
ST455: Reinforcement Learning
Lecture 7: TD Learning (Case Studies)

Chengchun Shi

1 / 59



Recap: Lecture 4, Introduction to TD

2 / 59



Recap: Lecture 5, TD with Function Approximation

• Introduction to Value Function Approximation

• Gradient Descent-based Methods

• Fitted Q-Iteration

3 / 59



Lecture Outline

1. Case Study I: Deep Q-Network (DQN) in Atari

2. Case Study II: TD Learning in Ridesharing Platforms

4 / 59



Lecture Outline

1. Case Study I: Deep Q-Network (DQN) in Atari

2. Case Study II: TD Learning in Ridesharing Platforms

5 / 59



Deep Q-Network [Mnih et al., 2015]

• Q-learning type method that uses a neural network Q-function approximator and
several tricks to mitigate instability

• Showed superior performance to previously known methods for playing Atari 2600
games

• Q-function approximated by a convolutional neural network

• Additional tricks: experience replay, target network

6 / 59



DQN: Empirical Results

100% * (DQN score - random play score) / (human score - random play score)

7 / 59



Atari 2600 Observations

• 210×160 pixel image frames

• 129 colours

• 60Hz frame rate

• Non-Markovian

8 / 59



Input Preprocessing

9 / 59



Mitigating Non-Markovianity by Stacking Frames
Input is a stack of 4 most recent frames

10 / 59



Convolutional Neural Networks
• Filter, typically a 3× 3 matrix, determines the size of output array
• Parameter sharing, weights fixed as filter moves across the image

Taken from https://www.ibm.com/cloud/learn/convolutional-neural-networks

11 / 59

https://www.ibm.com/cloud/learn/convolutional-neural-networks


Feature Extraction

12 / 59



Action Value Approximator

13 / 59



Action Value Approximator (Cont’d)

14 / 59



Two Tricks Used in DQN: Experience Replay

• Experience Replay

• Store transitions (St ,At ,Rt ,St+1) in replay memory M at time t
• Sample minibatch of transitions {(si , ai , ri , si+1) : i ∈ [n]} from n and update

parameters based on this sub-dataset

• Differs from classical Q-learning update

Q(St ,At)← Q(St ,At)+αmax
a

[Rt + γQ(St+1, a)−Q(St ,At)],

where only one tuple is used to update the Q-function.

• Use historical data more efficiently to mitigate instability

• For sufficiently large M, the sampled transitions become asymptotically independent
(correlation decays with time), yielding more accurate estimate

15 / 59



Minibatch Stochastic Gradient Descent

• Each point represents a parameter

• Circle represents parameters with the same loss function

16 / 59



Recap: Fitted Q-Iteration

• Bellman optimality equation

Qπopt
(St ,At) = E

[
Rt + γmax

a
Qπopt

(St+1, a)
∣∣∣St ,At

]
Both LHS and RHS involve Qπopt

• Main idea: Fix Qπopt
on the RHS

• Repeat the following

1. Compute Q̂ as the argmin of

argmin
Q

∑
t

[
Rt + γmax

a
Q̃(St+1, a)− Q(St ,At)

]2
2. Set Q̃ = Q̂

17 / 59



Two Tricks Used in DQN: Target Network

• According to Bellman optimality equation

Qπopt
(St ,At ;θ)︸ ︷︷ ︸

Q-network

= E
[
Rt + γmax

a
Qπopt

(St+1, a;θ∗)︸ ︷︷ ︸
target-network

∣∣∣St ,At

]
• Fix θ∗ in the target network when updating θ in the Q-network

• Perform minibatch SGD Ttarget steps to update θ and set θ∗← θ

• In Mnih et al. [2015], Ttarget ← 10000

• For sufficiently large Ttarget , performing minibatch SGD Ttarget steps is equivalent to

θ← argmin
θ′

∑
t

[
Rt + γmax

a
Qπopt

(St+1, a;θ∗)−Qπopt
(St ,At ;θ)

]2
• Share similar spirits as fitted Q-iteration

18 / 59



The Complete Algorithm

19 / 59



Lecture Outline

1. Case Study I: Deep Q-Network (DQN) in Atari

2. Case Study II: TD Learning in Ridesharing Platforms

20 / 59



Ridesharing: Order-Dispatching

Objective: learn an optimal policy to maximize

• answer rate (proportions of call orders being answered)

