ST455: Reinforcement Learning
Lecture 7: TD Learning (Case Studies)

Chengchun Shi

1/59

Recap: Lecture 4, Introduction to TD

TD SARSA Q-Learning

2/59

Recap: Lecture 5, TD with Function Approximation

® |ntroduction to Value Function Approximation
® Gradient Descent-based Methods

e Fitted Q-lteration

3/59

Lecture QOutline

1. Case Study I: Deep Q-Network (DQN) in Atari

2. Case Study Il: TD Learning in Ridesharing Platforms

4/59

Lecture QOutline

1. Case Study I: Deep Q-Network (DQN) in Atari

5/59

Deep Q-Network [Mnih et al., 2015]

Q-learning type method that uses a neural network Q-function approximator and
several tricks to mitigate instability

Showed superior performance to previously known methods for playing Atari 2600
games

Q-function approximated by a convolutional neural network

Additional tricks: experience replay, target network

6/59

DQN: Empirical Results

Video Pinball
Boxing
Breakout

Star Gunner
Robotank Jssex [— =
Atlantis 7| Be S ————— Asterix_| BB — Below human-level
Crazy Climber | &t I——— Battle Zone _| 7l —
Gopher | s Wizard of Wor _| 7sill——
Demon Attack | ZSiI —— Chopper Command
Name This Gz:]: R — Centipede | EERIE——
Assauit | KR — Bank Heist | Sl
Road Runner | RS — River Raid | Sl
Kangaroo | 2za% I ——— Zaxxon | S4v~
James Bond _| f4ss I Amidar | 485} —
Tennis _| SRR Alien | @5
Pong _| HEEN- 1
Venture | 38—
Space Invaders | iZim_—— m
Beam Rider | AfSH— Seaquest | I-25%
Tutankham | fi25 M — Double Dunk _| ==
Kung-Fu Master _| fo2amii== Bowling | 14%
Freeway _| o2% Ik Ms. Pac-Man | J}13%
Time Pilot | oGk Asteroids || 7%
nduro | ST o]
e Frostbite |}-6%
Fishing Derby | S5l — e |
Up and Down _| Szl — Gravitar _|Fs% DQN
Ice Hockey | #o%mll— Private Eye | 2%
Qbert | TSN — Montezuma's Revenge || 0% Esstiipeariicame]
HERO. | ek At human-level or above 0 . : r ; ; - .
0 100 200 300 400 500 600 1,000 4,500%

100% * (DQN score - random play score) / (human score - random play score)

7/59

Atari 2600 Observations

® 210x160 pixel image frames ® 60Hz frame rate

® 129 colours ® Non-Markovian

8/59

Input Preprocessing

AEEREC g
TEER QT
LEEREC oy

TEEREE
AEERE S o
LEEREQE

o
(=}
-

84

luminance values

210

9/59

AEECEC g
AEEC BT
AEECEC oy
LEECEE
MEEE G
LEEC BT

MEERE S
LEECET

EEE R G S o
LEEREC

TEER KT

Mitigating Non-Markovianity by Stacking Frames

Input is a stack of 4 most recent frames

10/59

Convolutional Neural Networks

¢ Filter, typically a 3 x 3 matrix, determines the size of output array
® Parameter sharing, weights fixed as filter moves across the image

Output [0][0] = (9*0) + (4%2) + (1*4) +
(1*1) + (1*0) + (1*1) + (2*0) + (1*1)

=0+8+1+4+1+0+1+0+1

g

Input image Filter Output array

Taken from https://www.ibm.com/cloud/learn/convolutional-neural-networks

11/59

https://www.ibm.com/cloud/learn/convolutional-neural-networks

Feature Extraction

Raw data Low-level features

; EESN AR T
' N -
.-'ll_{\\\

Mid-level features High-level features

Q = PLE - %N
tr.'a e g 3
JEA i =a! ‘"‘:,’. = £
e A b
Vembh Ol vl N &N o% -

12/59

Action Value Approximator

Convolution Convolution Fully connected Fully connected
v v v -

No input

ddoooon ddoooon

aa_o
S

2 g

I@?HQ

ddooonn dddooon

13/59

Action Value Approximator (Cont’d)

V(s;w) Q(s, a; w) Q(s,as; w) Qs aja); W)

| | [-]

Two Tricks Used in DQN: Experience Replay

e Experience Replay

® Store transitions (S¢, A¢, R¢, St+1) in replay memory M at time ¢

® Sample minibatch of transitions {(s;, a;, r;, siy+1) : i € [n]} from n and update
parameters based on this sub-dataset

