
ST455: Reinforcement Learning
Lecture 9: Model-based Reinforcement Learning

Chengchun Shi

1 / 58



Roadmap

2 / 58



Roadmap (Cont’d)

3 / 58



Lecture Outline

1. What is Model-based RL

2. How to Implement Model-based RL

3. Mastering the Game of Go

4 / 58



Lecture Outline

1. What is Model-based RL

2. How to Implement Model-based RL

3. Mastering the Game of Go

5 / 58



Recap: Planning vs Learning

Two fundamental problems in sequential decision making
• Planning

• A model of the environment (e.g., state transition, reward function) is known
• The agent performs computations with its model, without any external interaction
• a.k.a. deliberation, reasoning, introspection, pondering, thought, search

• Learning
• The environment is initially unknown
• The agent interacts with the environment
• The agent learns the optimal policy from experience

6 / 58



RL Algorithms We Have Covered So Far

• Dynamic Programming (Lecture 3): learn value from model (planning)

• MC, TD (Lectures 3 - 7): learn value from experience (learning)

• Policy Gradient (Lecture 8): learn policy from experience (learning)

• Today’s lecture: Model-based RL
• learn model from experience
• use both learned model and experience to construct a value function or policy
• combine learning with planning

7 / 58



What is a Model?

• A modelM is a representation of an MDP ⟨S,A,P ,R,γ⟩
• The state space S and action space A are usually known to us

• The discounted factor γ is user-specified

• Only need to learn the state transition P

Pa
ss′ = Pr(St+1 = s′|St = s,At = a)

and reward function R

Ra
s = E(Rt |St = s,At = a)

8 / 58



Model-free v.s. Model-based RL

• Model-based RL
• Learn the model (e.g., reward Ra

s and transition Pa
ss′) from experience

• Plan value or policy from model or integrate planning with learning

• Model-free RL
• Learn value or policy without learning the reward and transition function
• Rely on Bellman optimality equation
• Examples: MC, TD, Policy gradient

9 / 58



Model-free v.s. Model-based RL (Cont’d)

• Pros of model-based RL

• In some applications, we have a
perfect model (e.g., Go, chess)

• Can handle offline data (more in the
next lecture)

• Pros of model-free RL

• Dimensional reduction

• Easier to learn value than model

• # of parameters of Qπopt
: |S||A|

• # of parameters of Ra
s : |S||A|

• # of parameters of Pa
ss′ : |S|2|A|

10 / 58



Lecture Outline

1. What is Model-based RL

2. How to Implement Model-based RL

3. Mastering the Game of Go

11 / 58



How to Implement Model-Based RL

• First, we learn a model (reward and state transition functions) based on data

• Next, we can implement planning based on the learned model

• Alternatively, we can integrate planning with learning (Dyna)

• Finally, we can implement Monte Carlo tree search for decision-time planning

12 / 58



How to Implement Model-Based RL

• First, we learn a model (reward and state transition functions) based on data

• Next, we can implement planning based on the learned model

• Alternatively, we can integrate planning with learning (Dyna)

• Finally, we can implement Monte Carlo tree search for decision-time planning

13 / 58



Model Learning

• Goal: estimate Ra
s and Pa

ss′ from experience {S0,A0,R0, · · ·,ST}
• Using supervised learning

S0,A0 → R0,S1

S1,A1 → R1,S2

...

ST−1,AT−1 → RT−1,ST

• Learning s, a→ r is a regression problem

• Learning s, a→ s′ is a conditional density estimation problem

• Loss function: least square/Huber loss, KL divergence

• Compute parameter that minimizes empirical loss

14 / 58



Models for Conditional Density Estimation

• Table lookup model

• Conditional kernel density estimation

• Gaussian process model [Williams and Rasmussen, 2006]
• Deep conditional generative learning1

• mixture density network [Rothfuss et al., 2019]
• normalising flows [Trippe and Turner, 2018]

1https://deepgenerativemodels.github.io/notes/index.html
15 / 58



Table Lookup Model

• Finite MDP model

• Count visits N(s, a) =
∑T−1

t=0 I(St = s,At = a) to each state-action pair

P̂
a
ss′ =

1

N(s, a)

T−1∑
t=0

I(St = s,At = a,St+1 = s′)

R̂a
s =

1

N(s, a)

T−1∑
t=0

I(St = s,At = a)Rt

• Alternatively
• At each time step t, record experience tuple ⟨St ,At ,Rt ,St+1⟩
• To sample model, based on a state-action pair (s, a), randomly pick tuple matching

