ST455: Reinforcement Learning

Lecture 8: Policy-based Learning
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Lecture QOutline

1. Introduction to Policy-based Learning

5/57



Policy We Studied So Far

® Greedy policy:
7P(s) = argmax Q™" (s, a)
a
¢ ¢-Greedy policy:

7oPY(s), with probability 1 — €
random action, with probability e.

¢ Value-based methods: Policy lteration, Value lteration, SARSA, Q-Learning, etc.
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Value-based v.s. Policy-based Methods

¢ Value-based methods: derive w°P! by learning an optimal Q-function (with or
without function approximation)

* Policy-based methods: search 7°P* within a restricted function class (e.g., linear,
neural networks) that maximizes the value
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Value-based v.s. Policy-based Methods (Cont’d)

7 (s;w) O(s, a;w) n(s, a; 0)

| | |

| | |

S S a S a

Value-based Methods Policy-based Methods
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Example: Linear Function Approximation

® Linear approximation of features ¢(s, a)

® State-action value function approximation
Q(s,a;0) = ¢ ' (s,a)0
® Policy function approximation

exp(¢ ' (s, a)0)
> exp(d7(s,a')0)

¢ (s,a)0 similar to the preference score in the gradient based methods in HW1

7(s,a;0) =
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Value-based v.s. Policy Gradient Methods (Cont’d)

® Pros of policy gradient methods:
1. Suitable for learning general stochastic policies (value-based methods mainly designed
for deterministic policies)
2. More robust to model misspecification
3. Scalable for high-dimensional or continuous action spaces (SARSA, Q-learning mainly
designed for discrete action space)

® Cons of policy gradient methods:

1. Convergence to local minima
2. May have large variance
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Example I: Advantage of Stochastic Policy

v

u"‘

® Two-player game of e Consider iterated rock-paper-scissors
rock-paper-scissors ® A deterministic policy is easily
® Scissors beats paper exploited
® Rock beats scissors ® A uniform random policy is optimal
® Paper beats rock (Nash equilibrium)
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Example |l: Robustness of Policy-based Method

e Q-function is more difficult to model compared to the optimal policy

e Example: optimal Q-function: Q™™ (s, a) = g(¢' (s, a)8*) for some monotonically
increasing function g: R — R

® When g is not a linear function, value-based method misspecifies Q-function model

g(¢'(s,a)8%) # &' (s,a)0
® However, since g is a monotonically increasing function
7wOP(s) = argmaxg(¢ ' (s,a)0") = argmax¢ ' (s,a)0*
a a
® Policy gradient methods correctly identifies the optimal policy

exp(¢ ' (s, a)0)
> exp(7(s,a')0)

when 8 = kO@* and k — o0

— I(a = 7(s))
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Policy Objective Functions

® Average rewards:

ZRt

where Rg = E(Rt‘At = a, St = S)
® For each 7, the states {S;}+ forms a time-homogeneous Markov chain
o u7(%9) the stationary distribution of {S¢}+ under 7(e; )

J(O) = lim = L (o) Zu )(s)m(s,a; 0)R?2
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Policy Objective Functions (Cont’d)

® Discounted rewards: given a discounted factor - € [0, 1] and initial state distribution
v, maximize the expected discounted rewards:

oo

J(6) = E™(*:0) [Z ‘R:

t=0

)

or equivalently,

J(0) => v(s)V=0)(s)

S

e |f v+ =1, the task is assumed to be episodic
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Lecture QOutline

2. Policy Gradient Theorem
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Policy Gradient

® Objective: identify the maximizer of J(6)

e Method: apply (stochastic) gradient ascent algorithm to update € (gradient descent
to minimize —J(0))

0rr1 =0+ atVeJ(6r)

Need to calculate the gradient VgJ(0)!
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Policy Gradient Theorem

Theorem

For any differentiable policy (s, a; @) with respect to parameter 6, the policy gradient
for average reward and discounted expected rewards objective is

Ved(0) =Y p™*O)(s,a)Vglog(n(s, a;0)) Q") (s, a)
s,a
® For average reward objective:
p™(%9) is the stationary distribution of {(S¢, A;)}+ under 7(e; 6)
® For discounted expected rewards objective:

Nﬂ(.;@)(s, a) — Z tPrﬂ'(O;O)(St =s,A; = a)
t>0

Discounted state-action visitation probability
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Policy Gradient Theorem (Cont’d)

Theorem

For any differentiable policy 7 (s, a; @) with respect to parameter 0, the policy gradient
for average reward and discounted expected rewards objective is

Ved(0) = Zu"(”e)(s, a)Vg log(n(s, a;0))Q™*9)(s, a)

s,a

® For average reward objective:
Q™(s,a) = E” [Z(Rt — J(8))|So = s, Ag = a]
t>0

e For discounted expected rewards objective: Q-function defined as usual.
® Proof given in the appendix
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Policy Score

® For any state-action pair (s, a), the term
Vo log(m(s, a; 0))

is referred as the policy score
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Example 1: Softmax Policy Gradient

® State-action pairs weighted by linear combination of features

exp(¢ ' (s,a)0)
> exp(d7(s,a')0)

m(s,a;0) =
® The score function

Vglogm(s,a;0) = ¢(s,a) — > (s a)exp(dp (s,a’)d)

Yo exp(@'(s,a)o)

or equivalently,

Vologm(s,a;0) = ¢(s,a) — Earun(s,e0)@(s;a")
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Example 2: Continuous Action Space

® Action space: set of real numbers A = R

® Policy approximator:

(s.2.0) = (c"—“(se))z>

V2ro(s; 0) a(s 9) " <_ 202(s; 0)

where p and o are mean and deviation function approximators
® Linear function approximator with feature vectors ¢,,(s) and ¢4 (s)
* u(s;0) =, (s)0, and o(s;0) = ¢} (5)0,
* Vo, logn(s,a,0) = T4 g, (s )

o2(s;0)

o Vo, logm(s,a,g) = CrE0*si6) 4 (o)

o2(s;0) 6
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Example 3: Bernoulli, Logistic Example

® Actions space: binary, {0,1}

® Policy approximator:
w(1l,5;0) =1—7(0,s;0) = p(s;0)

where p(s; 0) is a function approximator
® Linear function approximator with feature vectors ¢(s)
® Logistic function o(x) = [1 + exp(—x)] 1
® For exponential soft-max policy p(s;0) = o (¢ (s)0)
* Vglog(m(s,a;0)) = (a—o(¢'(5)0))(s)
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Lecture QOutline

3. REINFORCE and Actor Critic Algorithms
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REINFORCE: MC Policy Gradient Algorithm

® To maximize J(@), we apply (stochastic) gradient ascent algorithm

0r11=60¢ 4+ atVeJ(0:)

According to the policy gradient theorem,

Vod(0) = Zu (s,a)Vglog(m(s, a; 0)) Q™) (s, a)

Focus on the average reward setting

p™ (stationary state-action distribution) is unknown: use empirical state-action
distribution {(S¢, A¢)}+ as an approx

Q™ is unknown: use empirical return G; = Zj:t R; as an approx
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REINFORCE: Pseudocode

¢ |nitialization: @ arbitrary
® For each episode (Sp, Ag, Ro,--- , ST, AT, RT) generated using policy (e; 0)
Fort=0,1,2,---, T do:

0+ 0 + an |0g(7r(5t, At; 0))Gt

end for

return @
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Actor-Critic Algorithm

e MC policy gradient algorithm may have a large variance
® Return involves many state transitions, many actions and many rewards

® Solution sought by using actor-critic algorithms

® Actor-critic algorithms combine policy gradient with value function estimation
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Actor-Critic Algorithm (Cont’d)

| |
I Environment !