® Differs from classical Q-learning update
Q(S:, Ar) + Q(S:, Ar) + m;ax[Rt +7Q(Sty1,3) — Q(S:, Ar)],

where only one tuple is used to update the Q-function.
® Use historical data more efficiently to mitigate instability

® For sufficiently large M, the sampled transitions become asymptotically independent
(correlation decays with time), yielding more accurate estimate

15/59

Minibatch Stochastic Gradient Descent

Stochastic Gradient Descent Minibatch Stochastic

(One Observation per Time) Gradient Descent Gradient Descent

® Each point represents a parameter

® Circle represents parameters with the same loss function

16 /59

Recap: Fitted Q-Ilteration

® Bellman optimality equation

Q™" (5;,A,) =E [Rt + 9 max @ (Sep1, a)‘ Se, At}

opt

Both LHS and RHS involve Q™
e Main idea: Fix Q™ on the RHS
® Repeat the following
1. Compute Q as the argmin of

~ 2
arg m(;n Xt: [Rt + max Q(St11,a) — Q(S:, At)}

2. Set6=6

17/59

Two Tricks Used in DQN: Target Network

® According to Bellman optimality equation

Q™" (St,A:18) = E[R; + 7 max Q™" (St41,3,6°) |t A
| a

Q-network target-network

Fix 6% in the target network when updating 6 in the Q-network

Perform minibatch SGD Tysger steps to update @ and set 8% < 6
In Mnih et al. [2015], Tiarger <— 10000

For sufficiently large Tiager, performing minibatch SGD Tyy/ger Steps is equivalent to

opt * ﬂ.Dt 2
0<—argnéi/n§t:[Rt—|— m;xQﬂ'P(St—H,a;H)—Q "(St,At;e)]

Share similar spirits as fitted Q-iteration

18/59

The Complete Algorithm

Input: MDP (S.A, P, R,v), replay memory M, number of iterations 7', minibatch size n,
exploration probability € € (0,1), a family of deep Q-networks Qg: S x A — R, an integer Ttarget
for updating the target network, and a sequence of stepsizes {a}i>0.
Initialize the replay memory M to be empty.
Initialize the Q-network with random weights 6.
Initialize the weights of the target network with 6* = 6.
Initialize the initial state Sp.
fort=0,1,...,7 do
With probability €, choose A; uniformly at random from A, and with probability 1 —e, choose
Ay such that Qg(St, Ar) = max,e 4 Qo(Sy, a).
Execute A; and observe reward R; and the next state S;;1.
Store transition (S, Ay, Ry, Si1) in M.
Experience replay: Sample random minibatch of transitions {(s;, a;, 74, 5}) }ie[) from M.
For each i € [n], compute the target Y; = r; + 7 - max,e g Qo+ (s, a).
Update the Q-network: Perform a gradient descent step

0400 = 3 [~ Qulsi)] - VoQalsi,).

i€[n]

Update the target network: Update 6* <— 6 every Tiarget steps.
end for
Define policy 7 as the greedy policy with respect to Qp.
Output: Action-value function @y and policy 7. 19/59

Lecture QOutline

2. Case Study Il: TD Learning in Ridesharing Platforms

20 /59

Ridesharing: Order-Dispatching

«
Centralized Decision Platform t
2 o Trips/year Order list Driver list
r 3 R
E < > E
Passenger Occupancy | | gpg
Request Status
o) (J L
-

Matching
o . 1
Vehicle trajectory data/day data processed/day routing requests/day. location points/day

Pickup & Delivery

Objective: learn an optimal policy to maximize
® answer rate (proportions of call orders being answered)
® completion rate (proportions of call orders being completed)

® drivers’ income
21/59

Order Dispatch Policies

® Closest Driver Policy

® MDP Order Dispatch Policy [Xu et al., 2018]

® Simple: no neural networks, no deep learning, use tabular methods
® Useful: performance improvement consistent in all cities, gains in completion rate
ranging from 0.5% to 5%, successfully deployed for more that 20 cities

® Some Follow-up Works [Tang et al., 2019, Wan et al., 2021]

22/59

Closest Driver Policy

Assign the call order to the closest available driver

arg ryln E E d(i,j)aj Minimize driver-passenger total distance
i j
i=1j=1

s.t. Z a;<1, j=1,--,n Order assigned to at most one driver

i=1
Z a;<1 i=1---'m Driver assigned to at most one order
® j indexes the ith driver ® j indexes the jth order
e d(i,j) = distance between i and j
® One of the two equalities shall hold ® a;; =1 < order j is assigned to i

