ST455: Reinforcement Learning
Lecture 7: TD Learning (Case Studies)

Chengchun Shi

1/59



Recap: Lecture 4, Introduction to TD

TD SARSA Q-Learning
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Recap: Lecture 5, TD with Function Approximation

® |ntroduction to Value Function Approximation
® Gradient Descent-based Methods

e Fitted Q-lteration
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Lecture QOutline

1. Case Study I: Deep Q-Network (DQN) in Atari

2. Case Study Il: TD Learning in Ridesharing Platforms
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Lecture QOutline

1. Case Study I: Deep Q-Network (DQN) in Atari
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Deep Q-Network [Mnih et al., 2015]

Q-learning type method that uses a neural network Q-function approximator and
several tricks to mitigate instability

Showed superior performance to previously known methods for playing Atari 2600
games

Q-function approximated by a convolutional neural network

Additional tricks: experience replay, target network
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DQN: Empirical Results
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Atari 2600 Observations

® 210x160 pixel image frames ® 60Hz frame rate

® 129 colours ® Non-Markovian
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Input Preprocessing

AEEREC g
TEER QT
LEEREC oy

TEEREE
AEERE S o
LEEREQE

o
(=}
-

84

luminance values

210

9/59



AEECEC g
AEEC BT
AEECEC oy
LEECEE
MEEE G
LEEC BT

MEERE S
LEECET

EEE R G S o
LEEREC

TEER KT

Mitigating Non-Markovianity by Stacking Frames

Input is a stack of 4 most recent frames
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Convolutional Neural Networks

¢ Filter, typically a 3 x 3 matrix, determines the size of output array
® Parameter sharing, weights fixed as filter moves across the image

Output [0][0] = (9*0) + (4%2) + (1*4) +
(1*1) + (1*0) + (1*1) + (2*0) + (1*1)

=0+8+1+4+1+0+1+0+1

g

Input image Filter Output array

Taken from https://www.ibm.com/cloud/learn/convolutional-neural-networks
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https://www.ibm.com/cloud/learn/convolutional-neural-networks

Feature Extraction

Raw data Low-level features
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Action Value Approximator

Convolution Convolution Fully connected Fully connected
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Action Value Approximator (Cont’d)

V(s;w) Q(s, a; w) Q(s,as; w) Qs aja); W)

| | [ -]




Two Tricks Used in DQN: Experience Replay

e Experience Replay

® Store transitions (S¢, A¢, R¢, St+1) in replay memory M at time ¢

® Sample minibatch of transitions {(s;, a;, r;, siy+1) : i € [n]} from n and update
parameters based on this sub-dataset

® Differs from classical Q-learning update
Q(S:, Ar) + Q(S:, Ar) + m;ax[Rt +7Q(Sty1,3) — Q(S:, Ar)],

where only one tuple is used to update the Q-function.
® Use historical data more efficiently to mitigate instability

® For sufficiently large M, the sampled transitions become asymptotically independent
(correlation decays with time), yielding more accurate estimate
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Minibatch Stochastic Gradient Descent

Stochastic Gradient Descent Minibatch Stochastic

(One Observation per Time) Gradient Descent Gradient Descent

® Each point represents a parameter

® Circle represents parameters with the same loss function
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Recap: Fitted Q-Ilteration

® Bellman optimality equation

Q™" (5;,A,) =E [Rt + 9 max @ (Sep1, a)‘ Se, At}

opt

Both LHS and RHS involve Q™
e Main idea: Fix Q™ on the RHS
® Repeat the following
1. Compute Q as the argmin of

~ 2
arg m(;n Xt: [Rt + max Q(St11,a) — Q(S:, At)}

2. Set6=6
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Two Tricks Used in DQN: Target Network

® According to Bellman optimality equation

Q™" (St,A:18) = E[R; + 7 max Q™" (St41,3,6°) |t A
| a

Q-network target-network

Fix 6% in the target network when updating 6 in the Q-network

Perform minibatch SGD Tysger steps to update @ and set 8% < 6
In Mnih et al. [2015], Tiarger <— 10000

For sufficiently large Tiager, performing minibatch SGD Tyy/ger Steps is equivalent to

opt * ﬂ.Dt 2
0<—argnéi/n§t:[Rt—|— m;xQﬂ'P(St—H,a;H)—Q "(St,At;e)]

Share similar spirits as fitted Q-iteration
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The Complete Algorithm

