
ST455: Reinforcement Learning
Lecture 4: Temporal Difference (TD) Learning

Chengchun Shi

1 / 58



Lecture Outline

1. TD Prediction

2. SARSA

3. Q-Learning

4. TD(λ) and SARSA(λ)

2 / 58



Lecture Outline (Cont’d)

Dynamic Programming (DP) Monte Carlo (MC) Temporal Difference (TD)

3 / 58



Lecture Outline (Cont’d)

4 / 58



Lecture Outline (Cont’d)

5 / 58



1. TD Prediction

2. SARSA

3. Q-Learning

4. TD(λ) and SARSA(λ)

6 / 58



TD Learning v.s. MC Methods v.s. DP Methods

(TD) Learning: a learning method that combines ideas from Monte Carlo (MC) methods
and dynamic programming (DP)

Algorithms DP MC TD

Planning " ✗ ✗

Learning ✗ " "

Model-free ✗ " "

Step-by-step " ✗ "

Episode-by-episode ✗ " ✗

Episodic task " " "

Continuous task " ✗ "

7 / 58



Recap: MC Prediction

• Objective: learns V π from experience under π

• MC Policy Evaluation: V (s)← average[Returns(s)]
• Incremental update for every-visit MC prediction:

V (St)← V (St)+αt [Gt − V (St)]

where αt is 1
#[Returns(St)]

at time t
• We may regard Gt as a target

• The update can be performed after return Gt is observed

• i.e. after the episode is completed

8 / 58



TD Prediction

• Unlike MC methods, TD methods wait only until next time step

• The simplest TD method (so called TD(0)) considers the update

V (St)← V (St)+αt [Rt + γV (St+1)− V (St)]

• This update rule has Rt + γV (St+1) as the target

• Considered as a bootstrap method: update in part based on an existing estimate

• Different from “bootstrap” in statistics: a resampling method (e.g., sample with
replacement) for uncertainty quantification of a given estimate

9 / 58



MC vs TD update

• Notice that under the MDP assumption

V π(s) = Eπ(Gt |St = s) (1)

= Eπ(
∞∑

k=0

γkRt+k |St = s)

= Eπ[Rt + γV π(St+1)|St = s] (2)

• MC methods use as the target the random variable in (1)
• TD methods use as the target the random variable in (2)

• Immediate reward and estimate of the future value

10 / 58



Bootstrapping and Sampling

• Bootstrapping: update involves an estimate
• MC does not bootstrap
• DP bootstraps
• TD bootstraps

• Sampling: update samples an expectation
• MC samples
• DP does not sample
• TD samples

11 / 58



TD(0): Pseudocode

• Input: π policy to be evaluated, step size α

• Initialization: V arbitrary

• Repeat for each episode:
Initialize state s
Repeat for each step of the episode:

a← action given by π for s
Take action a, observe reward r and next state s′

V (s)← V (s)+α[r + γV (s′)− V (s)]
s ← s′

until s is a terminal state

12 / 58



Pros & Cons of MC vs TD

• MC must wait until the end of episode

• MC learns from complete sequences

• MC only works for episodic
(terminating) environments

• TD can learn online after each step

• TD can learn from incomplete
sequences

• TD works in continuing environments

13 / 58



Pros & Cons of MC vs TD (Cont’d)

• Bias/Variance Trade-Off

• Return Gt is unbiased estimate of V π(St)

• Oracle target Rt + γV π(St+1) is unbiased estimate of V π(St)

• TD target Rt + γV (St+1) is biased estimate of V π(St)
• TD target has much lower variance than the return

• Return depends on many random actions, transitions, rewards
• TD target depends on one random action, transition, reward

• MC has high variance, zero bias, insensitive to initialization

• TD has low variance, some bias, sensitive to initialization

14 / 58



Pros & Cons of MC vs TD (Cont’d)

• TD exploits Markov & stationary
properties

• Relies on the Bellman equation

• More efficient in MDP environments

• MC does not exploit these properties

• More flexible in non-MDP
environments (e.g., POMDP)

15 / 58



Rate of Convergence

• For i.i.d. random variables X1, · · · , Xn with mean µ and variance σ2,

√
n(X̄ − µ)→ N(0,σ2),

according to CLT.