• completion rate (proportions of call orders being completed)

• drivers’ income
21 / 59



Order Dispatch Policies

• Closest Driver Policy

• MDP Order Dispatch Policy [Xu et al., 2018]
• Simple: no neural networks, no deep learning, use tabular methods
• Useful: performance improvement consistent in all cities, gains in completion rate

ranging from 0.5% to 5%, successfully deployed for more that 20 cities

• Some Follow-up Works [Tang et al., 2019, Wan et al., 2021]

22 / 59



Closest Driver Policy

Assign the call order to the closest available driver

argmin
ai ,j

m∑
i=1

n∑
j=1

d (i , j )ai ,j Minimize driver-passenger total distance

s.t.
m∑

i=1

ai ,j ≤ 1, j = 1, · · · ,n Order assigned to at most one driver

n∑
j=1

ai ,j ≤ 1, i = 1, · · · ,m Driver assigned to at most one order

• i indexes the i th driver
• d (i , j ) = distance between i and j
• One of the two equalities shall hold

• j indexes the j th order

• ai ,j = 1 ⇔ order j is assigned to i

23 / 59



Closest Driver Policy: Limitations

• The company implements the policy every 2 seconds

• Myopic policy (e.g., maximize immediate rewards)

• No guarantee it will maximize long-term rewards

• Example given in the next slide

24 / 59



Illustration of Limitations of Closest Driver Policy

25 / 59



Adopting the Closest Driver Policy

26 / 59



Some Time Later · · ·

27 / 59



Miss One Order

28 / 59



Consider a Different Action

29 / 59



Able to Match All Orders

30 / 59



MDP Order Dispatch Policy

• Adopts a reinforcement learning framework to optimize long-term rewards

• Delivers remarkable improvement on the platform’s efficiency

• Challenges:

• Huge state space (e.g., origin/destination of call orders, location of available drivers)

• Huge action space: number of matchings grows exponentially with number of
orders/drivers. With n orders and n drivers, number of potential matchings = n!

31 / 59



Main Idea

• Closest driver is myopic because its objective function (e.g., total distance) only
considers immediate rewards

• Use an objective function that involves long-term rewards (e.g., value)
32 / 59



Main Idea (Cont’d)

• A learning and planning approach

• Learning: policy evaluation based on historical data

• Planning: order dispatch by maximizing total value

33 / 59



An MDP Framework

• Model each driver as an agent

• State: 2-dim vector (time, location)
• Action: two types of actions

1. Serving action: assign the driver to server an order
2. Idle action: allows drivers to stay in the same location, to serve an order in the next time

• Reward:
1. an order is completed or not (0/1) (completion rate)
2. driver’s revenue from an order (driver’s income)

34 / 59



An MDP Framework (Cont’d)

• Discounted Factor: γ = 0.9. An order that lasts for time T with reward R

r =

T−1∑
t=0

γt R
T

• Example:
• An driver in area A receives an order from B to C at time 00:00
• The driver arrives C at 30min and earns 30£
• 10min as one time unit, γ = 0.9
• State transition: (0,A)→ (3,C )
• Reward: 10+ 0.9× 10+ 0.92 × 10 = 27.1

35 / 59



Learning: Policy Evaluation

• Break down historical data into a set of transitions pairs (s, a, r , s′,∆t), where ∆t
denotes the time of pickup, waiting and deliver process

• TD update rule for the idle action

V (s)← V (s)+α[0+ γV (s′)− V (s)]

• TD update rule for the serving action

V (s)← V (s)+α[r + γ∆tV (s′)− V (s)]

36 / 59



Policy Evaluation: Example

37 / 59



Policy Evaluation: Pseudocode

• Input: Collect historical state transitions D = {(s, a, r , s′,∆t)} where each state is
composed of a time and space index

• Initialize V (s) and N(s) to zero for any s
• For t = T − 1 to 0 do

Find a data subset Dt where the time index of the state is t
For each sample (s, a, r , s′,∆t) in Dt do