A

A

Action

Reward
»| Critic
State =
Value

Actor |[&———

® Critic uses function
approximator to learn
value function

® Actor uses policy
approximator to learn
optimal policy
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Actor-Critic Control

e Critic: estimates Q™(*9)(s, a) by a function approximator Q(s, a; w)

® The critic performs policy evaluation
® Standard methods can be applied: MC, TD(0), TD(\), gradient-based methods

® Actor: updates policy parameter
® The actor performs control using approximate policy gradient

VeJ(0) = Es,2)~n Ve log(m(s, a; 0))Q(s, a;w)

® Parameter update
® Average reward setting

0 <+ 0 + aVglog(m(S:, At; 0))6(&, At w)
® Discounted reward setting

0 + 0 + av'Vglog(m (S, As; 0))6(St, As; w)
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Example: Actor-Critic with Linear Value Function

® Linear value function approximator
Q(s,a,w)=¢' (s, a)w

® Focus on the discounted reward setting
¢ Critic: updates w by linear TD(0)

wep1 = wr +NP(Se, Ar)(Re + ¢T(5t+1, Ari1)we — ¢T(5t, Ap)we)

29 /57



Pseudocode

e |nitialization: s, 0, w

® For each episode:

Initialize t =0

Sample action a from 7(e,s; 0)

Repeat until s is terminal
Receive reward r and next state s’
Sample action a’ from m(e,s;0)
0 <+ 0 + aytlog(m(s,a;0))¢ (s, a)w
W w+np(s,a)r + 1 (s, a)w — ¢ (s, a)w]
a<+a and s+ ¢’
t<—t+1
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Bias-Variance Tradeoff

REINFORCE uses Return G;, an unbiased estimate of Q7(*9)(s, a)
Actor-critic uses Q(s, a;w), a biased estimate of Q™(*)(s, a)
REINFORCE gradient has high variance and zero bias

Actor-critic gradient has low variance and some bias

Similar to Pros & Cons of MC vs TD (Lecture 4, p13)

Perhaps surprisingly, actor-critic gradient can be unbiased under certain conditions
(see appendix)
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Lecture QOutline

4. Advantage Actor-Critic (A2C)
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Variance Reduction Using a Baseline

® Recall that policy parameter update
6 « 0 + oy Vg log(m (S, As; 0))Q(Se, A w)
® For any 6, when A; ~ (5S¢, e,0)

E[V log(r(St, A¢,0))|Se] = 0

For any baseline function B(s), consider the update
0 < 0 + 'V log(m(Se, Ar; 0))[Q(St, Ar;w) — B(S:)]

® The mean of gradient is the same without baseline

However, the variance of the gradient would be smaller with a properly chosen B
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Variance Reduction Using a Baseline (Cont’d)

Consider the baseline that minimizes the variance of the gradient
® For any random variable Z, the mean EZ minimizes arg min, E(Z — z)?

e To minimize variance of the gradient Vg log(m(St, A¢; 0))[Q(Se, Ar; w) — B(S)],
the baseline is set to the conditional mean of Q-function given the state

~

e, B(s) =) ,7(s,a 0)Q(s,a;w), e.g., the estimated state-value

Similar ideas have been employed in gradient-based algorithms in HW1
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Policy Gradient Using Advantage Function

e Advantage function: A™(*9) (s, a) = Q™(*0)(s,a) — V7(*9)(s)

® Policy gradient based on advantage function

VeJ(0) = o)V log(m(s, a; 0))A™(*9) (s, a)

E(s.a)mpm

® The advantage function reduces the variance of policy gradient
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An Approach for Estimating Advantage Function

® The critic may compute estimators of both value functions
a(s, a;w) for Q™% (s, a)
and
V(s;w) for V™(*9)(s)

which can be done by standard methods such as TD learning

® The estimator of the advantage function

A(s, a;w) = Q(s, a;w) — V(s;w)
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Another Approach

o r 4~ V70 (s") — v7™(*0)(s) is unbiased to A™(*%)(s, a)

E[r 4+ V™0)(s") — v™(0)(s)|a, 5]
= E[r 4+~ V™05 — Q” 9)(5 a)+oﬂ(°:9>(s,a)— v7™(*9)(s)|a, s]
Qﬂ'(c 9)(57 a) _ V7r(o )( ) A7r (S a)

