ST455: Reinforcement Learning

Lecture 5: TD Learning with Function Approximation

Chengchun Shi

1/53

Lecture QOutline

1. Introduction to Value Function Approximation

2. Gradient Descent-based Methods

3. Fitted Q-lteration

2/53

Lecture QOutline

1. Introduction to Value Function Approximation

3/53

Limitations of Tabular Methods

® So far, we studied reinforcement learning methods using a tabular representation

Focus on finite MDPs

Value function represented by a table

Each state s has an entry for value V(s)

Each state-action pair (a, s) has an entry for value Q(s, a)

e Limitations of tabular methods

® Cannot handle large-scale RL problems or continuous state space
® Scalability: computation time and storage needed to maintain estimates
® Slow learning: learning the value of each state individually

4/53

Large Scale RL Problems (Examples)

SCORE 160 LivEs mim mis

O PPy

wim

® Image-valued observations (e.g., 210x 160 pixel image fames, 129 colours)

5/53

Large Scale RL Problems (Examples)

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3

27 MAY 2017

Y AphaGo Ke Jie

Winner of Match 3

RESULT B + Res

® 19 x 19 = 361 Go board, each location (empty, black or white) — 3301 ~ 10170
states

6/53

Continuous State Space (Examples)

frame: 53, Obs: (0.018, 0.669, 0.286, 0.618)
Action: 1.0, Cumulative Reward: 47.0, Done: 1

¢ S;: x (Position); v (velocity); 6

PRy -
e (Angle); zo (Angular velocity)
| ® All components are continuous
o
X v
B
Action=1

7/53

Function Approximation

® Estimate a value function using a parametric approximator function
° \7(s;w) as an approximator for the value function V™ (s)
° @(s, a;w) as an approximator for the value function Q™ (s, a)

® Dimension of w much smaller than the state space size. Represents a tradeoff:

® Bias (approximation error) usually decreases with dimension of w
® Variance (estimation error) usually increase with dimension of w

® Update parameter w to find a good approximation using a learning method
® Eg., MC or TD methods

® Function approximation studied in supervised learning
® |ntegrate known methods in reinforcement learning

8/53

Types of Value Function Approximator

V(s;w)

|

9/53

Types of Value Function Approximator (Cont’d)

V(s;w) Q(s,a;w)

| |

10/53

Types of Value Function Approximator (Cont’d)

V(s;w) Q(s,a;w) Q(s,a;;w) Qs, a4 W)

| | | - |

Types of Value Function Approximator (Cont’d)

® Linear combinations of features
® Neural networks
® Decision tree, random forest, boosting

® Nearest neighbor, kernel methods

12/53

Linear Methods

® Table lookup is a special case of linear value function approximation in finite MDP

H(S = 51)

I(S = s
ps)=| T

I(S = sn)

® Parameter vector w gives value of each individual state
V(< T
V(s;w) = (w1,w2,++-ywn) ¢(S)

e Equivalent to tabular methods

® Other popular choices for ¢p: RBFSampler, splines, polynomials, etc.

13/53

Neural Networks

pt) = o(AWy + b)) ¢ R3

1@ = (AR L) 4 p2)) ¢ 3
y = A®LO L p® e R

Figure: lllustration of fully-connected neural networks with with two hidden layers and three hidden nodes
per hidden layer. Here p is the 2-dimensional input, A® and b denote the corresponding parameters to
produce the linear transformation for the (¢ — 1)th layer, and o denotes the element-wise nonlinear
transformation function (e.g., sigmoid or ReLU)

14 /53

Linear v.s. Neural Networks

Neural networks has universal approximation property [Barron, 1993]

Able to approximate both smooth and nonsmooth (e.g., step function) functions
[Imaizumi and Fukumizu, 2019]

Difficult to optimize (using back propagation)

® Linear methods are computationally efficient to implement

Requires feature engineering to have good approximation property

15/53

Linear v.s. Neural Networks (Cont’d)

1D = (A 4 b)Y € B3

p? = (AP LM 4 p)) e R3
y =A@ 4 p®) e R

e When A®), b A) and b2 are fixed, can treat o(A®) (1) 4 p(2)) as features and
employ linear method to estimate A®) and H®)
® Neural networks are adaptive: the features involve parameters that are adaptively

constructed based on the data
16 /53

Lecture QOutline

2. Gradient Descent-based Methods

17/53

Function Approximation in RL

¢ Consider the policy evaluation problem: s — V7 (s)
® RL Examples:

°* MC: St — Gt

o TD(O) St — Rt + V(St+1)

o TD(A) St — Gt)\
[]

Like supervised learning: feature vector — response

Unique characteristics of RL: online learning, nonstationary target functions (value
function changes with policy)

18/53

Parameter Estimation

® Goal: find a parameter w that minimizes a given error function J: w — R

e Mean squared error (common supervised learning objective):
1 \/ T 2
J(w) = EESNH[V(s;w) — V7™(s)]

where p is a distribution on the state space
(specifies how the error is distributed over different states)

e Common choice for u: equal to the on-policy distribution

® Distribution of states encountered under policy =
® Minimize the error that occur while following the policy

19/53

Gradient-Descent Methods

® Assume \7(5; w) is differentiable with respect to w for each s

e Consider first a simple case where the training examples are §; — V™ (S;)
® |nput examples give the exact value of the state value

® Gradient-Descent Algorithm: w1 = wr — ¢V, J(wi)
Wil = W — atESNN[(V"(s) — \7(5; wt)> Vo \7(5; wt)}
® Stochastic Gradient-Descent Algorithm: wiy1 = wr — oV, J(wi)
Wil = W — at[(V"(St) - \7(St; wt)> Vo \7(St; wt)}

where S; is distributed according to u

20/53

Gradient-Descent Methods (Cont’d)

Stochastic Gradient Descent Gradient Descent

® Each point represents a parameter

® Circle represents parameters with the same loss function
21/53

Gradient-Descent Methods (Cont’d)

® Assume training examples Sy — v+ where v is a target, some approx of V™ (S;)

® Stochastic Gradient-Descent Algorithm: w41 = wr — Vi, J(w)
W1 = Wt — at[(Vt - V(St; wt)) Vo V(St; wt)

where S; is distributed according to u

® Some sufficient conditions for convergence to local minimum

® Standard assumptions on step size: Y. a; = co & Y a? < oo [Robbins and Monro,

1951]
® 1, is unbiased to V™(S;)

22/53

Monte-Carlo with Value Function Approximation

Return G; is an unbiased, noisy sample of true value V™(S;)

Can therefore apply supervised learning to “training data”

(81, G1),(S2,Ga), - ,(ST,GT1)

Applying gradient-descent methods

Wil = Wp — at[(Gt — \7(St; wt)> Vo \7(St; wt)}

Monte Carlo evaluation converges to a local minimum

23/53

TD Learning with Value Function Approximation

The TD-target R; + \7(St+1; w) is a biased sample of true value V™ (S;)
Can still apply supervised learning to “training data”

(S1,R1 + 7 V(S2;w)), (S, Ry + 7YV (S3;w)), -+, (ST, RT + 7 V(ST41;w))

Applying gradient-descent methods

W4l = W — at[(Rt + \7(5t+1; we) — V(St; wt)) Vo V(St; wt)]

Linear TD(0) converges to a global minimum [Tsitsiklis and Van Roy, 1997]

24 /53

TD(A) with Value Function Approximation

The A-return G, is a biased sample of true value V™(S;)

e Can again apply supervised learning to “training data”

(81, G1™), (82, G, -+, (ST,GT™)

Applying gradient-descent methods

Wil = wWp — at{ (Gt)‘ — \7(St; wt)) VwV(St;wt)

Linear TD(A) converges to a global minimum [Tsitsiklis and Van Roy, 1997]

25/53

Linear Function Approximation

e Linear features: ¢(s) (e.g., polynomials, trigonometric polynomials, B-splines)
o MC update rule:

werr = we— ae| (Ge— @7 (Shwe) #(S1)|
e TD(0) update rule:
werr = we — ae| (Re+ 767 (Seqn)we — 67 (Se)wor) H(S:)
e TD(A) update rule:

Wt41 = Wt — Oét[(Gt)\ - ¢T(St)wt> ¢(St):|

26 /53

Nonlinear Function Approximation

® Unlike linear methods, gradient-based TD learning algorithm with nonlinear
approximation may diverge

® Proof by an example [Tsitsiklis and Van Roy, 1997]

27/53

Bad Example

® Markov chain with state space {1,2,3} and transition matrix

b@ (2)

e All instantaneous rewards equal to zero

® The value function is zero for any state and policy

28 /53

Bad Example (Cont’d)

® Nonlinear approximator \7(w) = (\7(1; w), \7(2; w), \7(3; w))T for some scalar w