N(s)← N(s)+ 1
V (s)← V (s)+ N−1(s)[r + γ∆tV (s′)− V (s)]

End For
End For

• Return V

38 / 59



Planning: Order Dispatch

Recall the closest driver policy

argmin
ai ,j

m∑
i=0

n∑
j=1

d (i , j )ai ,j Minimize driver-passenger total distance

s.t.
m∑

i=1

ai ,j ≤ 1, j = 1, · · · ,n Order assigned to at most one driver

n∑
j=0

ai ,j ≤ 1, i = 1, · · · ,m Driver assigned to at most one order

• i indexes the i th driver

• d (i , j ) = distance between i and j

• j indexes the j th order

• ai ,j = 1 ⇔ order j is assigned to i

39 / 59



Planning: Order Dispatch (Cont’d)

The MDP order dispatch policy

argmaxai ,j

m∑
i=0

n∑
j=1

A(i , j )ai ,j Maximize total advantage function

s.t.
m∑

i=1

ai ,j ≤ 1, j = 1, · · · ,n Order assigned to at most one driver

n∑
j=0

ai ,j ≤ 1, i = 1, · · · ,m Driver assigned to at most one order

• i indexes the i th driver

• A(i , j ) = advantage function

• j indexes the j th order

• ai ,j = 1 ⇔ order j is assigned to i

40 / 59



Advantage Function Trick

• What is advantage function?
• Difference between Q-function and value function.

• Why use advantage function trick?
• Optimize long-term rewards
• Send drivers in areas with lower values (“cold regions”) to areas with higher values

(“hot regions”)

41 / 59



What is Advantage Function

• A(i , j) = ri ,j + γ∆ti ,j V (s ′i ,j )− V (s i )

• i indexes i th driver, j indexes j th order

• ri ,j : expected gain for i th driver to serve j th order

• s i : initial state of i th driver
• s ′i ,j : state of i th driver after serving j th order

• Time: s ′i ,j (t) = s i (t)+∆ti ,j
• Location: s ′i ,j (ℓ), the destination of j th order

• The first two term corresponds to the state-action value function (Q-function) of
assigning i th driver to j th order

42 / 59



Why Use Advantage Function Trick

• A(i , j) = ri ,j + γ∆ti ,j V (s ′i ,j )− V (s i )

• Order Price: an order with a high utility leads to a high advantage
• Driver’s Location:

• Value of a driver’s current location has a negative impact on the advantage
• When # drivers > # orders (oversupplied), drivers in areas with lower values (“cold

regions”) are more likely to be selected

• Order’s Destination:
• Value of an order’s destination has a positive impact on the advantage
• When # drivers < # orders (undersupplied), orders whose destinations have higher

values (“hot regions”) are more likely to be selected

• Pickup Distance:
• Contributes to the advantage implicitly
• A larger pickup distance =⇒ a larger ∇ti ,j =⇒ a lower advantage
• Considers immediate reward as well

43 / 59



Simulations: Toy Example

• A simple map of 9× 9 spatial grids with 20 time steps

• Orders can only be dispatched to drivers in distance that are no greater than 2

• Simulate realistic traffic patterns with a morning-peak and a night-peak, centralized
on different locations of residential areas and working areas

• Competing methods
• Distance-based
• Myopic (γ = 0)

44 / 59



Toy Example (Cont’d)

45 / 59



Real-World Experiment

• Performance improvement brought by the MDP method is consistent in all cities

• Gains in global GMV and completion rate ranging from 0.5% to 5%

• Successfully deployed for more than 20 cities

• Serving millions of trips in a daily basis

46 / 59



Real-World Experiment (Cont’d)

47 / 59



Extension: Policy Iteration

• Policy Evaluation: evaluate the value under a given policy π

• Order Dispatch: implement the order dispatch policy based on V for data collection

48 / 59



Extension: Function Approximation

• Bellman equation:

V (Si ) = E
[

Ri (γ)+ γ∆ti Vk−1,t(S ′
i )
∣∣Si

]
• Use fitted value iteration (similar to fitted Q-iteration) to allow function

approximation
• Use previous estimate to construct the target
• Update the value using supervised learning