® As such,

VoJ(0) = E («0) Vg log(m (s, a;0))[r + V™ *0)(s") — ym(*0)(g)]

s,a)~p(

® No need to estimate the advantage. It suffices to estimate the state-value and use
the estimator to compute the policy gradient
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Critic Policy Evaluation Methods

® When specialized to linear methods V/(s;w) = ¢ ' (s)w, the critic can use different
targets to evaluate

Wit — Wi + Ne[ve — ¢T(St)wt]¢(st)

® The target is defined differently for different methods
L4 MC vV = Gt =R
® TD: v, = Ry + +V(Si41)
e TD(A): v; = G
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Actor Policy Gradient Methods

® The policy gradient
Vod(0) = E(; o mie0) Vo log(m(s, a;0)) A™(0)(s, a)
® Gradient-based method
0 « 0 + oy Vg log(m (S, As; 0))A(Se, A w)
® Examples:

°* MC: E(St,At;w) = G; — V(St;w) R
® TD: A(S;, At w) = Ry + 7 V(Stq1;w) — V(S w)

39/57



Lecture QOutline

5. Trust Region Policy Optimization (TRPO)
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TRPO: Introduction

® Limitations of policy gradient methods (REINFORCE & Actor Critic):

® Convergence to local minima
® Derivative-based, cannot use non-smooth policy classes, e.g.,
a = argmaxy ¢(s,a’) " @ (used in application such as deep brain stimulation due to
device constraints)
® Trust region policy optimization:
® Similarities to policy gradient methods: an iterative algorithm
® Difference from policy gradient methods: derivative-free
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TRPO: Foundation

Theorem
For any two policies with parameters 61 and 6y,

J(61) — J(60) = > AT (s, a)m(s, a; 61)p (s, a)

s,a
e Considers discounted expected rewards objective

H‘rr(o;O)(s’ a) — Z tPr‘lT(o;O)(St =s, At = a)
t>0

Discounted state-action visitation probability
® Proof given in Kakade and Langford [2002]
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TRPO: Challenge

Theorem

For any two policies with parameters 61 and 6y,

J(61) — J(60) = ) AT (s, a)m(s, a: 61)u™ (s, a)

s,a

® For a given Oy, suffices to search 67 that maximizes RHS

Not feasible due to the complex dependence of ,u"'(‘;gl) on 6,
m(e;60).

Consider the following approximation with g

Z AT(%00)(s a)7(s, a; 01)u™(*%)(s, a)

s,a

The resulting maximizer is not guaranteed to improve the value function
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TRPO: Idea

J(61) — J(6)) = > ATO)(s a)m(s,a;01)u" (s, a)

= Z AT(*0)(s a\m(s, a;01)u™(*9) (s, a) + Remainder
s,a

The remainder term can be upper bounded by CKL(8y, 81) for some C > 0.
Searching 07 that maximizes the leading term is not guaranteed to improve the value
TRPO searches 6 that the lower bound: The leading term —CKL(68p, 61)

The resulting maximizer satisfies

J(61) — J(Bg) > leading(Bg, 81) — CKL(Bg, 61) > leading(8g, 8g) — CKL(6g, 6g) = 0

leading to guaranteed monotonic improvement
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TRPO: Idea (Cont’d)

oracle
argmax P

J(@,) — J(6)

estimated
argmax

Lower Bound

Idea similar to the MM algorithm for solving generic optimization problems
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TRPO: Implementation

® Given an initial @
® Fork=1,---,K

1. Solve an optimization with a trust-region constraint:
A™(%00) (s a)r(s,a; 01)u™*%)(s,a) subject to KL(61,8) < &,

for some small &
2. Set Gy to 64

® A™ and p™ can be similarly estimated as in actor-critic methods
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Summary

Policy Function Approximation

Value-based
- Tabular (Lectures 3 & 4)

e - - Function approx (Lectures 5 & 7)

5 e REINFORCE
5 Vb - No value function

alue-base: ;
.§ No (tabular) REINFORCE - Learn policy
s ® Actor-critic
<n. - Learn value
§ - Learn policy
9 AetonCott ¢ Advantage actor-critic
Z VYes Value-based ctor-Cnitic - Variance reduction
3 TRPO e TRPO
S - Guaranteed monotonic improvement
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Seminar Exercise