23/59

Closest Driver Policy: Limitations

The company implements the policy every 2 seconds

Myopic policy (e.g., maximize immediate rewards)
® No guarantee it will maximize long-term rewards

® Example given in the next slide

24 /59

lllustration of Limitations of Closest Driver Policy

25 /59

Adopting the Closest Driver Policy

26 /59

Some Time Later - --

27 /59

Miss One Order

28 /59

Consider a Different Action

29 /59

Able to Match All Orders

30/59

MDP Order Dispatch Policy

® Adopts a reinforcement learning framework to optimize long-term rewards

e Delivers remarkable improvement on the platform’s efficiency

¢ Challenges:

® Huge state space (e.g., origin/destination of call orders, location of available drivers)

® Huge action space: number of matchings grows exponentially with number of
orders/drivers. With n orders and n drivers, number of potential matchings = n!

31/59

Main ldea

e Closest driver is myopic because its objective function (e.g., total distance) only
considers immediate rewards

® Use an objective function that involves long-term rewards (e.g., value)
32/59

Main Idea (Cont’d)

® A learning and planning approach
® Learning: policy evaluation based on historical data

® Planning: order dispatch by maximizing total value

33/59

An MDP Framework

® Model each driver as an agent
e State: 2-dim vector (time, location)

e Action: two types of actions

1. Serving action: assign the driver to server an order
2. ldle action: allows drivers to stay in the same location, to serve an order in the next time

® Reward:

1. an order is completed or not (0/1) (completion rate)
2. driver's revenue from an order (driver's income)

34/59

An MDP Framework (Cont’d)

° . v = 0.9. An order that lasts for time T with reward R
T-1
P S i
T
t=0
e Example:

® An driver in area A receives an order from B to C at time 00:00
The driver arrives C at 30min and earns 30£

10min as one time unit, v = 0.9

State transition: (0, A) — (3, C)

Reward: 10 + 0.9 x 10 4+ 0.92 x 10 = 27.1

35/59

Learning: Policy Evaluation

® Break down historical data into a set of transitions pairs (s, a, r,s’, At), where At
denotes the time of pickup, waiting and deliver process

® TD update rule for the idle action
V(s) < V(s)+ a0 +~V(s') — V(s)]
® TD update rule for the serving action

V(s) < V(s)+ a[r + 72tV(s') — V(s)]

36/59

Policy Evaluation: Example

Ty Ty T, T3
So(To.X) 84(T4,X)
Idle action: V(Sg) <« V(So) + a(0 +yV(S1) — V(Sy))
To T, T, T,
S0(To. X) \l
$3(T3,Y)

Serving action: V(So) < V(So) + a(Ry +¥*V(Sz) = V(Sy))

37/59

Policy Evaluation: Pseudocode

® Input: Collect historical state transitions D = {(s, a, r,s’, At)} where each state is
composed of a time and space index

e |nitialize V/(s) and N(s) to zero for any s

® Fort=T—1to0do
Find a data subset D; where the time index of the state is t
For each sample (s, a,r,s’, At) in D; do
N(s) < N(s)+1
V(s) + V(s)+ N~Y(s)[r + ~2tV(s’) — V(s)]
End For
End For

® Return V

38/59

Planning: Order Dispatch

Recall the closest driver policy

arg I’QII jn Z Z d(i,j)aj Minimize driver-passenger total distance

i=0j=1
s.t. Z a;<1 j=1,--,n Order assigned to at most one driver
i=1
Z a;<1 i=1---'m Driver assigned to at most one order
® j indexes the ith driver ® j indexes the jth order
® d(i,j) = distance between i and j ® a;; =1« order j is assigned to i

39/59

Planning: Order Dispatch (Cont’d)

The MDP order dispatch policy

m n
arg maxa, ; Z Z A(i,j)aij Maximize total advantage function

i=0j=1
m
s.t. Z a; <1 j=1,--,n Order assigned to at most one driver
i=1
n
Z a;<1 i=1---'m Driver assigned to at most one order
j=0
® j indexes the ith driver ® j indexes the jth order
® A(i,j) = advantage function ® a;; = 1 < order j is assigned to i

40 /59

Advantage Function Trick

® What is advantage function?
® Difference between Q-function and value function.

e Why use advantage function trick?