• X̄ converges to µ at a rate of n−1/2.

• For n episodes with T time points per episode, first-visit MC converges at a rate of
n−1/2.

• For n episodes with T time points per episode, TD converges at a rate of (nT )−1/2,
with proper choice of step sizes [see e.g., Tadić, 2002].

• First-visit MC requires n→∞ to be consistent

• TD requires either n or T →∞ to be consistent

16 / 58



Backup Diagram

Taken from https://towardsdatascience.com/all-about-backup-diagram-fefb25aaf804
17 / 58

https://towardsdatascience.com/all-about-backup-diagram-fefb25aaf804


Backup Diagram (Cont’d)

18 / 58



1. TD Prediction

2. SARSA

3. Q-Learning

4. TD(λ) and SARSA(λ)

19 / 58



SARSA: an On-Policy TD Control

• SARSA: a TD method for policy optimisation
• Follows the pattern of policy iteration
• Uses TD prediction method for policy evaluation
• Uses ε-greedy exploration for policy improvement

• Similar to MC control, estimate state-action value Qπ(s, a) (instead of the state
value V π(s)) for the control problem

• Different from MC control, update the state-value every time step

20 / 58



Bellman Equations

• Bellman equation for the (state) value function:

V π(s) = E[Rt + γV π(St+1)|St = s].

• Bellman equation for the state-action value function:

Qπ(s, a) = E

[
Rt + γ

∑
a′

π(a′|St+1)Qπ(St+1, a′)|At = a,St = s

]
,

or equivalently,

Qπ(s, a) = Eπ[Rt + γQπ(St+1,At+1)|At = a,St = s].

21 / 58



SARSA: Policy Evaluation

• Incremental estimation of the state-action value function:

Q(St ,At)← Q(St ,At) +α[Rt + γQ(St+1,At+1)− Q(St ,At)],

for non-terminal state St+1

• If St+1 is a terminal state, Q(St+1,At+1) = 0

• This update uses every element of the quintuple of variables:

(St ,At ,Rt ,St+1,At+1)

S A R S A

22 / 58



SARSA: Pseudocode

• Initialization: Q arbitrary

• Repeat for each episode:
Initialize state s
Choose action a from s using policy derived from Q (ε-greedy)
Repeat for each step of the episode:

Take action a, observe reward r and next state s′

a′← action from s′ using policy derived from Q (ε-greedy)
Q(s, a)← Q(s, a)+α[r + γQ(s′, a′)−Q(s, a)]
s ← s′, a← a′

until s is a terminal state

23 / 58



Convergence of SARSA

Theorem

SARSA converges to the optimal Q-function, Q(s, a)→ Qπopt
(s, a) for any s and a, if

• All state-action pairs are explored infinitely many times,
∞∑

t=0

I(St = s,At = a) =∞.

• The policy converges to a greedy policy,

lim
t→∞

πt(a|s) = I(a = argmax
a′

Qt(s, a′))

• Robbins-Monro sequence of step-sizes [Robbins and Monro, 1951],

∞∑
t=0

αt = ∞ and
∞∑

t=0

α2
t < ∞

24 / 58



Convergence of SARSA (Cont’d)

• Condition 1: All state-action pairs are explored infinitely many times

⇒ ε to be strictly positive

• Condition 2: The policy converges to a greedy policy

⇒ εt decays to zero as t grows to infinity

• Condition 3: Robbins-Monro sequence of step-sizes

∞∑
t=0

αt = ∞ and
∞∑

t=0

α2
t < ∞

⇒ αt proportional to t−c for 1/2 < c ≤ 1.∑
t t−c = ∞ when c ≤ 1 and

∑
t t−c < ∞ when c > 1

25 / 58



Windy Gridworld Example

• An episodic task
• Rewards of −1 until goal is reached

• Strength of wind indicated by numbers

26 / 58



Windy Gridworld Example (Cont’d)

