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Limitations of Tabular Methods

• So far, we studied reinforcement learning methods using a tabular representation

• Focus on finite MDPs
• Value function represented by a table
• Each state s has an entry for value V (s)
• Each state-action pair (a, s) has an entry for value Q(s, a)

• Limitations of tabular methods

• Cannot handle large-scale RL problems or continuous state space
• Scalability: computation time and storage needed to maintain estimates
• Slow learning: learning the value of each state individually
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Large Scale RL Problems (Examples)

• Image-valued observations (e.g., 210× 160 pixel image fames, 129 colours)
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Large Scale RL Problems (Examples)

• 19× 19 = 361 Go board, each location (empty, black or white) → 3361 ≈ 10170

states
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Continuous State Space (Examples)

• St : x (Position); v (velocity); θ
(Angle); ϖ (Angular velocity)

• All components are continuous
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Function Approximation

• Estimate a value function using a parametric approximator function

• V̂ (s;ω) as an approximator for the value function V π(s)
• Q̂(s, a;ω) as an approximator for the value function Qπ(s, a)

• Dimension of ω much smaller than the state space size. Represents a tradeoff:
• Bias (approximation error) usually decreases with dimension of ω
• Variance (estimation error) usually increase with dimension of ω

• Update parameter ω to find a good approximation using a learning method
• Eg., MC or TD methods

• Function approximation studied in supervised learning
• Integrate known methods in reinforcement learning
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Types of Value Function Approximator
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Types of Value Function Approximator (Cont’d)
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Types of Value Function Approximator (Cont’d)

• Linear combinations of features

• Neural networks

• Decision tree, random forest, boosting

• Nearest neighbor, kernel methods

• · · ·
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Linear Methods

• Table lookup is a special case of linear value function approximation in finite MDP

ϕ(S) =


I(S = s1)
I(S = s2)

...
I(S = sn)


• Parameter vector ω gives value of each individual state

V̂ (s;ω) = (ω1, ω2, · · ·, ωn)
⊤ϕ(S)

• Equivalent to tabular methods

• Other popular choices for ϕ: RBFSampler, splines, polynomials, etc.
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Neural Networks

µ(1) = σ(A(1)µ+ b(1)) ∈ R3

µ(2) = σ(A(2)µ(1) + b(2)) ∈ R3

y = A(3)µ(2) + b(3) ∈ R

Figure: Illustration of fully-connected neural networks with with two hidden layers and three hidden nodes
per hidden layer. Here µ is the 2-dimensional input, A(ℓ) and b(ℓ) denote the corresponding parameters to
produce the linear transformation for the (ℓ− 1)th layer, and σ denotes the element-wise nonlinear
transformation function (e.g., sigmoid or ReLU)
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Linear v.s. Neural Networks

• Neural networks has universal approximation property [Barron, 1993]

• Able to approximate both smooth and nonsmooth (e.g., step function) functions
[Imaizumi and Fukumizu, 2019]

• Difficult to optimize (using back propagation)

• Linear methods are computationally efficient to implement

• Requires feature engineering to have good approximation property
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Linear v.s. Neural Networks (Cont’d)

µ(1) = σ(A(1)µ+ b(1)) ∈ R3

µ(2) = σ(A(2)µ(1) + b(2)) ∈ R3

y = A(3)µ(2) + b(3) ∈ R

• When A(1), b(1), A(2) and b(2) are fixed, can treat σ(A(2)µ(1) + b(2)) as features and
employ linear method to estimate A(3) and b(3)

• Neural networks are adaptive: the features involve parameters that are adaptively
constructed based on the data
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Function Approximation in RL

• Consider the policy evaluation problem: s → V π(s)

• RL Examples:
• MC: St → Gt
• TD(0): St → Rt + γV (St+1)
• TD(λ): St → Gt

λ

• Like supervised learning: feature vector → response

• Unique characteristics of RL: online learning, nonstationary target functions (value
function changes with policy)
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Parameter Estimation

• Goal: find a parameter ω that minimizes a given error function J : ω → R

• Mean squared error (common supervised learning objective):

J(ω) =
1

2
Es∼µ[V̂ (s;ω)− V π(s)]2

where µ is a distribution on the state space
(specifies how the error is distributed over different states)

• Common choice for µ: equal to the on-policy distribution
• Distribution of states encountered under policy π
• Minimize the error that occur while following the policy
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Gradient-Descent Methods

• Assume V̂ (s;ω) is differentiable with respect to ω for each s

• Consider first a simple case where the training examples are St → V π(St)
• Input examples give the exact value of the state value