® Arbitrary initial value) \7(s;w) =0

® Use an ordinary differential equation (ODE) model for parametrization

dV(w)
dw

for some small constant € > 0 and

1 1/2 3/2
Q=132 1 12
12 3/2 1

e |f the RHS of ODE does not involve \7 reduces to the linear model

= (Q +el)V(w)

29/53

Bad Example (Cont’d)

® Recall that the value function equals zero

® The mean squared error objective function

3

J(w) = Z [V(s;w) — V“(s)}2 = 23: V2(s;w)
s=1

s=1

® |t can be shown that under TD(0) update [Tsitsiklis and Van Roy, 1997]

® w; increases with t ® J(w;) diverges with t

o Y3, V(s;w) increases with w

30/53

Convergence of Prediction Algorithms

Algorithm Tabular Linear Non-linear

MC 4 4 4
TD(0) v v X
TD(X) v v X

Source: Silver, UCL RL course,
https://www.davidsilver.uk /wp-content/uploads/2020/03/FA.pdf

31/53

https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

Control with Gradient Descent-based Methods

Evaluation

/\

T 0 iy — Q"o—> 7[1—>Q771—>---—> ﬂ-OPt—>Qﬂ0’”

7« = e-greedy(Q)

¢ Policy evaluation: approximate action-state value function Q™ = @(o, o w)

¢ Policy improvement: e-greedy policy improvement

32/53

Action-State Value Function Approximation

® Approximate action-state value function
Q™ (s,a) = Q(s,a;,w)
® Minimise mean-squared error

1 ~
J(w) = SE(s.a)~ulQ(s, 3 w) — Q7(s, a)?

® Use stochastic gradient descent
W41 = W — Ot th - 6(5t7 A, wt)) Vw@(SU Ag; wt):|
for some target q¢, some approx of Q™ (S;, A;)

33/53

Value Function Approximation (Cont’d)

e For MC, the target is the return G
west = we — o | (Gt — Q(Se, Ariwr)) VuQ(St, Asiwr)]
e For TD(0) (SARSA), the target is R; 4+ v Q(St41, Ari1; w)
wep1 =we — at | (Re+7Q(St41, Arpriwr) — Q(St Ariwr)) Vo Q(St, Ari)|
® For TD(M\) (SARSA(A)), the target is Q)

Wil = W — O [(Qt)‘ — a(st,At;wt)> Vwa(st,At;wt)}

34/53

Linear Function Approximation (Cont’d)

e For MC, the target is the return G
west = we—ar | (Ge — &' (St Acwr) B(Se, Ar)|
® For TD(0) (SARSA), the target is Ry + v ' (Se11, Ari1)w
Wil = We — Qp [(Rt + 90" (Ser1, Ary1)we — @' (St At)wt> &(St, At)]
® For TD(M\) (SARSA(A)), the target is Q)

Wt41 = Wt — O [(Q?‘ - ¢T(5t, At)wt) ¢(5t, At):|

35/53

The Mountain Car Example

36/53

Convergence of Control Algorithms

Algorithm Tabular Linear Non-linear

MC 4 v v
SARSA v v X
Q-Learning 4 X X

Source: Silver, UCL RL course,
https://www.davidsilver.uk /wp-content/uploads/2020/03/FA.pdf

37/53

https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

Lecture QOutline

3. Fitted Q-lteration

38/53

Limitations of Gradient-based Control Methods

e MC control allows both linear and nonlinear approximation, but is inefficient
® G, suffers from large variance, so is the estimated Q-function

e SARSA is efficient, but cannot allow nonlinear approximation
® When using linear approximation, the estimator can suffer from large bias

39/53

Efficient Control with Function Approximation

Batch (offline) setting with pre-collected data {S¢, A¢, R, Se41}¢

Main idea of Q-learning: learn the optimal Q-function Q™™ based on the Bellman
optimality equation and derive the optimal policy

woP(s) = arg max Q™" (s, a)

Bellman optimality equation

Qﬂ-opt(stv A)=E |:Rt + m;x Qﬂom(sﬂ—la a)‘ St, At}

Supervised learning is sample efficient in batch settings

® Use supervised learning to learn Q™" by solving Bellman optimality equation

40/53

Challenge

® Bellman optimality equation
Q™" (5;,A;) =E [Rt 4~ max Q™™ (Sp41, a)‘ Se, At}
a

e Both LHS and RHS involve Q™™

® A naive approach: minimize the mean squared Bellman error

Z [Rt + max Q(St+1,a) — Q(Se, At)]2

t

This would yield a biased estimator!

