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Policy We Studied So Far

• Greedy policy:

πopt(s) = argmax
a

Qπopt
(s, a)

• ϵ-Greedy policy:{
πopt(s), with probability 1− ϵ
random action, with probability ϵ.

• Value-based methods: Policy Iteration, Value Iteration, SARSA, Q-Learning, etc.
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Value-based v.s. Policy-based Methods

• Value-based methods: derive πopt by learning an optimal Q-function (with or
without function approximation)

• Policy-based methods: search πopt within a restricted function class (e.g., linear,
neural networks) that maximizes the value
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Value-based v.s. Policy-based Methods (Cont’d)
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Example: Linear Function Approximation

• Linear approximation of features ϕ(s, a)
• State-action value function approximation

Q(s, a;θ) = ϕ⊤(s, a)θ

• Policy function approximation

π(s, a;θ) =
exp(ϕ⊤(s, a)θ)∑
a′ exp(ϕ⊤(s, a′)θ)

ϕ⊤(s, a)θ similar to the preference score in the gradient based methods in HW1

9 / 57



Value-based v.s. Policy Gradient Methods (Cont’d)

• Pros of policy gradient methods:

1. Suitable for learning general stochastic policies (value-based methods mainly designed
for deterministic policies)

2. More robust to model misspecification
3. Scalable for high-dimensional or continuous action spaces (SARSA, Q-learning mainly

designed for discrete action space)

• Cons of policy gradient methods:

1. Convergence to local minima
2. May have large variance
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Example I: Advantage of Stochastic Policy

• Two-player game of
rock-paper-scissors

• Scissors beats paper
• Rock beats scissors
• Paper beats rock

• Consider iterated rock-paper-scissors
• A deterministic policy is easily

exploited
• A uniform random policy is optimal

(Nash equilibrium)
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Example II: Robustness of Policy-based Method

• Q-function is more difficult to model compared to the optimal policy
• Example: optimal Q-function: Qπopt

(s, a) = g(ϕ⊤(s, a)θ∗) for some monotonically
increasing function g : R→ R

• When g is not a linear function, value-based method misspecifies Q-function model

g(ϕ⊤(s, a)θ∗) ̸= ϕ⊤(s, a)θ

• However, since g is a monotonically increasing function

πopt(s) = argmax
a

g(ϕ⊤(s, a)θ∗) = argmax
a

ϕ⊤(s, a)θ∗

• Policy gradient methods correctly identifies the optimal policy

exp(ϕ⊤(s, a)θ)∑
a′ exp(ϕ⊤(s, a′)θ)

→ I(a = πopt(s))

when θ = kθ∗ and k → ∞
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Policy Objective Functions

• Average rewards:

J(θ) = lim
T→∞

1

T
Eπ(•;θ)

[T−1∑
t=0

Rt

]
=

∑
s,a

νπ(•;θ)(s)π(s, a;θ)Ra
s

where Ra
s = E(Rt |At = a,St = s)

• For each π, the states {St}t forms a time-homogeneous Markov chain

• νπ(•;θ) the stationary distribution of {St}t under π(•;θ)
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Policy Objective Functions (Cont’d)

• Discounted rewards: given a discounted factor γ ∈ [0, 1] and initial state distribution
ν, maximize the expected discounted rewards:

J(θ) = Eπ(•;θ)

[ ∞∑
t=0

γtRt

]
,

or equivalently,

J(θ) =
∑
s

ν(s)V π(•;θ)(s)

• If γ = 1, the task is assumed to be episodic
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Policy Gradient

• Objective: identify the maximizer of J(θ)
• Method: apply (stochastic) gradient ascent algorithm to update θ (gradient descent

to minimize −J(θ))

θt+1 = θt +αt∇θJ(θt)

Need to calculate the gradient ∇θJ(θ)!
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Policy Gradient Theorem

Theorem

For any differentiable policy π(s, a;θ) with respect to parameter θ, the policy gradient
for average reward and discounted expected rewards objective is

∇θJ(θ) =
∑
s,a

µπ(•;θ)(s, a)∇θ log(π(s, a;θ))Qπ(•;θ)(s, a)

• For average reward objective:

µπ(•;θ) is the stationary distribution of {(St ,At)}t under π(•;θ)
• For discounted expected rewards objective:

µπ(•;θ)(s, a) =
∑
t≥0

γtPrπ(•;θ)(St = s,At = a)

Discounted state-action visitation probability
17 / 57



Policy Gradient Theorem (Cont’d)

Theorem

For any differentiable policy π(s, a;θ) with respect to parameter θ, the policy gradient
for average reward and discounted expected rewards objective is

∇θJ(θ) =
∑
s,a

µπ(•;θ)(s, a)∇θ log(π(s, a;θ))Qπ(•;θ)(s, a)

• For average reward objective:

Qπ(s, a) = Eπ
[∑

t≥0

(Rt − J(θ))|S0 = s,A0 = a
]

• For discounted expected rewards objective: Q-function defined as usual.