• Gradient-Descent Algorithm: ωt+1 = ωt −αt∇ωJ(ωt)

ωt+1 = ωt −αtEs∼µ

[ (
V π(s)− V̂ (s;ωt)

)
∇ωV̂ (s;ωt)

]
• Stochastic Gradient-Descent Algorithm: ωt+1 = ωt −αt∇ωJ(ωt)

ωt+1 = ωt −αt

[ (
V π(St)− V̂ (St ;ωt)

)
∇ωV̂ (St ;ωt)

]
where St is distributed according to µ
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Gradient-Descent Methods (Cont’d)

• Each point represents a parameter

• Circle represents parameters with the same loss function
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Gradient-Descent Methods (Cont’d)

• Assume training examples St → νt where νt is a target, some approx of V π(St)

• Stochastic Gradient-Descent Algorithm: ωt+1 = ωt −αt∇ωJ(ω)

ωt+1 = ωt −αt

[ (
νt − V̂ (St ;ωt)

)
∇ωV̂ (St ;ωt)

]
where St is distributed according to µ

• Some sufficient conditions for convergence to local minimum
• Standard assumptions on step size:

∑
αt = ∞ &

∑
α2

t < ∞ [Robbins and Monro,
1951]

• νt is unbiased to Vπ(St)
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Monte-Carlo with Value Function Approximation

• Return Gt is an unbiased, noisy sample of true value V π(St)

• Can therefore apply supervised learning to “training data”

⟨S1,G1⟩, ⟨S2,G2⟩, · · · , ⟨ST ,GT ⟩

• Applying gradient-descent methods

ωt+1 = ωt −αt

[ (
Gt − V̂ (St ;ωt)

)
∇ωV̂ (St ;ωt)

]
• Monte Carlo evaluation converges to a local minimum
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TD Learning with Value Function Approximation

• The TD-target Rt + γV̂ (St+1;ω) is a biased sample of true value V π(St)

• Can still apply supervised learning to “training data”

⟨S1,R1 + γV̂ (S2;ω)⟩, ⟨S2,R2 + γV̂ (S3;ω)⟩, · · · , ⟨ST ,RT + γV̂ (ST+1;ω)⟩

• Applying gradient-descent methods

ωt+1 = ωt −αt

[ (
Rt + γV̂ (St+1;ωt)− V̂ (St ;ωt)

)
∇ωV̂ (St ;ωt)

]
• Linear TD(0) converges to a global minimum [Tsitsiklis and Van Roy, 1997]
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TD(λ) with Value Function Approximation

• The λ-return Gt
λ is a biased sample of true value V π(St)

• Can again apply supervised learning to “training data”

⟨S1,G1
λ⟩, ⟨S2,G2

λ⟩, · · · , ⟨ST ,GT
λ⟩

• Applying gradient-descent methods

ωt+1 = ωt −αt

[ (
Gt

λ − V̂ (St ;ωt)
)
∇ωV̂ (St ;ωt)

]
• Linear TD(λ) converges to a global minimum [Tsitsiklis and Van Roy, 1997]
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Linear Function Approximation

• Linear features: ϕ(s) (e.g., polynomials, trigonometric polynomials, B-splines)

• MC update rule:

ωt+1 = ωt −αt

[ (
Gt − ϕ⊤(St)ωt

)
ϕ(St)

]
• TD(0) update rule:

ωt+1 = ωt −αt

[ (
Rt + γϕ⊤(St+1)ωt − ϕ⊤(St)ωt

)
ϕ(St)

]
• TD(λ) update rule:

ωt+1 = ωt −αt

[ (
Gt

λ − ϕ⊤(St)ωt

)
ϕ(St)

]
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Nonlinear Function Approximation

• Unlike linear methods, gradient-based TD learning algorithm with nonlinear
approximation may diverge

• Proof by an example [Tsitsiklis and Van Roy, 1997]
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Bad Example

• Markov chain with state space {1, 2, 3} and transition matrix

• All instantaneous rewards equal to zero

• The value function is zero for any state and policy
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Bad Example (Cont’d)

• Nonlinear approximator V̂ (ω) = (V̂ (1;ω), V̂ (2;ω), V̂ (3;ω))⊤ for some scalar ω

• Arbitrary initial value
∑

s V̂ (s;ω) = 0

• Use an ordinary differential equation (ODE) model for parametrization

dV̂ (ω)

dω
= (Q + εI )V̂ (ω)

for some small constant ε > 0 and

Q =

 1 1/2 3/2
3/2 1 1/2
1/2 3/2 1


• If the RHS of ODE does not involve V̂ , reduces to the linear model

29 / 53



Bad Example (Cont’d)