41/53

The Bellman Error is Not Learnable

® For a given random variable Z, EZ? = (EZ)? + Var(Z)

® The mean squared Bellman error can be decomposed into squared bias + variance
2
E [{Rt + 7 max Q(St41,3) — Q(Se, Ar) } ‘ A:, St]

= [E{ R+ max@(Sis1.a) — Q.. A A5)]

+ Var |:Rt + max Q(Stt1,a) — Q(St, Ar)| As, St}

opt

The second line is zero when Q@ = QT

The third line is nonzero for any @ and is a function of @ as well

. opt . Ce .
® There is no guarantee Q™ is the minimizer

42/53

Fitted Q-Iteration [Riedmiller, 2005]

® Bellman optimality equation

Q™" (5;,A,) =E [Rt + 9 max @ (Sep1, a)‘ Se, At}

opt

Both LHS and RHS involve Q™
e Main idea: Fix Q™ on the RHS
® Repeat the following
1. Compute Q as the argmin of

~ 2
arg m(;n Xt: [Rt + max Q(St11,a) — Q(S:, At)}

2. Set6=6

43/53

Fitted Q-Iteration (Cont’d)

® During each iteration, consider the objective function

~ 2
E|Re+ 7 max Q(Se41,3) — Q(St, A)| Ac, St

= [E { R: + max é(SH_l, a) — Q(S¢, Ar)

+ Var [Rt + v max 6(St+17 a) — Q(S¢, Ar)

A:, St

® \When 6 is close to Q’Topt, the second line is small when Q = Q™™

® The third line is the same for any @, since Q is fixed

s}

44 /53

Fitted Q-lteration: Algorithm

e |nitialization: a, 6 arbitrary, k =0
® While (k < K) Repeat

Generated data {(S¢, A¢, R, St4+1)} using policy derived from Q (e.g., e-greedy)

Compute Q as the argmin of

~ 2
arg mci)n zt: [Rt + max Q(St+1,a) — Q(S;, At)}

Setéza

45/53

Advantages of Fitted Q-Ilteration

¢ Flexibility: any supervised learning method (e.g., deep learning, boosting, random
forest) is applicable to learn the Q-function during each iteration.
® Gradient Descent-based methods require the Q-function model to be a smooth function
of the model parameters

e Efficiency: borrows the strength of supervised learning for sample-efficient
estimation. Allows high-dimensional state information.

46 /53

Theoretical Analysis of Fitted Q-lteration

Let ak denote the Q-estimator during the kth iteration
Error decomposition: bias due to initialization 4 stochastic estimation error

The initialization bias — 0 as k — oo
The estimation error — 0 when supervised learning provides a consistent estimator
at each iteration

47/53

Theoretical Analysis of Fitted Q-lteration (Cont’d)

e At the kth iteration,

. _ . 2
Qi = argmin > [Re + 7 max Qe—1(Se41,a) — Q(Se, Ar)|

t

® Supervised learning target:

Qk(s,a) =E [Rt + mé'ax @k—l(st-i-l,a) St =s5,Ar = a}

48/53

Theoretical Analysis of Fitted Q-lteration (Cont’d)

® A key inequality

sup | Qk(s,a) — Q™" (s,a)| < sup|Qk(s,a) — Qu(s,a)|

s,a
+7 sup |Qk—1(s,a) — Q" (s, a)|
s,a
® |teratively applying the inequality

sup |Qk(s, a) — @ (s, a)] < +*sup |Qu(s,a) — Q™" (s, a)|

s,a

Initialization Bias

eup_max 1Qi(s,a) — Qj(s, a)|

s,a j=]_,...,

Estimation Error

49/53

Summary

® Linear function approximation ® Neural networks
® Gradient-based methods ® Stochastic gradient-based methods
® Gradient-based MC, TD, SARSA e Fitted Q-iteration

50/53

Seminar Exercises

e Solution to HW4 (Deadline, Wed 12:00 PM)
® The mountain car example: gradient-based methods

51/53

References |

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory, 39(3):930-945, 1993.

Masaaki Imaizumi and Kenji Fukumizu. Deep neural networks learn non-smooth functions
effectively. In The 22nd international conference on artificial intelligence and statistics,
pages 869-878. PMLR, 2019.

Martin Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural
reinforcement learning method. In European conference on machine learning, pages
317-328. Springer, 2005.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400-407, 1951.

John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE transactions on automatic control, 42(5):674-690, 1997.

52/53

Questions

	Introduction to Value Function Approximation
	Gradient Descent-based Methods
	Fitted Q-Iteration
	References