Input: MDP (S.A, P, R,v), replay memory M, number of iterations 7', minibatch size n,
exploration probability € € (0,1), a family of deep Q-networks Qg: S x A — R, an integer Ttarget
for updating the target network, and a sequence of stepsizes {a}i>0.
Initialize the replay memory M to be empty.
Initialize the Q-network with random weights 6.
Initialize the weights of the target network with 6* = 6.
Initialize the initial state Sp.
fort=0,1,...,7 do
With probability €, choose A; uniformly at random from A, and with probability 1 —e, choose
Ay such that Qg(St, Ar) = max,e 4 Qo(Sy, a).
Execute A; and observe reward R; and the next state S;;1.
Store transition (S, Ay, Ry, Si1) in M.
Experience replay: Sample random minibatch of transitions {(s;, a;, 74, 5}) }ie[) from M.
For each i € [n], compute the target Y; = r; + 7 - max,e g Qo+ (s, a).
Update the Q-network: Perform a gradient descent step

0400 = 3 [~ Qulsi )] - VoQalsi, ).

i€[n]

Update the target network: Update 6* <— 6 every Tiarget steps.
end for
Define policy 7 as the greedy policy with respect to Qp.
Output: Action-value function @y and policy 7. 19/59



Lecture QOutline

2. Case Study Il: TD Learning in Ridesharing Platforms
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Ridesharing: Order-Dispatching

«
Centralized Decision Platform t
2 o Trips/year Order list Driver list
r 3 R
E < > E
Passenger Occupancy | | gpg
Request Status
o) (J L
-

Matching
o . 1
Vehicle trajectory data/day data processed/day routing requests/day. location points/day

Pickup & Delivery

Objective: learn an optimal policy to maximize
® answer rate (proportions of call orders being answered)
® completion rate (proportions of call orders being completed)

® drivers’ income
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Order Dispatch Policies

® Closest Driver Policy

® MDP Order Dispatch Policy [Xu et al., 2018]

® Simple: no neural networks, no deep learning, use tabular methods
® Useful: performance improvement consistent in all cities, gains in completion rate
ranging from 0.5% to 5%, successfully deployed for more that 20 cities

® Some Follow-up Works [Tang et al., 2019, Wan et al., 2021]
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Closest Driver Policy

Assign the call order to the closest available driver

arg ryln E E d(i,j)aj Minimize driver-passenger total distance
i j
i=1j=1

s.t. Z a;<1, j=1,--,n Order assigned to at most one driver

i=1
Z a;<1 i=1---'m Driver assigned to at most one order
® j indexes the ith driver ® j indexes the jth order
e d(i,j) = distance between i and j
® One of the two equalities shall hold ® a;; =1 < order j is assigned to i
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Closest Driver Policy: Limitations

The company implements the policy every 2 seconds

Myopic policy (e.g., maximize immediate rewards)
® No guarantee it will maximize long-term rewards

® Example given in the next slide
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lllustration of Limitations of Closest Driver Policy
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Adopting the Closest Driver Policy
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Some Time Later - --
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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MDP Order Dispatch Policy

® Adopts a reinforcement learning framework to optimize long-term rewards

e Delivers remarkable improvement on the platform’s efficiency

¢ Challenges:

® Huge state space (e.g., origin/destination of call orders, location of available drivers)

® Huge action space: number of matchings grows exponentially with number of
orders/drivers. With n orders and n drivers, number of potential matchings = n!
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Main ldea

e Closest driver is myopic because its objective function (e.g., total distance) only
considers immediate rewards

® Use an objective function that involves long-term rewards (e.g., value)
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Main Idea (Cont’d)

® A learning and planning approach
® Learning: policy evaluation based on historical data

® Planning: order dispatch by maximizing total value
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An MDP Framework

® Model each driver as an agent
e State: 2-dim vector (time, location)

e Action: two types of actions

1. Serving action: assign the driver to server an order
2. ldle action: allows drivers to stay in the same location, to serve an order in the next time

® Reward:

1. an order is completed or not (0/1) (completion rate)
2. driver's revenue from an order (driver's income)
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An MDP Framework (Cont’d)

° . v = 0.9. An order that lasts for time T with reward R
T-1
P S i
T
t=0
e Example:

® An driver in area A receives an order from B to C at time 00:00
The driver arrives C at 30min and earns 30£

10min as one time unit, v = 0.9

State transition: (0, A) — (3, C)

Reward: 10 + 0.9 x 10 4+ 0.92 x 10 = 27.1
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Learning: Policy Evaluation