• Recall that the value function equals zero

• The mean squared error objective function

J(ω) =
3∑

s=1

[
V̂ (s;ω)− V π(s)

]2
=

3∑
s=1

V̂ 2(s;ω)

• It can be shown that under TD(0) update [Tsitsiklis and Van Roy, 1997]

• ωt increases with t
• ∑3

s=1 V̂ 2(s;ω) increases with ω

• J(ωt) diverges with t
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Convergence of Prediction Algorithms

Algorithm Tabular Linear Non-linear

MC " " "

TD(0) " " ✗

TD(λ) " " ✗

Source: Silver, UCL RL course,
https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf
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Control with Gradient Descent-based Methods

• Policy evaluation: approximate action-state value function Qπ = Q̂(•, •;ω)

• Policy improvement: ε-greedy policy improvement
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Action-State Value Function Approximation

• Approximate action-state value function

Qπ(s, a) = Q̂(s, a;ω)

• Minimise mean-squared error

J(ω) =
1

2
E(s,a)∼µ[Q̂(s, a;ω)− Qπ(s, a)]2

• Use stochastic gradient descent

ωt+1 = ωt −αt

[(
qt − Q̂(St ,At ;ωt)

)
∇ωQ̂(St ,At ;ωt)

]
for some target qt , some approx of Qπ(St ,At)
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Value Function Approximation (Cont’d)

• For MC, the target is the return Gt

ωt+1 = ωt −αt

[(
Gt − Q̂(St ,At ;ωt)

)
∇ωQ̂(St ,At ;ωt)

]
• For TD(0) (SARSA), the target is Rt + γQ̂(St+1,At+1;ω)

ωt+1 = ωt −αt

[(
Rt + γQ̂(St+1,At+1;ωt)− Q̂(St ,At ;ωt)

)
∇ωQ̂(St ,At ;ωt)

]
• For TD(λ) (SARSA(λ)), the target is Qλ

t

ωt+1 = ωt −αt

[(
Qλ

t − Q̂(St ,At ;ωt)
)
∇ωQ̂(St ,At ;ωt)

]
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Linear Function Approximation (Cont’d)

• For MC, the target is the return Gt

ωt+1 = ωt −αt

[(
Gt − ϕ⊤(St ,At)ωt

)
ϕ(St ,At)

]
• For TD(0) (SARSA), the target is Rt + γϕ⊤(St+1,At+1)ω

ωt+1 = ωt −αt

[(
Rt + γϕ⊤(St+1,At+1)ωt − ϕ⊤(St ,At)ωt

)
ϕ(St ,At)

]
• For TD(λ) (SARSA(λ)), the target is Qλ

t

ωt+1 = ωt −αt

[(
Qλ

t − ϕ⊤(St ,At)ωt

)
ϕ(St ,At)

]

35 / 53



The Mountain Car Example
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Convergence of Control Algorithms

Algorithm Tabular Linear Non-linear

MC " " "

SARSA " " ✗

Q-Learning " ✗ ✗

Source: Silver, UCL RL course,
https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf
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Limitations of Gradient-based Control Methods

• MC control allows both linear and nonlinear approximation, but is inefficient
• Gt suffers from large variance, so is the estimated Q-function

• SARSA is efficient, but cannot allow nonlinear approximation
• When using linear approximation, the estimator can suffer from large bias
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Efficient Control with Function Approximation

• Batch (offline) setting with pre-collected data {St ,At ,Rt ,St+1}t

• Main idea of Q-learning: learn the optimal Q-function Qπopt
based on the Bellman

optimality equation and derive the optimal policy

πopt(s) = argmax
a

Qπopt
(s, a)

• Bellman optimality equation

Qπopt
(St ,At) = E

[
Rt + γmax

a
Qπopt

(St+1, a)
∣∣∣St ,At

]
• Supervised learning is sample efficient in batch settings

• Use supervised learning to learn Qπopt
by solving Bellman optimality equation
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Challenge

• Bellman optimality equation

Qπopt
(St ,At) = E

[
Rt + γmax

a
Qπopt

(St+1, a)
∣∣∣St ,At

]
• Both LHS and RHS involve Qπopt

• A naive approach: minimize the mean squared Bellman error∑
t

[
Rt + γmax

a
Q(St+1, a)− Q(St ,At)

]2
This would yield a biased estimator!