• Proof given in the appendix
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Policy Score

• For any state-action pair (s, a), the term

∇θ log(π(s, a;θ))

is referred as the policy score
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Example 1: Softmax Policy Gradient

• State-action pairs weighted by linear combination of features

π(s, a;θ) =
exp(ϕ⊤(s, a)θ)∑
a′ exp(ϕ⊤(s, a′)θ)

• The score function

∇θ logπ(s, a;θ) = ϕ(s, a)−
∑

a′ ϕ(s, a′) exp(ϕ⊤(s, a′)θ)∑
a′ exp(ϕ⊤(s, a′)θ)

or equivalently,

∇θ logπ(s, a;θ) = ϕ(s, a)− Ea′∼π(s,•;θ)ϕ(s, a′)
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Example 2: Continuous Action Space

• Action space: set of real numbers A = R
• Policy approximator:

π(s, a,θ) =
1√

2πσ(s;θ)
exp

(
−(a − µ(s;θ))2

2σ2(s;θ)

)
,

where µ and σ are mean and deviation function approximators
• Linear function approximator with feature vectors ϕµ(s) and ϕσ(s)

• µ(s;θ) = ϕ⊤
µ(s)θµ and σ(s;θ) = ϕ⊤

σ (s)θσ
• ∇θµ logπ(s, a,θ) = a−µ(s;θ)

σ2(s;θ) ϕµ(s)

• ∇θσ logπ(s, a,θ) = (a−µ(s;θ))2−σ2(s;θ)
σ2(s;θ) ϕσ(s)
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Example 3: Bernoulli, Logistic Example

• Actions space: binary, {0, 1}
• Policy approximator:

π(1, s;θ) = 1− π(0, s;θ) = p(s;θ)

where p(s;θ) is a function approximator
• Linear function approximator with feature vectors ϕ(s)

• Logistic function σ(x) = [1+ exp(−x)]−1

• For exponential soft-max policy p(s;θ) = σ(ϕ⊤(s)θ)
• ∇θ log(π(s, a;θ)) = (a− σ(ϕ⊤(s)θ))ϕ(s)
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REINFORCE: MC Policy Gradient Algorithm

• To maximize J(θ), we apply (stochastic) gradient ascent algorithm

θt+1 = θt +αt∇θJ(θt)

• According to the policy gradient theorem,

∇θJ(θ) =
∑
s,a

µπ(•;θ)(s, a)∇θ log(π(s, a;θ))Qπ(•;θ)(s, a)

• Focus on the average reward setting

• µπ (stationary state-action distribution) is unknown: use empirical state-action
distribution {(St ,At)}t as an approx

• Qπ is unknown: use empirical return Gt =
∑T

j=t Rj as an approx
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REINFORCE: Pseudocode

• Initialization: θ arbitrary

• For each episode (S0,A0,R0, · · · ,ST ,AT ,RT ) generated using policy π(•;θ)

For t = 0, 1, 2, · · ·,T do:

θ← θ +α∇θ log(π(St ,At ;θ))Gt

end for

return θ
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Actor-Critic Algorithm

• MC policy gradient algorithm may have a large variance
• Return involves many state transitions, many actions and many rewards

• Solution sought by using actor-critic algorithms

• Actor-critic algorithms combine policy gradient with value function estimation
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Actor-Critic Algorithm (Cont’d)

• Critic uses function
approximator to learn
value function

• Actor uses policy
approximator to learn
optimal policy

27 / 57



Actor-Critic Control

• Critic: estimates Qπ(•;θ)(s, a) by a function approximator Q̂(s, a;ω)
• The critic performs policy evaluation
• Standard methods can be applied: MC, TD(0), TD(λ), gradient-based methods

• Actor: updates policy parameter θ
• The actor performs control using approximate policy gradient

∇θJ(θ) = E(s,a)∼µ∇θ log(π(s, a;θ))Q̂(s, a;ω)