® QOptimize long-term rewards
® Send drivers in areas with lower values (“cold regions") to areas with higher values
(“hot regions”)

41/59

What is Advantage Function

o A(i,j) = rij+A5iV(s};) — V(si)
® j indexes ith driver, j indexes jth order
® r;j: expected gain for ith driver to serve jth order
® s;: initial state of ith driver
;-J: state of ith driver after serving jth order
° Time: s;;(t) = si(t) + At
® Location: s; ;(€), the destination of jth order

® s

® The first two term corresponds to the state-action value function (Q-function) of
assigning ith driver to jth order

42/59

Why Use Advantage Function Trick

© A(i,j) = rij +25iV(s;;) — V(si)
® Order Price: an order with a high utility leads to a high advantage

® Driver’s Location:

® Value of a driver's current location has a negative impact on the advantage
® When # drivers > # orders (oversupplied), drivers in areas with lower values (“cold
regions”) are more likely to be selected

Order’s Destination:

® Value of an order's destination has a positive impact on the advantage
® When # drivers < # orders (undersupplied), orders whose destinations have higher
values (“hot regions”) are more likely to be selected

Pickup Distance:

® Contributes to the advantage implicitly
® A larger pickup distance = a larger Vt; ; = a lower advantage
® Considers immediate reward as well

43/59

Simulations: Toy Example

A simple map of 9 x 9 spatial grids with 20 time steps

Orders can only be dispatched to drivers in distance that are no greater than 2

Simulate realistic traffic patterns with a morning-peak and a night-peak, centralized
on different locations of residential areas and working areas

Competing methods

® Distance-based
® Myopic (v = 0)

44 /59

Toy Example (Cont’d)

{I:I distance [myopic [mdp}

600 Total Re;venue ‘ 1.8 P!ckup D‘lstance 1.0 'Answer‘ Rate

6 . 1l
e BT
400} i 1.2 B
o | 1.0 e
0.8 104
200} 1 0.6]
100} 1 g';‘: | 0
0

100:25100:50100:75°"° 100:25100:50100:75°"° 100:25100:50100:75

Figure 6: Comparison of distance-based method, myopic method and the
proposed MDP method in three metrics on the toy example environment.
X-axis stands for the order-driver ratios. Better viewed in color.

45 /59

Real-World Experiment

Performance improvement brought by the MDP method is consistent in all cities

Gains in global GMV and completion rate ranging from 0.5% to 5%

Successfully deployed for more than 20 cities

Serving millions of trips in a daily basis

46 /59

Real-World Experiment (Cont’d)

(a) 18:00-18:10, evening peak (b) 09:00-09:10, after morning peak

Figure 8: Sampled value function for the same city at differ-
ent times. Red indicates higher values, blue for lower ones.
Better viewed in color.

47 /59

Extension: Policy lteration

Policy Evaluation

.

T \% ooy — V% —> 711 —» /71—«

~—

Order Dispatch

¢ Policy Evaluation: evaluate the value under a given policy 7

¢ Order Dispatch: implement the order dispatch policy based on V for data collection

48 /59

Extension: Function Approximation

® Bellman equation:
V(S) =E| Ri(1) + 725 Vie14(S))| Si|

¢ Use fitted value iteration (similar to fitted Q-iteration) to allow function
approximation

® Use previous estimate to construct the target
® Update the value using supervised learning

® Repeat for k =1,2,.-.
2
Vk = arg m\jn Z |:R,'() + At Vk_l(S,f) —_ V(S,)
i€D
® VNet [Tang et al., 2019]: Combine fitted value iteration with deep value-network

49 /59

Extension: Pattern Transfer Learning

® Motivation: violation of time-homogeneity assumption in data collected from
ridesharing platforms, leading to TMDPs

® The system dynamics is likely to vary over time

® Naive solution:

® Use more recent data for policy evaluation (learning)
® Use advantage function trick for order dispatching (planning)
® Disadvantage: discard a lot of data

e Research question: how should we efficiently utilize historical dataset to improve
the efficiency of value function estimation

50 /59

Nonstationarity

¢ Value function estimated I ; : I :
based on data from | 7 | : . |
KDD CUP 2020 : 1) |
Value ¥
® 30-day's data collected from Ferction 2 |
Didi Chuxing | : | :
|

® Left plot: value based on : - |
first 15-day's data el : ‘ [. |
® Right plot: value based on vaes | Vst =17 : | ¥ V(si)l_=:“2.:1‘, (:

last 15-day's data etationship | gt S e 7 Ye2=18s
y Il:oldshpl V(s3)=16.4 7 { (] ,..\-MV(S?')=2X.2 ’ |
® Absolute values differ I ! (I L s |

51/59

Main Idea [Wan et al., 2021]