® Break down historical data into a set of transitions pairs (s, a, r,s’, At), where At
denotes the time of pickup, waiting and deliver process

® TD update rule for the idle action
V(s) < V(s)+ a0 +~V(s') — V(s)]
® TD update rule for the serving action

V(s) < V(s)+ a[r + 72tV(s') — V(s)]
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Policy Evaluation: Example

Ty Ty T, T3
So(To.X) 84(T4,X)
Idle action: V(Sg) <« V(So) + a(0 +yV(S1) — V(Sy))
To T, T, T,
S0(To. X) \l
$3(T3,Y)

Serving action:  V(So) < V(So) + a(Ry +¥*V(Sz) = V(Sy))
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Policy Evaluation: Pseudocode

® Input: Collect historical state transitions D = {(s, a, r,s’, At)} where each state is
composed of a time and space index

e |nitialize V/(s) and N(s) to zero for any s

® Fort=T—1to0do
Find a data subset D; where the time index of the state is t
For each sample (s, a,r,s’, At) in D; do
N(s) < N(s)+1
V(s) + V(s)+ N~Y(s)[r + ~2tV(s’) — V(s)]
End For
End For

® Return V
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Planning: Order Dispatch

Recall the closest driver policy

arg I’QII jn Z Z d(i,j)aj Minimize driver-passenger total distance

i=0j=1
s.t. Z a;<1 j=1,--,n Order assigned to at most one driver
i=1
Z a;<1 i=1---'m Driver assigned to at most one order
® j indexes the ith driver ® j indexes the jth order
® d(i,j) = distance between i and j ® a;; =1« order j is assigned to i
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Planning: Order Dispatch (Cont’d)

The MDP order dispatch policy

m n
arg maxa, ; Z Z A(i,j)aij Maximize total advantage function

i=0j=1
m
s.t. Z a; <1 j=1,--,n Order assigned to at most one driver
i=1
n
Z a;<1 i=1---'m Driver assigned to at most one order
j=0
® j indexes the ith driver ® j indexes the jth order
® A(i,j) = advantage function ® a;; = 1 < order j is assigned to i
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Advantage Function Trick

® What is advantage function?
® Difference between Q-function and value function.

e Why use advantage function trick?

® QOptimize long-term rewards
® Send drivers in areas with lower values (“cold regions") to areas with higher values
(“hot regions”)
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What is Advantage Function

o A(i,j) = rij+A5iV(s};) — V(si)
® j indexes ith driver, j indexes jth order
® r;j: expected gain for ith driver to serve jth order
® s;: initial state of ith driver
;-J: state of ith driver after serving jth order
° Time: s;;(t) = si(t) + At
® Location: s; ;(€), the destination of jth order

® s

® The first two term corresponds to the state-action value function (Q-function) of
assigning ith driver to jth order
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Why Use Advantage Function Trick

© A(i,j) = rij +25iV(s;;) — V(si)
® Order Price: an order with a high utility leads to a high advantage

® Driver’s Location:

® Value of a driver's current location has a negative impact on the advantage
® When # drivers > # orders (oversupplied), drivers in areas with lower values (“cold
regions” ) are more likely to be selected

Order’s Destination:

® Value of an order's destination has a positive impact on the advantage
® When # drivers < # orders (undersupplied), orders whose destinations have higher
values (“hot regions”) are more likely to be selected

Pickup Distance:

® Contributes to the advantage implicitly
® A larger pickup distance = a larger Vt; ; = a lower advantage
® Considers immediate reward as well
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Simulations: Toy Example

A simple map of 9 x 9 spatial grids with 20 time steps

Orders can only be dispatched to drivers in distance that are no greater than 2

Simulate realistic traffic patterns with a morning-peak and a night-peak, centralized
on different locations of residential areas and working areas

Competing methods

® Distance-based
® Myopic (v = 0)
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Toy Example (Cont’d)

{I:I distance [ myopic [ mdp}

600 Total Re;venue ‘ 1.8 P!ckup D‘lstance 1.0 'Answer‘ Rate
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Figure 6: Comparison of distance-based method, myopic method and the
proposed MDP method in three metrics on the toy example environment.
X-axis stands for the order-driver ratios. Better viewed in color.
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Real-World Experiment

Performance improvement brought by the MDP method is consistent in all cities

Gains in global GMV and completion rate ranging from 0.5% to 5%

Successfully deployed for more than 20 cities

Serving millions of trips in a daily basis
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Real-World Experiment (Cont’d)

(a) 18:00-18:10, evening peak (b) 09:00-09:10, after morning peak

Figure 8: Sampled value function for the same city at differ-
ent times. Red indicates higher values, blue for lower ones.
Better viewed in color.
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Extension: Policy lteration

Policy Evaluation

.