• Parameter update
• Average reward setting

θ← θ +α∇θ log(π(St ,At ;θ))Q̂(St ,At ;ω)

• Discounted reward setting

θ← θ +αγt∇θ log(π(St ,At ;θ))Q̂(St ,At ;ω)
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Example: Actor-Critic with Linear Value Function

• Linear value function approximator

Q̂(s, a;ω) = ϕ⊤(s, a)ω

• Focus on the discounted reward setting

• Critic: updates ω by linear TD(0)

ωt+1 = ωt + ηϕ(St ,At)(Rt + γϕ⊤(St+1,At+1)ωt − ϕ⊤(St ,At)ωt)
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Pseudocode

• Initialization: s, θ, ω
• For each episode:

Initialize t = 0
Sample action a from π(•, s;θ)
Repeat until s is terminal

Receive reward r and next state s′

Sample action a′ from π(•, s;θ)
θ← θ +αγt log(π(s, a;θ))ϕ⊤(s, a)ω
ω← ω + ηϕ(s, a)[r + γϕ⊤(s′, a′)ω− ϕ⊤(s, a)ω]
a← a′ and s ← s′

t ← t + 1
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Bias-Variance Tradeoff

• REINFORCE uses Return Gt , an unbiased estimate of Qπ(•;θ)(s, a)
• Actor-critic uses Q̂(s, a;ω), a biased estimate of Qπ(•;θ)(s, a)
• REINFORCE gradient has high variance and zero bias

• Actor-critic gradient has low variance and some bias

• Similar to Pros & Cons of MC vs TD (Lecture 4, p13)

• Perhaps surprisingly, actor-critic gradient can be unbiased under certain conditions
(see appendix)
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Variance Reduction Using a Baseline

• Recall that policy parameter update

θ← θ +αγt∇θ log(π(St ,At ;θ))Q̂(St ,At ;ω)

• For any θ, when At ∼ π(St , •,θ)

E[∇θ log(π(St ,At ,θ))|St ] = 0

• For any baseline function B(s), consider the update

θ← θ +αγt∇θ log(π(St ,At ;θ))[Q̂(St ,At ;ω)− B(St)]

• The mean of gradient is the same without baseline

• However, the variance of the gradient would be smaller with a properly chosen B
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Variance Reduction Using a Baseline (Cont’d)

• Consider the baseline that minimizes the variance of the gradient

• For any random variable Z , the mean EZ minimizes argminz E(Z − z)2

• To minimize variance of the gradient ∇θ log(π(St ,At ;θ))[Q̂(St ,At ;ω)− B(St)],
the baseline is set to the conditional mean of Q-function given the state

• i.e., B(s) =
∑

a π(s, a;θ)Q̂(s, a;ω), e.g., the estimated state-value

• Similar ideas have been employed in gradient-based algorithms in HW1
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Policy Gradient Using Advantage Function

• Advantage function: Aπ(•;θ)(s, a) = Qπ(•;θ)(s, a)− V π(•;θ)(s)

• Policy gradient based on advantage function

∇θJ(θ) = E(s,a)∼µπ(•;θ)∇θ log(π(s, a;θ))Aπ(•;θ)(s, a)

• The advantage function reduces the variance of policy gradient
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An Approach for Estimating Advantage Function

• The critic may compute estimators of both value functions

Q̂(s, a;ω) for Qπ(•;θ)(s, a)

and

V̂ (s;ω) for V π(•;θ)(s)

which can be done by standard methods such as TD learning

• The estimator of the advantage function

Â(s, a;ω) = Q̂(s, a;ω)− V̂ (s;ω)
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Another Approach

• r + γV π(•;θ)(s′)− V π(•;θ)(s) is unbiased to Aπ(•;θ)(s, a)

E[r + γV π(•;θ)(s′)− V π(•;θ)(s)|a, s]
= E[r + γV π(•;θ)(s′)−Qπ(•;θ)(s, a)+ Qπ(•;θ)(s, a)− V π(•;θ)(s)|a, s]
= Qπ(•;θ)(s, a)− V π(•;θ)(s) = Aπ(•;θ)(s, a)

• As such,

∇θJ(θ) = E(s,a)∼µπ(•;θ)∇θ log(π(s, a;θ))[r + γV π(•;θ)(s′)− V π(•;θ)(s)]

• No need to estimate the advantage. It suffices to estimate the state-value and use
the estimator to compute the policy gradient
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Critic Policy Evaluation Methods