⟨s, a, •, •⟩

16 / 58



Mixture Density Network

• Learn a generic conditional probability mass/density function of Y given X = x ,
f (y |x) (Y = St+1 and X = (St ,At) in our RL setting)

• Combine Gaussian mixture model with deep neural networks

• Gaussian mixture model has universal approximation property to approximate any
density function

• Deep neural networks have universal approximation property to approximate any
mean and variance functions in Gaussian distribution

17 / 58



What is a Gaussian Mixture Model

Taken from https:

//towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95
18 / 58

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95
https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95


Gaussian Mixture Model (Cont’d)

Model a probability density function f (y) by

f (y) =
K∑

k=1

ωkϕ(y ;µk ,σ
2
k),

where ϕ(•;µ,σ2) denotes the probability density function of a Gaussian variable with
mean µ and variance σ2, and ωk denotes the probability the variable belongs to the kth
cluster

19 / 58



Universal Approximation Property

Gaussian mixture model approximates any probability density function as the number of
clusters K →∞

20 / 58



Mixture Density Network

• Model a probability density function f (y) by

f (y) =
K∑

k=1

ωkϕ(y ;µk ,σ
2
k)

• We want to model a conditional probability density function f (y |x)
• Can be modelled via a conditional Gaussian mixture model

f (y |x) =
K∑

k=1

ωk(x)ϕ(y ;µk(x),σ2
k(x))

• Use deep neural networks to parametrize ωk(•), µk(•) and σ2
k(•)

21 / 58



How to Implement Model-based RL

• First, we learn a model (reward and state transition functions) based on data

• Next, we can implement planning based on the learned model

• Alternatively, we can integrate planning with learning (Dyna)

• Finally, we can implement Monte Carlo tree search for decision-time planning

22 / 58



Planning with Dynamic Programming

• Give a model ⟨R̂, P̂⟩
• Use dynamic programming algorithm

• Policy iteration

• Value iteration

23 / 58



Difference From Model-Free Methods

Dynamic Programming (DP) Monte Carlo (MC) Temporal Difference (TD)

24 / 58



Planning with Model-free RL

• A simple but powerful approach to planning

• Use the model only to generate samples

• Sample experience from model:

S
′ ∼ P̂

A
S,• and R = R̂

A
S

• Apply model-free RL to samples
• MC control
• SARSA
• Q-learning

• This is often more efficient than dynamic programming-based method

25 / 58



Planning with an Inaccurate Model

• Model-based RL computes πopt with respect to the model ⟨S,A, R̂, P̂ ,γ⟩
• Quality of the estimated policy depends heavily on the accuracy of the model

• When model is inaccurate, planning yields a suboptimal policy

• Solution 1: when model is wrong, using model-free RL

• Solution 2: integrate planning with learning

26 / 58



How to Implement Model-based RL

• First, we learn a model (reward and state transition functions) based on data

• Next, we can implement planning based on the learned model

• Alternatively, we can integrate planning with learning (Dyna)

• Finally, we can implement Monte Carlo tree search for decision-time planning

27 / 58



Real and Simulated Experience

• We consider two sources of experience

• Real experience: Sampled from environment (true MDP)

{S0,A0,R0, · · ·,ST}

• Simulated experience: Sampled from model (estimated MDP)

S
′ ∼ P̂

A
S,• and R = R̂

A
S

28 / 58



Dyna

29 / 58



Dyna-Q Algorithm

• Initialize Q(s, a) and model(s, a) for all s and a
• do forever:

(a) s ← current (non-terminal) state
(b) a← ε-greedy(s,Q)
(c) Execute action a; observe reward r and next state s′
(d) Q(s, a)← Q(s, a)+α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
(e) model(s, a)← (r , s′)
(f) Repeat n times:

s ← random previously observed state
a← random action previously taking in s
(r , s′) ∼ model(s, a)
Q(s, a)← Q(s, a)+α[r + γmaxa′ Q(s′, a′)−Q(s, a)]

30 / 58



Dyna-Q on a Simple Maze

Figure: Policies found through 2nd
episode. The arrows indicate greedy
action; if no arrow is shown for a state,
then all of its action values were equal.