¢ Solution to HW7 (Deadline: Wed 12pm)
® |mplementation of DQN on LunarLander

Landing Position

Taken from https://shiva-verma.medium.com/solving-lunar-lander-openaigym-
reinforcement-learning-785675066197
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Questions



Appendix: Proof of Policy Gradient Theorem

® We focus on the discounted reward setting. Proofs in the average reward setting can
be found in Sutton et al. [1999]

® Basic identities

(A)
(B)

V™(s) = Zﬂ(a]s)Q"(s a)
Q"(s,a) = RS + Z o5 VT (s')
VeV (s Z[VM als)]Q™ (s, a +Z (a|s)[Ve Q™ (s, a)]

VoQ™ (s, a) Z S,V‘9V7r
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Appendix: Proof (Cont’d)

VoV (s) € Y[Von(als)|@7(s,a) + 3 w(als)[Vo @™ (s, 2)]

2 > m(als)[Velog(n(als))]Q (s, a) + > _ w(als)PZ, VeV (s")

a

-~

)
Now, consider I. Similarly, we have

1= w(albs)P2m(a]s") [V log(n(a'|s)]Q(s', &)

! o/
a,s’,a

+rY 7r(a|s)P;"',sm(a']s’)P:,:suVgV"(s”)

1”7
a,s’,a’ s
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Appendix: Proof (Cont’d)

Recursively applying the first identity, we obtain
VoV7(s) = u™*O)(s', s 5)Vg log((s', ') @ (s, a')
where

Hﬂ(.;e)(5,7 a’;s) = Z tr(s, a/)Prﬂ(-;e)(St =5'|Sy = s)
t>0
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Compatible Function Approximation Theorem

Assume the following two conditions:

(C1) Compatibility of value function approximator and the policy
Vwa(s, a,w) = Vyglogm(s, a;0)
(C2) Value function approximator minimizes the mean-squared error:
m(o;w) N 2
Es,a)mpirte | @7)(s,3) — Q(s, ;)|
Then the gradient is unbiased
VoJ(0) = E(, )0 Vo(log m(s, a;0))Q(s, a; w)

54 /57



Compatible Linear Function Approximation

e Consider the soft-max policy, for a given state-action feature vector ¢(s, a):

exp(¢ ' (s, a)0)
> exp(eT(s,a’)o)

e Compatibility condition requires that

(s, a; 0) =

Vo Q(s,a’;w) = Vglog(m(s, a; 0)) = ¢(s, a) Zgb s,a')m(s,a’; 0)

TV
centered state-action features vectors

which leads to a linear approximation for the value function
~ T
Qs,a'sw) = [¢(s,a) = Y o(s,a)m(s,a:0)| w
a/
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Convergence Theorem

Theorem
Assume
7(e;0) and Q(e;w) are differentiable functions

Compatibility assumption holds

The Hessian matrix V37 (s, a; @) are uniformly bounded away from infinity

® Step sizes are such that >, ay = 00 and Y, a2 < 0o

At each step, wg is chosen to be the solution of
E(s o)p (s, @ 0)[ Q%) (s, a) — Q(s, a;w)] V. Q(s, a;w) = 0

Then {6:}+ are convergent in the sense that lim¢_,o0 [|[VoJ(6¢)|| — 0.
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Separation of Timescales

® The last condition defines w; as a solution of a fixed-point equation which has the
policy's parameter vector 6, as a parameter

® |n practice, we update w; using stochastic gradient descent algorithm. SGD would
update w¢ in a similar manner with a larger step size than a;. It ensures w converges
faster than 6, thus closer to the solution of the fixed-point equation at each time

® This can be seen as a separation of timescales:

® Critic updates the value function approximator at a faster timescale trying to evaluate
the current policy chosen by the actor

® Actor varies the policy’s parameter more slowly to allow the critic to evaluate the
current policy

e Similar assumptions are imposed in gradient Q-learning algorithms [Maei et al., 2010]
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