27 / 58



1. TD Prediction

2. SARSA

3. Q-Learning

4. TD(λ) and SARSA(λ)

28 / 58



Q-Learning

• One of the most popular class of RL algorithms

• Variants include double Q-learning, fitted Q-iteration, deep Q-network (DQN),
quantile DQN (more in later lectures)

• Main idea: learn the optimal Q-function Qπopt
based on the Bellman optimality

equation and derive the optimal policy (see Appendix for the proof)

πopt(s) = argmax
a

Qπopt
(s, a)

• Focus on tabular Q-learning in this lecture (finite MDP, discrete state and action)

29 / 58



Bellman Optimality Equation

• Bellman optimality equation for the optimal value function:

V πopt
(s) = max

a
E[Rt + γV πopt

(St+1)|At = a,St = s].

• Bellman optimality equation for the optimal Q-function (see Appendix for the proof):

Qπopt
(s, a) = E

[
Rt + γmax

a′
Qπopt

(St+1, a′)|At = a,St = s
]
.

30 / 58



Q-Learning: an Off-Policy TD Control

• One-step SARSA update:

Q(St ,At)← Q(St ,At) +α[Rt + γQ(St+1,At+1)− Q(St ,At)]

• One-step Q-learning update:

Q(St ,At)← Q(St ,At) +α
[
Rt + γmax

a
Q(St+1, a)− Q(St ,At)

]
• In Q-learning, the action in the target is independent of the behavior policy

• The behavior policy has an effect on which state-actions are visited

31 / 58



Q-Learning: Pseudocode

• Initialization: Q arbitrary

• Repeat for each episode:
Initialize state s
Repeat for each step of the episode:

a← action from s using policy derived from Q (e.g., ε-greedy)
Take action a, observe reward r and next state s′

Q(s, a)← Q(s, a)+α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
s ← s′

until s is a terminal state

32 / 58



On-Policy v.s Off-Policy

• Q-learning is off-policy:
• Updates Q-values using Q-value of next state s′ and greedy action a′

• Assumes greedy policy were followed despite that it’s not following greedy policy

• SARSA is on-policy:
• Updates Q-values using Q-value of next state s′ and current policy’s action a′

• Assumes the current policy continues to be followed

33 / 58



Recap: Convergence of SARSA

Theorem

SARSA converges to the optimal Q-function, Q(s, a)→ Qπopt
(s, a) for any s and a, if

• All state-action pairs are explored infinitely many times,
∞∑

t=0

I(St = s,At = a) =∞.

• The policy converges to a greedy policy,

lim
t→∞

πt(a|s) = I(a = argmax
a′

Qt(s, a′))

• Robbins-Monro sequence of step-sizes [Robbins and Monro, 1951],

∞∑
t=0

αt = ∞ and
∞∑

t=0

α2
t < ∞

34 / 58



Convergence of Q-Learning

Theorem (Melo [2001])

Q-learning converges to the optimal Q-function if

• All state-action pairs are explored infinitely many times,
∞∑

t=0

I(St = s,At = a) =∞.