• When specialized to linear methods V̂ (s;ω) = ϕ⊤(s)ω, the critic can use different
targets to evaluate

ωt+1← ωt + ηt [vt − ϕ⊤(St)ωt ]ϕ(St)

• The target is defined differently for different methods
• MC: vt = Gt
• TD: vt = Rt + γV̂ (St+1)
• TD(λ): vt = Gt

λ
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Actor Policy Gradient Methods

• The policy gradient

∇θJ(θ) = E(s,a)∼µπ(•;θ)∇θ log(π(s, a;θ))Aπ(•;θ)(s, a)

• Gradient-based method

θ← θ +αγt∇θ log(π(St ,At ;θ))Â(St ,At ;ω)

• Examples:
• MC: Â(St ,At ;ω) = Gt − V̂ (St ;ω)
• TD: Â(St ,At ;ω) = Rt + γV̂ (St+1;ω)− V̂ (St ;ω)
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TRPO: Introduction

• Limitations of policy gradient methods (REINFORCE & Actor Critic):
• Convergence to local minima
• Derivative-based, cannot use non-smooth policy classes, e.g.,

a = argmaxa′ ϕ(s, a′)⊤θ (used in application such as deep brain stimulation due to
device constraints)

• Trust region policy optimization:
• Similarities to policy gradient methods: an iterative algorithm
• Difference from policy gradient methods: derivative-free
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TRPO: Foundation

Theorem

For any two policies with parameters θ1 and θ0,

J(θ1)− J(θ0) =
∑
s,a

Aπ(•;θ0)(s, a)π(s, a;θ1)µπ(•;θ1)(s, a)

• Considers discounted expected rewards objective

µπ(•;θ)(s, a) =
∑
t≥0

γtPrπ(•;θ)(St = s,At = a)

Discounted state-action visitation probability

• Proof given in Kakade and Langford [2002]
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TRPO: Challenge

Theorem

For any two policies with parameters θ1 and θ0,

J(θ1)− J(θ0) =
∑
s,a

Aπ(•;θ0)(s, a)π(s, a;θ1)µπ(•;θ1)(s, a)

• For a given θ0, suffices to search θ1 that maximizes RHS

• Not feasible due to the complex dependence of µπ(•;θ1) on θ1
• Consider the following approximation with µπ(•;θ0):∑

s,a
Aπ(•;θ0)(s, a)π(s, a;θ1)µπ(•;θ0)(s, a)

• The resulting maximizer is not guaranteed to improve the value function
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TRPO: Idea

J(θ1)− J(θ0) =
∑
s,a

Aπ(•;θ0)(s, a)π(s, a;θ1)µπ(•;θ1)(s, a)

=
∑
s,a

Aπ(•;θ0)(s, a)π(s, a;θ1)µπ(•;θ0)(s, a) + Remainder

• The remainder term can be upper bounded by CKL(θ0,θ1) for some C > 0.

• Searching θ1 that maximizes the leading term is not guaranteed to improve the value

• TRPO searches θ1 that the lower bound: The leading term −CKL(θ0,θ1)

• The resulting maximizer satisfies

J(θ1)− J(θ0) ≥ leading(θ0,θ1)− CKL(θ0,θ1) ≥ leading(θ0,θ0)− CKL(θ0,θ0) = 0

leading to guaranteed monotonic improvement
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TRPO: Idea (Cont’d)

Idea similar to the MM algorithm for solving generic optimization problems
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TRPO: Implementation

• Given an initial θ0
• For k = 1, · · ·,K

1. Solve an optimization with a trust-region constraint:

Aπ(•;θ0)(s, a)π(s, a;θ1)µπ(•;θ0)(s, a) subject to KL(θ1,θ0) ≤ δ,

for some small δ
2. Set θ0 to θ1

• Aπ and µπ can be similarly estimated as in actor-critic methods
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Summary

• Value-based
- Tabular (Lectures 3 & 4)
- Function approx (Lectures 5 & 7)

• REINFORCE
- No value function
- Learn policy

• Actor-critic
- Learn value
- Learn policy

• Advantage actor-critic
- Variance reduction

• TRPO
- Guaranteed monotonic improvement
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Seminar Exercise
• Solution to HW7 (Deadline: Wed 12pm)
• Implementation of DQN on LunarLander

Taken from https://shiva-verma.medium.com/solving-lunar-lander-openaigym-
reinforcement-learning-785675066197 48 / 57
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Questions
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Appendix: Proof of Policy Gradient Theorem

