Equation

® Bellman optimality equation for the optimal value function:
V™ (s) = maxE[R; + V™" (S¢11)|A: = a, S = s].
a

¢ Bellman optimality equation for the optimal Q-function (see Appendix for the proof):

Q" (s,3) =E |Re + 7 max Q™" (Sp41,a') | A, = 2,5, = 5| .
al
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Q-Learning: an Off-Policy TD Control

One-step SARSA update:

Q(St, As) + Q(St, Ar) + R + 7Q(St41, Ary1) — Q(St, Ar)]

One-step Q-learning update:

Q(Se Ar) = Q(Se Ar) + o [Re + 5 max Q(Set1,2) — Q(St, A

In Q-learning, the action in the target is independent of the behavior policy

The behavior policy has an effect on which state-actions are visited
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Q-Learning: Pseudocode

¢ |nitialization: Q arbitrary

® Repeat for each episode:

Initialize state s

Repeat for each step of the episode:
a < action from s using policy derived from Q (e.g., e-greedy)
Take action a, observe reward r and next state s’
Q(s,a) + Q(s,a) + a[r +vmaxy Q(s’,a’) — Q(s, a)]
s« s

until s is a terminal state
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On-Policy v.s Off-Policy

® Q-learning is off-policy:
® Updates Q-values using Q-value of next state s’ and greedy action a’
® Assumes greedy policy were followed despite that it’s not following greedy policy

® SARSA is on-policy:
® Updates Q-values using Q-value of next state s’ and current policy’s action a’
® Assumes the current policy continues to be followed
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Recap: Convergence of SARSA

Theorem

SARSA converges to the optimal Q-function, Q(s,a) — Q™™ (s, a) for any s and a, if

o All state-action pairs are explored infinitely many times,
oo
ZH(St =s,A; =a) =00
t=0

® The policy converges to a greedy policy,

lim m(als) = I(a = argmax Q¢(s, a’))
t—oo a’

® Robbins-Monro sequence of step-sizes [Robbins and Monro, 1951],

Zat oo and Zat < 0

t=0
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Convergence of Q-Learning

Theorem (Melo [2001])

Q-learning converges to the optimal Q-function if

e A/l state-action pairs are explored infinitely many times,

ZH(St:S,At:a):OO

t=0

® Robbins-Monro sequence of step-sizes [Robbins and Monro, 1951],

Zat oo and Zat < 00

t=0
® Only requires & to be strictly positive ® Q-learning converges even if the
® No need to require € to decay to zero behavior policy is far from the optimal
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Backup Diagram

s,a

SARSA

Q-Learning
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Cliff Walking Example

Safer path
Optimal path | 1
[ i Y
S he €l G
Figure: lllustrations of Cliff Walking
® Undiscounted, episodic task ® Reward of -100 if stepping into cliff
® Actions: up, down, right and left ® Reward of -1 on other transitions
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Cliff Walking Example (Cont’d)

Safer path

Optimal path |
S Tlhe Gl

G)<|—

Figure: lllustrations of Cliff Walking

® Q-learning identifies the optimal path

® SARSA identifies a safer path (the optimal path is not optimal here due to that the
e-greedy policy, which might force the agent to fall into the cliff when walking along
the optimal path, yielding a low value)
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Maximization Bias

® One-step Q-learning update:
Q(St, Ar) + Q(St, At) + a |Re + max Q(St+1,a) — Q(Stht)] )

e Maximum over Q(S¢41,a) can lead to significant positive bias
e Example:
® Oracle optimal Q-function @™ (s, a) = 0 for any (s, a)
max, Q™" (s,a) = 0 for any s
Estimated Q-function Q(s, a): uncertain, some above and some below zero
max, Q(s, a) likely to be positive
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Maximization Bias (Cont’d)

e Maximization over @ involves two steps: greedy-action selection and state-action
value evaluation

max Q(s, a) = Q(s,arg max Q(s, a))
a a
® Solution: use two different Q-functions for two steps

Qi(s,arg max Qx(s, a))

e Example: Q™ = 0. Due to difference between Q; and @,, the above expression is

no longer always positive
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Double Q-Learning

Initialize two Q-functions @1 and Q>

Divide time steps into two by flipping a coin on each step

If the coin comes up with head

Q1(St, Ar) < Q1(St, Ar) + {Rt + 02(5t+1: arg mgx Ql(st+1> a)) — Qi(S:, At)}

Otherwise

Q@2(St, Ar) « Qa(St, Ar) +a [Re + 7 Qu(Sey1, arg max @o(Se11,2)) — Qa(Se, Ar)|
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Double Q-Learning: Pseudocode