• Robbins-Monro sequence of step-sizes [Robbins and Monro, 1951],

∞∑
t=0

αt = ∞ and
∞∑

t=0

α2
t < ∞

• Only requires ε to be strictly positive
• No need to require ε to decay to zero

• Q-learning converges even if the
behavior policy is far from the optimal

35 / 58



Backup Diagram

36 / 58



Cliff Walking Example

Figure: Illustrations of Cliff Walking

• Undiscounted, episodic task

• Actions: up, down, right and left

• Reward of -100 if stepping into cliff

• Reward of -1 on other transitions

37 / 58



Cliff Walking Example (Cont’d)

Figure: Illustrations of Cliff Walking

• Q-learning identifies the optimal path

• SARSA identifies a safer path (the optimal path is not optimal here due to that the
ϵ-greedy policy, which might force the agent to fall into the cliff when walking along
the optimal path, yielding a low value)

38 / 58



Maximization Bias

• One-step Q-learning update:

Q(St ,At)← Q(St ,At) +α
[
Rt + γmax

a
Q(St+1, a)− Q(St ,At)

]
,

• Maximum over Q(St+1, a) can lead to significant positive bias
• Example:

• Oracle optimal Q-function Qπopt

(s, a) = 0 for any (s, a)
• maxa Qπopt

(s, a) = 0 for any s
• Estimated Q-function Q(s, a): uncertain, some above and some below zero
• maxa Q(s, a) likely to be positive

39 / 58



Maximization Bias (Cont’d)

• Maximization over Q involves two steps: greedy-action selection and state-action
value evaluation

max
a

Q(s, a) = Q(s, argmax
a

Q(s, a))

• Solution: use two different Q-functions for two steps

Q1(s, argmax
a

Q2(s, a))

• Example: Qπopt
= 0. Due to difference between Q1 and Q2, the above expression is

no longer always positive

40 / 58



Double Q-Learning

• Initialize two Q-functions Q1 and Q2

• Divide time steps into two by flipping a coin on each step

• If the coin comes up with head

Q1(St ,At)← Q1(St ,At) +α
[
Rt + γQ2(St+1, argmax

a
Q1(St+1, a))− Q1(St ,At)

]
• Otherwise

Q2(St ,At)← Q2(St ,At) +α
[
Rt + γQ1(St+1, argmax

a
Q2(St+1, a))− Q2(St ,At)

]

41 / 58



Double Q-Learning: Pseudocode

• Initialization: Q1 and Q2 arbitrary

• Repeat for each episode:
Initialize state s
Repeat for each step of the episode:

a← action from s using policy derived from Q1 +Q2 (e.g., ε-greedy)
Take action a, observe reward r and next state s′

With probability 0.5:
a′← argmaxa Q1(St+1, a)
Q1(St ,At)← Q1(St ,At) +α [Rt + γQ2(St+1, a′)− Q1(St ,At)]

else:
a′← argmaxa Q2(St+1, a)
Q2(St ,At)← Q2(St ,At) +α [Rt + γQ1(St+1, a′)− Q2(St ,At)]

s ← s′

until s is a terminal state

42 / 58



1. TD Prediction

2. SARSA

3. Q-Learning

4. TD(λ) and SARSA(λ)

43 / 58



n-Step Return

• Consider the following n-step returns for n = 1, 2, · · ·,∞:

n = 1 (TD) Gt
(1) = Rt + γV π(St+1)

n = 2 Gt
(2) = Rt + γRt+1 + γ2V π(St+2)

...
...

n =∞ (MC) Gt
(∞) = Rt + γRt+1 + γ2Rt+2 + · · ·

• Define n-step return

Gt
(n) = Rt + γRt+1 + · · ·+ γnV π(St+n)

• n-step temporal difference learning

V (St)← V (St)+α[Gt
(n) − V (St)]

44 / 58



Averaging n-Step Return

• We can average n-step returns over different n
• e.g. average the 2-step and 4-step returns

1

2
Gt

(2) +
1

2
Gt

(4)

• Combines information from two different time-steps

• Can we combine information from all time-steps?