31 / 58



Dyna-Q+

• Motivation: models maybe incorrect; leads to sub-optimal policies
• Limited sample size for a given state-action pair
• the environment changes and new behavior has not been observed

• Idea: encourage long-untried actions
• For each state–action pair, check how many times have elapsed since it was last tried
• Use bonus reward in action selection:

a← ε− greedy(s,Q + κ
√
τ ),

for some small κ > 0. τ (s, a) denotes the times have elapsed since (s, a) was last tried

32 / 58



Dyna-Q with an Inaccurate Model

• The changed environment is
easier

• The left environment was
used for the first 3000 steps

• The right environment was
used for the rest

33 / 58



Dyna-Q with an Inaccurate Model (Cont’d)

• The changed environment is
harder

• The left environment was
used for the first 1000 steps

• The right environment was
used for the rest

34 / 58



Model-based Methods

• First, we learn a model (reward and state transition functions) based on data

• Next, we can implement planning based on the learned model

• Alternatively, we can integrate planning with learning (Dyna)

• Finally, we can implement Monte Carlo tree search for decision-time planning

35 / 58



Two Ways of Planning

• Background planning
• Planning is used well before an action is selected
• Need to select actions fo each state, not current state
• Examples: policy iteration and value iteration in Lecture 3

• Decision-time planning
• Planning is started and completed after encountering each new state St
• As a computation to determine At
• On the next step planning begins anew with St+1 to produce At+1, and so no

36 / 58



Game Trees

• Game trees: data structures to represent a game
• Exhaustive search can be computationally intensive
• Solutions bought by Monte Carlo tree search

37 / 58



Monte-Carlo Tree Search (Evaluation)

• Given a modelM
• Simulate K episodes from current states St using current policy π{

St ,Ak
t ,R

k
t ,S

k
t+1,A

k
t+1,R

k
t+1, · · ·,Sk

T

}K

k=1
∼M,π

• Build a search tree containing visited states and actions

• Evaluate states Q(s, a) by mean return of episodes from s, a

Q(s, a) =
1

N(s, a)

K∑
k=1

T∑
u=t

I(Su = s,Au = a)Gu → Qπ(s, a)

• After search is finished, select current action with maximum value in search tree

At = argmax
a∈A

Q(St , a)

38 / 58



Monte-Carlo Tree Search (Simulation)

• In MCTS, the simulation policy (rollout policy) π that simulates data improves
• Repeat (each simulation)

• Evaluate states Q(s, a) by Monte-Carlo evaluation
• Improve simulation policy, e.g., by ε-greedy(Q)
• Monte-Carlo control applied to simulated experience

• Converges to the optimal search tree, Q(s, a)→ Qπopt
(s, a)

39 / 58



Lecture Outline

1. What is Model-based RL

2. How to Implement Model-based RL

3. Mastering the Game of Go

40 / 58



Case Study: the Game of Go

• Invented in China over 2500 years ago

• The hardest classic board game
• Much harder than chess:

• Go has larger number of legal moves
than chess (≈250 v.s. ≈35)

• Go involve more moves than chess (≈
150 v.s. ≈ 80)

• Traditional game-tree search fails in
Go

41 / 58



Rules of Go

• Two players place down white and black stones alternately

• Stones are captured according to simple rules

Figure: Left: the three white stones are not surrounded because point X is unoccupied. Middle: if
black places a stone on X, the three white stones are captured and removed from the board. Right:
if white places a stone on point X first, the capture is blocked.

• The game ends when neither player wishes to place another stone

• The player with more territory wins the game

42 / 58



Two-Player Zero-Sum Markov Games

• Simplest extension of MDP ⟨S,A,B,P ,R,γ⟩
• A and B are actions spaces of first and second players
• R is reward function. In Go,

• Rt = 0 for all non-terminal steps
• RT = 1 if Black wins and −1 otherwise

• Let π and ν be policies of the first and second players

• The state-value function depends on both π and ν

V π,ν(s) = E

[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s,At ∼ π,Bt ∼ ν

]

43 / 58



Nash Equilibrium

• At each state s, the two players aim to solve two minimax problems

argmax
π

V π(s) = argmax
π

min
ν

V π,ν(s)

argmin
ν

V ν(s) = argmin
ν

max
π

V π,ν(s)

• Under Markov and time-homogeneity assumptions, there exist stationary policies
π∗ (ν∗) whose values are no worse (better) than any history dependent policy

V π∗,ν∗
(s) = argmax

π
min
ν

V π,ν(s) = argmin
ν

max
π

V π,ν(s)

similar to the existence of the optimal stationary policy theorem in Lecture 2

• These policies reach a Nash equilibrium [Morgenstern and Von Neumann, 1953],
i.e., no player can play better by changing his/her own policy