T \% ooy — V% —> 711 —» /71—«

~—

Order Dispatch

¢ Policy Evaluation: evaluate the value under a given policy 7

¢ Order Dispatch: implement the order dispatch policy based on V for data collection
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Extension: Function Approximation

® Bellman equation:
V(S) =E| Ri(1) + 725 Vie14(S))| Si|

¢ Use fitted value iteration (similar to fitted Q-iteration) to allow function
approximation

® Use previous estimate to construct the target
® Update the value using supervised learning

® Repeat for k =1,2,.-.
2
Vk = arg m\jn Z |:R,'( ) + At Vk_l(S,f) —_ V(S,)
i€D
® VNet [Tang et al., 2019]: Combine fitted value iteration with deep value-network
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Extension: Pattern Transfer Learning

® Motivation: violation of time-homogeneity assumption in data collected from
ridesharing platforms, leading to TMDPs

® The system dynamics is likely to vary over time

® Naive solution:

® Use more recent data for policy evaluation (learning)
® Use advantage function trick for order dispatching (planning)
® Disadvantage: discard a lot of data

e Research question: how should we efficiently utilize historical dataset to improve
the efficiency of value function estimation
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Nonstationarity

¢ Value function estimated I ; : I :
based on data from | 7 | : . |
KDD CUP 2020 : 1) |
Value ¥
® 30-day's data collected from  Ferction 2 |
Didi Chuxing | : | :
|

® Left plot: value based on : - |
first 15-day's data el : ‘ [ . |
® Right plot: value based on vaes | Vst =17 : | ¥ V(si)l_=:“2.:1‘, ( :

last 15-day's data etationship | gt S e 7 Ye2=18s
y Il:oldshpl V(s3)=16.4 7 { (] ,..\-MV(S?')=2X.2 ’ |
® Absolute values differ I ! (I L s |
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Main Idea [Wan et al., 2021]

® Magnitude of value is

| < |
nonstationary | « ) |
. . 3 l ¥
e Concordance relationship | | : ) :
1 1 Val I
of value remains stationary = Yalue | 1 |
at :

® Values of hot zones (e.g., T00pm. | (! |
centers) are consistently | I |
larger than those of cold | : | :

zones (e.g., suburbs) absotute | E ] | | 7
e 1| wsh=1z7. 1|7 Vish=24 I
® Overall, concordance Covia | | Bt Pt | |

, concgrdan_ce V(s2) =152 '+ | " 2\gsm: 18.5 “o
. . relationship & H i .

relationship holds on more hotas | fV(sF =164 i b [ v =252 . § |
than 80% state pairs I_____‘__‘___!I______’____!
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Concordance

® Widely used in the statistics and economics literature

® Maximum rank correlation estimator for regression [Han, 1987]
® Concordance-assisted estimator for learning optimal dynamic treatment regimes [Fan
et al., 2017, Shi et al., 2021]

® For two states s; and sy and two value functions V; and V,
® Concordance is 1 if {Vi(s1) — Vi(s2)}{Va(s1) — Va(s2)} > 0 and O otherwise

e Concordance penalty:

c(V1,\r) = n(nl—l) Z#[{ Vi(Si) — Va(S) H V2(Si) — Va(S))} < 0]
i<j
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Algorithm

Use past data to learn V°

® Use more recent data to learn Vj as an initial estimator

Use fitted value iteration to update value
® Solve a constrained optimisation to incorporate concordance penalty

Repeat for k =1,2,.-.
Repeat for t = 0,1,---

2
Vie=argmin >~ |Ri(1) 472 Vie1(S)) = Ve(S)
icD(t)

sit. (VP Vi) <e
forsome 0 < e < 1.
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Simulation

® Build dispatch simulator using the KDD dataset
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Figure 2: Performance of different methods when y = 0.9 (upper) and v = 0.95 (lower). The x-axis represents consecutive weekdays in the
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target environment. Our method outperforms the baseline methods under different metrics.
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Summary

Deep Q-Network Closest Driver Policy
MDP Order Dispatch
Advantage Function Trick

Fitted Value Iteration

Experience Replay

Target Network

Convolutional Neural Networks
Minibatch Stochastic Gradient Descent

Pattern Transfer Learning
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