45 / 58



λ-Return

• The λ-return Gt
λ combines all n-step return Gt

(n)

• Using weight (1− λ)λn−1

Gt
λ = (1− λ)

+∞∑∑∑
n=1

λn−1Gt
(n)

• Notice that

+∞∑∑∑
n=1

(1− λ)λn−1 = 1

• TD(λ)

V (St)← V (St)+α[Gt
λ − V (St)]

• Like MC, can only be computed from complete episodes
46 / 58



Weighting Function

Gt
λ = (1− λ)

+∞∑∑∑
n=1

λn−1Gt
(n)

47 / 58



Special Cases

• TD(λ)

V (St)← V (St)+α[Gt
λ − V (St)]

• When λ = 0, reduces to TD method

V (St) ← V (St)+α[Gt
(1) − V (St)]

= V (St)+α[Rt + γV (St+1)− V (St)]

• When λ = 1, reduces to MC method

V (St) ← V (St)+α[Gt
(∞) − V (St)]

= V (St)+α[Rt + γRt+1 + · · ·+ γTRt+T − V (St)]

48 / 58



n-Step SARSA

• Consider the following n-step returns for n = 1, 2, · · ·,∞:

n = 1 (SARSA) Q(1)
t = Rt + γQπ(St+1,At+1)

n = 2 Q(2)
t = Rt + γRt+1 + γ2Qπ(St+2,At+2)

...
...

n =∞ (MC) Q(∞)
t = Rt + γRt+1 + γ2Rt+2 + · · ·

• Define n-step return

Q(n)
t = Rt + γRt+1 + · · ·+ γnQπ(St+n,At+n)

• n-step Sarsa updates

Q(St ,At)← Q(St ,At)+α[Q(n)
t − Q(St ,At)]

49 / 58



SARSA(λ)

• The Qλ-return combines all n-step return Q(n)
t

• Using weight (1− λ)λn−1

Qλ
t = (1− λ)

+∞∑∑∑
n=1

λn−1Q(n)
t

• SARSA(λ)

Q(St ,At)← Q(St ,At)+α[Qλ
t − Q(St ,At)]

50 / 58



Summary

Dynamic Programming (DP) Monte Carlo (MC) Temporal Difference (TD)

51 / 58



Summary (Cont’d)

52 / 58



Summary (Cont’d)

53 / 58



Seminar Exercises
• Solution to HW3 (Deadline: Wed 12pm)
• TD: Random Walk

• Sarsa: Windy GridWorld

• Q-Learning: Cliff Walking Example

54 / 58



References I

Francisco S Melo. Convergence of q-learning: A simple proof. Institute Of Systems and
Robotics, Tech. Rep, pages 1–4, 2001.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

Vladislav B Tadić. On the almost sure rate of convergence of temporal-difference learning
algorithms. IFAC Proceedings Volumes, 35(1):455–460, 2002.

55 / 58



Questions

56 / 58



Appendix: πopt(s) = arg maxa Qπopt
(s,a)?

• Qπopt
(s, a) is the value of the policy that

• Assigns a at the initial decision time;
• Follow πopt afterwards

• Qπopt
(s,πopt(s)) = V πopt

(s) is the value under the optimal policy πopt

• πopt is stationary and is no worse than any history-dependent policies (Lecture 2)

Qπopt
(s, a) ≤ V πopt

(s) = Qπopt
(s,πopt(s)), ∀a.

• It follows that

πopt(s) = argmax
a

Qπopt
(s, a)

57 / 58



Appendix: Proof of Bellman Optimality Equation

• Bellman optimal equation for the optimal Q-function:

Qπopt
(s, a) = E

[
Rt + γmax

a′
Qπopt

(St+1, a′)|At = a,St = s
]
.

• Proof: according to Bellman equation,

Qπopt
(s, a) = E

[
Rt + γQπopt

(St+1,π
opt(St+1))|At = a,St = s

]
• Since πopt(s) = argmaxa Qπopt

(s, a), it follows that

max
a′

Qπopt
(St+1, a′) = Qπopt

(St+1,π
opt(St+1))

58 / 58


	TD Prediction
	SARSA
	Q-Learning
	TD() and SARSA()
	References