• We focus on the discounted reward setting. Proofs in the average reward setting can
be found in Sutton et al. [1999]

• Basic identities

(A) V π(s) =
∑
a

π(a|s)Qπ(s, a)

(B) Qπ(s, a) = Ra
s + γ

∑
s′

Pa
s,s′V

π(s′)

(C ) ∇θV π(s) =
∑
a
[∇θπ(a|s)]Qπ(s, a)+

∑
a

π(a|s)[∇θQπ(s, a)]

(D) ∇θQπ(s, a) = γ
∑
s′

Pa
s,s′∇θV π(s′)
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Appendix: Proof (Cont’d)

∇θV π(s)
(C)
=

∑
a
[∇θπ(a|s)]Qπ(s, a)+

∑
a

π(a|s)[∇θQπ(s, a)]

(D)
=

∑
a

π(a|s)[∇θ log(π(a|s))]Qπ(s, a)+ γ
∑
a,s′

π(a|s)Pa
s,s′∇θV π(s′)︸ ︷︷ ︸
I

Now, consider I . Similarly, we have

I =
∑

a,s′,a′

π(a|bs)Pa
s,s′π(a

′|s′)[∇θ log(π(a′|s′))]Qπ(s′, a′)

+γ
∑

a,s′,a′,s′′
π(a|s)Pa

s,s′π(a
′|s′)Pa′

s′,s′′
∇θV π(s

′′
)
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Appendix: Proof (Cont’d)

Recursively applying the first identity, we obtain

∇θV π(s) = µπ(•;θ)(s′, a′; s)∇θ log(π(s′, a′))Qπ(s′, a′)

where

µπ(•;θ)(s′, a′; s) =
∑
t≥0

γtπ(s′, a′)Prπ(•;θ)(St = s′|S0 = s)
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Compatible Function Approximation Theorem

Theorem

Assume the following two conditions:

(C1) Compatibility of value function approximator and the policy

∇ωQ̂(s, a;ω) = ∇θ logπ(s, a;θ)

(C2) Value function approximator minimizes the mean-squared error:

E(s,a)∼µπ(•;θ)

[
Qπ(•;ω)(s, a)− Q̂(s, a;ω)

]2
Then the gradient is unbiased

∇θJ(θ) = E(s,a)∼µπ(•;θ)∇θ(logπ(s, a;θ))Q̂(s, a;ω)
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Compatible Linear Function Approximation

• Consider the soft-max policy, for a given state-action feature vector ϕ(s, a):

π(s, a;θ) =
exp(ϕ⊤(s, a)θ)∑
a′ exp(ϕ⊤(s, a′)θ)

• Compatibility condition requires that

∇ωQ̂(s, a′;ω) = ∇θ log(π(s, a;θ)) = ϕ(s, a)−
∑
a′

ϕ(s, a′)π(s, a′;θ)︸ ︷︷ ︸
centered state-action features vectors

which leads to a linear approximation for the value function

Q̂(s, a′;ω) =
[
ϕ(s, a)−

∑
a′

ϕ(s, a′)π(s, a′;θ)
]⊤

ω
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Convergence Theorem

Theorem

Assume

• π(•;θ) and Q̂(•;ω) are differentiable functions

• Compatibility assumption holds

• The Hessian matrix ∇2
θπ(s, a;θ) are uniformly bounded away from infinity

• Step sizes are such that
∑

t αt =∞ and
∑

t α
2
t <∞

• At each step, ωt is chosen to be the solution of

E(s,a)∼µπ(s, a;θt)[Qπ(•;θt)(s, a)− Q̂(s, a;ω)]∇ωQ̂(s, a;ω) = 0

Then {θt}t are convergent in the sense that limt→∞ ∥∇θJ(θt)∥→ 0.
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Separation of Timescales

• The last condition defines ωt as a solution of a fixed-point equation which has the
policy’s parameter vector θt as a parameter

• In practice, we update ωt using stochastic gradient descent algorithm. SGD would
update ωt in a similar manner with a larger step size than αt . It ensures ω converges
faster than θ, thus closer to the solution of the fixed-point equation at each time

• This can be seen as a separation of timescales:
• Critic updates the value function approximator at a faster timescale trying to evaluate

the current policy chosen by the actor
• Actor varies the policy’s parameter more slowly to allow the critic to evaluate the

current policy

• Similar assumptions are imposed in gradient Q-learning algorithms [Maei et al., 2010]
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