41 / 53



The Bellman Error is Not Learnable

• For a given random variable Z , EZ 2 = (EZ )2 +Var(Z )

• The mean squared Bellman error can be decomposed into squared bias + variance

E
[{

Rt + γmax
a

Q(St+1, a)− Q(St ,At)
}2

∣∣∣∣At ,St

]
=

[
E
{

Rt + γmax
a

Q(St+1, a)− Q(St ,At)
∣∣∣At ,St

}]2
+ Var

[
Rt + γmax

a
Q(St+1, a)− Q(St ,At)

∣∣∣At ,St

]
• The second line is zero when Q = Qπopt

• The third line is nonzero for any Q and is a function of Q as well

• There is no guarantee Qπopt
is the minimizer
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Fitted Q-Iteration [Riedmiller, 2005]

• Bellman optimality equation

Qπopt
(St ,At) = E

[
Rt + γmax

a
Qπopt

(St+1, a)
∣∣∣St ,At

]
Both LHS and RHS involve Qπopt

• Main idea: Fix Qπopt
on the RHS

• Repeat the following

1. Compute Q̂ as the argmin of

argmin
Q

∑
t

[
Rt + γmax

a
Q̃(St+1, a)− Q(St ,At)

]2
2. Set Q̃ = Q̂
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Fitted Q-Iteration (Cont’d)

• During each iteration, consider the objective function

E
[
Rt + γmax

a
Q̃(St+1, a)− Q(St ,At)

∣∣∣At ,St

]2
=

[
E
{

Rt + γmax
a

Q̃(St+1, a)− Q(St ,At)
∣∣∣At ,St

}]2
+ Var

[
Rt + γmax

a
Q̃(St+1, a)− Q(St ,At)

∣∣∣At ,St

]
• When Q̃ is close to Qπopt

, the second line is small when Q = Qπopt

• The third line is the same for any Q, since Q̃ is fixed
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Fitted Q-Iteration: Algorithm

• Initialization: Q̂, Q̃ arbitrary, k = 0

• While (k < K ) Repeat

Generated data {(St ,At ,Rt ,St+1)} using policy derived from Q̂ (e.g., ε-greedy)

Compute Q̂ as the argmin of

argmin
Q

∑
t

[
Rt + γmax

a
Q̃(St+1, a)− Q(St ,At)

]2
Set Q̃ = Q̂
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Advantages of Fitted Q-Iteration

• Flexibility: any supervised learning method (e.g., deep learning, boosting, random
forest) is applicable to learn the Q-function during each iteration.

• Gradient Descent-based methods require the Q-function model to be a smooth function
of the model parameters

• Efficiency: borrows the strength of supervised learning for sample-efficient
estimation. Allows high-dimensional state information.
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Theoretical Analysis of Fitted Q-Iteration

• Let Q̂k denote the Q-estimator during the kth iteration

• Error decomposition: bias due to initialization + stochastic estimation error

• The initialization bias → 0 as k → ∞
• The estimation error → 0 when supervised learning provides a consistent estimator
at each iteration
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Theoretical Analysis of Fitted Q-Iteration (Cont’d)

• At the kth iteration,

Q̂k = argmin
Q

∑
t

[
Rt + γmax

a
Q̂k−1(St+1, a)− Q(St ,At)

]2
• Supervised learning target:

Qk(s, a) = E
[
Rt + γmax

a
Q̂k−1(St+1, a)

∣∣∣St = s,At = a
]

48 / 53



Theoretical Analysis of Fitted Q-Iteration (Cont’d)

• A key inequality

sup
s,a

|Q̂k(s, a)− Qπopt
(s, a)| ≤ sup

s,a
|Q̂k(s, a)− Qk(s, a)|

+γ sup
s,a

|Q̂k−1(s, a)− Qπopt
(s, a)|

• Iteratively applying the inequality

sup
s,a

|Q̂k(s, a)− Qπopt
(s, a)| ≤ γk sup

s,a
|Q̂0(s, a)− Qπopt

(s, a)|︸ ︷︷ ︸
Initialization Bias

+sup
s,a

max
j={1,···,k}

|Q̂j (s, a)− Qj (s, a)|︸ ︷︷ ︸
Estimation Error

49 / 53



Summary

• Linear function approximation

• Gradient-based methods

• Gradient-based MC, TD, SARSA

• Neural networks

• Stochastic gradient-based methods

• Fitted Q-iteration
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Seminar Exercises

• Solution to HW4 (Deadline, Wed 12:00 PM)

• The mountain car example: gradient-based methods
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Questions
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