e |nitialization: @1 and @3 arbitrary

® Repeat for each episode:
Initialize state s
Repeat for each step of the episode:
a < action from s using policy derived from Q1 + Q7 (e.g., e-greedy)
Take action a, observe reward r and next state s’
With probability 0.5:
a’ < argmax, Q1(S¢41,a)
Q1(St, Ar) < Qi(St, Ar) + o [Re + 7 Q2(St41,a") — Qu(Se, Ar)]
else:
a’ < argmax, Q2(S¢+41,a)
Q2(St, Ar) < Q2(St, At) + a[R: + 01(5t+1, a') — Q2(Se, Ar)]
s+ s’
until s is a terminal state
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4. TD()\) and SARSA())
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n-Step Return

e Consider the following n-step returns for n =1,2,- . -, co:

n=1 (TD) GV =R, + V™ (S:41)
n=2 G:® =R, + Rey1+ 2V7T(St+2)

n=oco (MC) G/ =R +~Ry1+?Rejo+---
® Define n-step return
G =R, +~Rij1 4+ +"V™(Si1n)
® pn-step temporal difference learning
V(S:) < V(St) + oG — V(S,)]
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Averaging n-Step Return

e We can average n-step returns over different n

® c.g. average the 2-step and 4-step returns

1 1
26,2 1+ “G,.%
5 Ot +2 t

® Combines information from two different time-steps

® Can we combine information from all time-steps?
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A-Return

® The A-return G;* combines all n-step return G,(m
e Using weight (1 — A)A"—!

+oo
G r=(1-X) ) _A"1G™

n=1

® Notice that

+oo
Y a-nart=1
n=1

e TD())
V(S:) < V(S:) + a[G™ — V(S,)]

e |ike MC, can only be computed from complete episodes
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Weighting Function

weight given to
o the 3-step return total area = 1
\ i (1— A)A2

decay by A

weight given to
actual, final return
iS )\T—t—l

Weighting 1- //

Time ——

+oco
Gr=(1-x)> AlG ™
n=1
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Special Cases

e TD(A)
V(St) < V(St) + a[Gt)‘ — V(St)]
® \WWhen X = 0, reduces to TD method

V(S)) « V(S)+a[G:Y —Vv(s,)
= V(S:)+ a[R: + 7V (St41) — V(S)]

® \WWhen XA = 1, reduces to MC method
V(S)) « V(S)+ a[G(® - Vv(s,)]
= V(S)+a[Re+YRep1+ -+ Ry — V(St)]
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n-Step SARSA

e Consider the following n-step returns forn =1,2,. .-, co:

n=1 (SARSA) D = R, + Q™ (Se41, Ary1)
n=2 Q) = Re +VRey1 +72Q7(Ser2, Acia)
n=o0o (MC) Q™ = Ry 4+ YRet1+ 7PRejo + -+

® Define n-step return
Qt") =Ri+vRep1+ -+ 7"Q"(St+n, Atyn)
® n-step Sarsa updates

Q(S:, Ar) — Q(Se, Ar) + a[Q™ — Q(S:, Ar)]
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SARSA())

® The Q*-return combines all n-step return Qg")
® Using weight (1 — A)A"—!

+oo
Q=1 -x) > A1

n=1

¢ SARSA()

Q(St, Ar) + Q(S:, Ar) + a[Q} — Q(S¢, Ay)]
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Summary

DP : v(s;) + Eqp[re + Av(si1)] MC :v(s;) < v(sy) + (R, — v(s)) TD : v(s;) < v(s2) + q(reas + A(se1) — v(s0)

Dynamic Programming (DP) Monte Carlo (MC) Temporal Difference (TD)
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Summary (Cont’d)

D SARSA Q-Learning
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Summary (Cont’d)

A1 =2)

RO

TD(4)

A1-2)

221 - 4)
SARSA(1)
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Seminar Exercises

e Solution to HW3 (Deadline: Wed 12pm)

e TD: Random Walk

1/2
W@iﬁf\ B
1/2 1/2

® Sarsa: Windy GridWorld

L+

| Actions

0001 1 1 2 210

® Q-Learning: Cliff Walking Example

Safer path

Optimal path

wn_L

The Cliff
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Questions



Appendix: 7woPY(s) = argmax, Q™" (s, a)?

Q™" (s, a) is the value of the policy that
® Assigns a at the initial decision time;
® Follow 7Pt afterwards

Q™™ (s, ™PY(s)) = V™ (s) is the value under the optimal policy ot

e 7Pt is stationary and is no worse than any history-dependent policies (Lecture 2)

Q™" (s,a) < V™ (s) = Q7" (s, ®(s)), Va.

It follows that

woPt(s) = arg max Q™" (s, a)
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Appendix: Proof of Bellman Optimality Equation

® Bellman optimal equation for the optimal Q-function:
Q"opt(s, a)=E [Rt + max Q“opt(StJrl, a')A;=a, S = s] )
® Proof: according to Bellman equation,
Q™™ (s,a) =E [Rt + Q"™ (Seq1, TP (Sep1))|Ar = a, St = s]
® Since wPt(s) = argmax, Q™" (s, a), it follows that

max Q" (Se1,a') = Q" (Seq1, 7 (Se41)
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