• Repeat for k = 1, 2, · · ·

Vk = argmin
V

∑
i∈D

[
Ri (γ)+ γ∆ti Vk−1(S ′

i )− V (Si )
]2

• VNet [Tang et al., 2019]: Combine fitted value iteration with deep value-network

49 / 59



Extension: Pattern Transfer Learning

• Motivation: violation of time-homogeneity assumption in data collected from
ridesharing platforms, leading to TMDPs

• The system dynamics is likely to vary over time

• Naive solution:
• Use more recent data for policy evaluation (learning)
• Use advantage function trick for order dispatching (planning)
• Disadvantage: discard a lot of data

• Research question: how should we efficiently utilize historical dataset to improve
the efficiency of value function estimation

50 / 59



Nonstationarity

• Value function estimated
based on data from
KDD CUP 2020

• 30-day’s data collected from
Didi Chuxing

• Left plot: value based on
first 15-day’s data

• Right plot: value based on
last 15-day’s data

• Absolute values differ

51 / 59



Main Idea [Wan et al., 2021]

• Magnitude of value is
nonstationary

• Concordance relationship
of value remains stationary

• Values of hot zones (e.g.,
centers) are consistently
larger than those of cold
zones (e.g., suburbs)

• Overall, concordance
relationship holds on more
than 80% state pairs

52 / 59



Concordance

• Widely used in the statistics and economics literature
• Maximum rank correlation estimator for regression [Han, 1987]
• Concordance-assisted estimator for learning optimal dynamic treatment regimes [Fan

et al., 2017, Shi et al., 2021]

• For two states s1 and s2 and two value functions V1 and V2

• Concordance is 1 if {V1(s1)− V1(s2)}{V2(s1)− V2(s2)} ≥ 0 and 0 otherwise

• Concordance penalty:

c(V1,V2) =
1

n(n− 1)

∑
i<j

#[{V1(Si )− V1(Sj )}{V2(Si )− V2(Sj )} < 0]

53 / 59



Algorithm

• Use past data to learn V old

• Use more recent data to learn V0 as an initial estimator

• Use fitted value iteration to update value

• Solve a constrained optimisation to incorporate concordance penalty

• Repeat for k = 1, 2, · · ·
Repeat for t = 0, 1, · · ·

Vk,t = argmin
Vt

∑
i∈D(t)

[
Ri (γ)+ γ∆ti Vk−1,t(S ′

i )− Vt(Si )
]2

s.t. c(V old
t ,Vk,t) ≤ ϵ

for some 0 < ϵ < 1.

54 / 59



Simulation
• Build dispatch simulator using the KDD dataset

55 / 59



Summary

• Deep Q-Network

• Experience Replay

• Target Network

• Convolutional Neural Networks

• Minibatch Stochastic Gradient Descent

• Closest Driver Policy

• MDP Order Dispatch

• Advantage Function Trick

• Fitted Value Iteration

• Pattern Transfer Learning

56 / 59



References I

Caiyun Fan, Wenbin Lu, Rui Song, and Yong Zhou. Concordance-assisted learning for
estimating optimal individualized treatment regimes. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 79(5):1565–1582, 2017.

Aaron K Han. Non-parametric analysis of a generalized regression model: the maximum
rank correlation estimator. Journal of Econometrics, 35(2-3):303–316, 1987.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015.

Chengchun Shi, Rui Song, and Wenbin Lu. Concordance and value information criteria
for optimal treatment decision. The Annals of Statistics, 49(1):49–75, 2021.

57 / 59



References II

Xiaocheng Tang, Zhiwei Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma, Hongtu
Zhu, and Jieping Ye. A deep value-network based approach for multi-driver order
dispatching. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 1780–1790, 2019.

Runzhe Wan, Sheng Zhang, Chengchun Shi, Shikai Luo, and Rui Song. Pattern transfer
learning for reinforcement learning in order dispatching. arXiv preprint
arXiv:2105.13218, 2021.

Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan, Chunyang
Liu, Wei Bian, and Jieping Ye. Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
905–913, 2018.

58 / 59



Questions

59 / 59


	Case Study I: Deep Q-Network (DQN) in Atari
	Case Study II: TD Learning in Ridesharing Platforms
	References