® Magnitude of value is

| < |
nonstationary | «) |
. . 3 l ¥
e Concordance relationship | | :) :
1 1 Val I
of value remains stationary = Yalue | 1 |
at :

® Values of hot zones (e.g., T00pm. | (! |
centers) are consistently | I |
larger than those of cold | : | :

zones (e.g., suburbs) absotute | E] | | 7
e 1| wsh=1z7. 1|7 Vish=24 I
® Overall, concordance Covia | | Bt Pt | |

, concgrdan_ce V(s2) =152 '+ | " 2\gsm: 18.5 “o
. . relationship & H i .

relationship holds on more hotas | fV(sF =164 i b [v =252 . § |
than 80% state pairs I_____‘__‘___!I______’____!

52/59

Concordance

® Widely used in the statistics and economics literature

® Maximum rank correlation estimator for regression [Han, 1987]
® Concordance-assisted estimator for learning optimal dynamic treatment regimes [Fan
et al., 2017, Shi et al., 2021]

® For two states s; and sy and two value functions V; and V,
® Concordance is 1 if {Vi(s1) — Vi(s2)}{Va(s1) — Va(s2)} > 0 and O otherwise

e Concordance penalty:

c(V1,\r) = n(nl—l) Z#[{ Vi(Si) — Va(S) H V2(Si) — Va(S))} < 0]
i<j

53/59

Algorithm

Use past data to learn V°

® Use more recent data to learn Vj as an initial estimator

Use fitted value iteration to update value
® Solve a constrained optimisation to incorporate concordance penalty

Repeat for k =1,2,.-.
Repeat for t = 0,1,---

2
Vie=argmin >~ |Ri(1) 472 Vie1(S)) = Ve(S)
icD(t)

sit. (VP Vi) <e
forsome 0 < e < 1.

54 /59

Simulation

® Build dispatch simulator using the KDD dataset

T 640000

ewal

600000

580000

560000

540000

Daily cumulative r

640000

620000

600000

580000

560000

Daily cumulative reward

540000

Figure 2: Performance of different methods when y = 0.9 (upper) and v = 0.95 (lower). The x-axis represents consecutive weekdays in the

Daily cumulative reward

Answer rate

Completion rate

084
092 TTr—
@ 083 —
g 091 B os N —
®
Zoso § o081
8 oss B oso
2 Son
£oss £
087 G ore
077
086
1 2 3 4 5 6 7 8 9 10 11 1 5 6 1 o 1 1 2 3 4 5 6 7 8 95 10 11
Days Days Days
Daily cumulative reward Answer rate Completion rate
094
003 @ oas m
£ o9 e
<o Som
2 000 g
] s
080
/ Zos £
088 S
a7 078
12 3 4 5 6 7 8 9 10 11 1 5 6 1 0 1 12 3 4 5 6 7 8 5 10 11
Days Days Days
—— Pattern-transfer (Ours) Source only Naively-combine Target only greedy

target environment. Our method outperforms the baseline methods under different metrics.

55 /59

Summary

Deep Q-Network Closest Driver Policy
MDP Order Dispatch
Advantage Function Trick

Fitted Value Iteration

Experience Replay

Target Network

Convolutional Neural Networks
Minibatch Stochastic Gradient Descent

Pattern Transfer Learning

56 /59

References |

Caiyun Fan, Wenbin Lu, Rui Song, and Yong Zhou. Concordance-assisted learning for
estimating optimal individualized treatment regimes. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 79(5):1565-1582, 2017.

Aaron K Han. Non-parametric analysis of a generalized regression model: the maximum
rank correlation estimator. Journal of Econometrics, 35(2-3):303-316, 1987.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533,
2015.

Chengchun Shi, Rui Song, and Wenbin Lu. Concordance and value information criteria
for optimal treatment decision. The Annals of Statistics, 49(1):49-75, 2021.

57/59

References ||

Xiaocheng Tang, Zhiwei Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma, Hongtu
Zhu, and Jieping Ye. A deep value-network based approach for multi-driver order
dispatching. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 1780-1790, 20109.

Runzhe Wan, Sheng Zhang, Chengchun Shi, Shikai Luo, and Rui Song. Pattern transfer
learning for reinforcement learning in order dispatching. arXiv preprint
arXiv:2105.13218, 2021.

Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan, Chunyang
Liu, Wei Bian, and Jieping Ye. Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
905-913, 2018.

58 /59

Questions

	Case Study I: Deep Q-Network (DQN) in Atari
	Case Study II: TD Learning in Ridesharing Platforms
	References