44 / 58



Prisoner’s Dilemma

Prisoner B stays silent Prisoner B betrays
(cooperates) (defects)

Prisoner A stays silent
Each serves 1 year

Prisoner A: 3 years
(cooperates) Prisoner B: goes free

Prisoner A betrays Prisoner A: goes free
Each serves 2 years

(defects) Prisoner B: 3 years

Mutual defection is the only Nash equilibrium

45 / 58



Bellman Optimally Equation

• Bellman optimal equation for the state value

V π∗,ν∗
(St) = max

a
min
b

E
[
Rt + γV π∗,ν∗

(St+1)
∣∣∣St ,At = a,Bt = b

]
• Bellman optimal equation for the state-action value

Qπ∗,ν∗
(St ,At ,Bt) = E

[
Rt + γmax

a
min
b

Qπ∗,ν∗
(St+1, a,b)

∣∣∣∣St ,At = a,Bt = b
]

• The values can be learned similarly to standard TD/Q learning algorithms for MDP
[see e.g., Fan et al., 2020]

46 / 58



AlphaGo

47 / 58



AlphaGo Pipeline

• Based on a novel version of Monte-Carlo tree search (MCTS)

• Combined with a policy and a value function learned by RL with function
approximation provided by deep CNN

• Simulate trajectories and generate the search tree using the rollout policy

• Expand search tree by selecting unexplored actions according to a policy network

• Policy network trained previously via supervised learning to predict moves contained
in a database of nearly 30 million human expert moves

• Evaluate state-action value based on simulated returns (MC) and a value network

• Value network trained previously via RL

48 / 58



AlphaGo Pipeline (Cont’d)

49 / 58



Input of Neural Networks

50 / 58



Policy Network

• Training the SL policy network took approximately 3 weeks using distributed
implementation of SGD on 50 processors

• The SL policy network achieved 57% accuracy; best accuracy achieved by other
methods 44%

• The RL policy network is trained on a million games in a single day

• The final RL policy won more than 80% of games played against the SL policy

• It won 85% of games played against a Go program using MCTS that simulated
100,000 games per move

51 / 58



Value Network

• The value network used Monte Carlo policy evaluation based on data obtained
from a large number of self-play games played using the RL policy

• To avoid overfitting and instability, and to reduce the strong correlations between
positions encountered in self-play, the dataset consists of 30 million positions, each
chosen randomly from a unique self-play game

• Training was done using 50 million mini-batches each of 32 positions drawn from
this data set

• Training took one week on 50 GPUs

52 / 58



Rollout Policy

• The rollout policy was learned prior to play by a simple linear network trained by
supervised learning from a corpus of 8 million human moves

• In principle, the SL or RL policy networks could have been used in the rollouts, but
the forward propagation through these deep networks took too much time for either
of them to be used in rollout simulations

• The rollout policy network allowed approximately 1,000 complete game simulations
per second to be run on each of the processing threads

53 / 58



AlphaGo Zero on Gomoku
https://github.com/initial-h/AlphaZero_Gomoku_MPI

54 / 58

https://github.com/initial-h/AlphaZero_Gomoku_MPI


Summary

• Model-based/Model free learning
• Integrating planning and learning
• Dyna-Q/Dyna-Q+

• Simulation-based search
• Background/Decision-time planning

• Monte Carlo Tree Search

• Two-player zero-sum Markov games

• Nash equilibrium

• AlphaGo

55 / 58



Seminar Exercise

• Solution to HW8 (Deadline: Wed 12:00 pm)

• Advantage Actor-Critic (with deep neural networks) to CartPole

• Implementation of Dyna-Q algorithm
56 / 58



References I

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of
deep q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.

Oskar Morgenstern and John Von Neumann. Theory of games and economic behavior.
Princeton university press, 1953.

Jonas Rothfuss, Fabio Ferreira, Simon Walther, and Maxim Ulrich. Conditional density
estimation with neural networks: Best practices and benchmarks. arXiv preprint
arXiv:1903.00954, 2019.

Brian L Trippe and Richard E Turner. Conditional density estimation with bayesian
normalising flows. arXiv preprint arXiv:1802.04908, 2018.

Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, 2006.

57 / 58



Questions

58 / 58


	What is Model-based RL
	How to Implement Model-based RL
	Mastering the Game of Go
	References

