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Abstract. The last two decades have witnessed a growing trend towards proving sparse
random analogues of combinatorial theorems. One unified approach to proving such theo-
rems, formalised by Conlon and Gowers, involves establishing a ’transference principle’ which
allows one to translate between robust properties in the dense setting to the sparse random
setting, provided the density is not too small. Our results extend the previous literature by
generalising a transference theorem of Conlon and Gowers to counting (hyper)graphs which
are not necessarily strictly balanced; we obtain an asymptotically optimal probability of
success and use our result to prove a counting lemma for hypergraphs in the sparse regime.

1. Introduction

Extremal combinatorics is the branch of discrete mathematics dealing with finding condi-
tions that force the existence of specified substructures. A rich area of study which focuses on
finding density conditions that guarantee that a subset of a complete set contains a specific
structure.

Our goal in this work is to formalise and extend the Transference Principle, which is a
method that can be traced back to the seminal paper of Green and Tao [10] and that was then
further developed by Conlon and Gowers [4].

Intuitively, the transference principle is a method that allows to translate “robust” counting
results that are known in the dense regime to a random sparse regime. Let us see an example.

For graphs H and G, let us denote by c(H,G) the number of copies of H in G. Moreover,
let m2(H) = maxH′⊆H,|H′|≥3

e(H′)−1
v(H′)−2 . For any graph H, Erdős-Stone-Simonovits’ Theorem [8,

7] guarantees that for any ε > 0 there is N large enough such that any subgraph F of KN

with at least
(
1 − 1

χ(H)−1 + o(1)
)(

N
2

)
edges contains a copy of H. This result is “robust”, by

which we mean that any subgraph of KN with at least
(
1− 1

χ(H)−1 +ε
)(

N
2

)
contains Ω(Nv(H))

copies of H, as proved by Erdős and Simonovits [9] (see also [13] for a survey on the topic).
Now that we have an example of a robust counting result that is known in the dense regime,

let us see how we can translate it to a sparse random regime. In this variation, we are interested
in finding copies of H in subgraphs of GN,pN , the random graph over N vertices where each
edge is selected independently with probability pN .

What the transference principle allows us to do is to reduce a counting in the sparse random
regime to a counting in the dense regime. That is, the transference principle allows us to count
the copies of H in a subgraph Y of GN,pN by counting the copies of H in a dense model Z of
our subgraph Y of the random graph.

The formal translation from the sparse random regime to the dense regime (which is a
special case of our general transference principle) is as follows.

1
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Theorem 1. Let H be a fixed graph and ε > 0. Then there exists a constant C > 0 such
that the following holds. Suppose that pN > CN−1/m2(H), and let ηN be the probability that
the number of copies of H in G = GN,pN exceeds (1 + ε

2)p
e(H)
N Nv(H). Then with probability at

least 1− ηN , for every subgraph Y ⊆ G there exists a graph Z on V (G) that satisfies:

e(Y )p−1
N = e(Z)± εN2 and c(H,Y )p

−e(H)
N = c(H,Z)± εNv(H) .

This result allows us to do counting in the following way. Let us fix a graph H. Let us
consider pN > CN−1/m2(H) and let Y be a subset of G = GN,pN with at least

(
1− 1

χ(H)−1 +

ε
)
pN
(
N
2

)
edges. By Theorem 1, applied with the right parameter ε = ε′, we can find a good

model Z of Y . Which means we can find a subgraph Z of KN with at least
(
1− 1

χ(H)−1+ε
′)(N

2

)
edges and such that the number of copies of H in Y is (up to rescaling) the number of copies
of H in Z. In particular, Erdős and Simonovits’ result [9] gives us that Z contains Ω(Nv(H))

copies of H, which guarantees that Y contains Ω(Nv(H)p
e(H)
N ) copies of H, which is a positive

proportion of the expected number of copies of H in GN,pN .
Let us now see that the condition pN > CN−1/m2(H) is somehow optimal.
Let us take in consideration the graphH over four vertices consisting of a triangle and a pen-

dant edge attached to it (i.e. the graph with vertex set {1, 2, 3, 4} and edge set {12, 23, 13, 14}).
We first point out that CN−1/m2(H) is optimal here. Indeed, G = GN,pN is a graph with ap-
proximately pNN2 many edges and with about Nv(H)pe(H) = N4p4 copies of H. This means
that if N4p4N ≪ pNN

2, we can remove only a small fraction of the edges (one per each copy of

H) and remove all the copies of H contained in G. Therefore, we must have pN ≫ N
− v(H)−2

e(H)−1 ,
i.e. pN ≫ N−2/3. However, notice also that in order to remove all copies of H in G, an adver-
sary could try and delete all the triangles T of G by removing one edge per each triangle. The
expected number of triangles in G is N3p3 and this needs to be much larger than the number
of edges of G. And therefore we must have pN ≫ N−1/2, which explains the requirement
pN ≥ CN−1/m2(H).

We also have that our “success probability” 1− ηN is optimal, but we postpone to the proof
of the theorem to see the details.

2. A General Transference Principle and its applications

We mentioned that our interest is to generalise and extend the transference principle. We
start by seeing how we can translate Theorem 1 in a more abstract setting. We are then going
to state and prove an extended version of this translation.

The main idea here is that we can formulate Theorem 1 as a statement about the set of
edges of KN . That is, we can consider n =

(
N
2

)
, and arbitrarily define a bijection between [n]

and the set of edges of KN . Once we have done that, we can define the hypergraph S of all
copies of H in [n]. By construction, S is a subset of

(
n
k

)
(we have k = 4 as H has 4 edges), and

has size of the order of Nv(H). Counting copies of H in G is the same as counting elements of
S contained in [n]pN .

Notice a similar procedure can also be done for counting copies of an r-uniform hypergraph
(we would just need to consider n =

(
N
r

)
).

Given a set [n], a uniform hypergraph S, and a subset Y of the random set [n]pN (for
appropriate values of pN ), our general transference principle allows us to find a dense model
Z of Y such that the number of elements of S in Y is (up to scaling) close to the number of
elements of S in Z.
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Actually, our transference principle allows for a further layer of generality, for which we need
additional notation. We now introduce the necessary notation and state the general version
of our transference principle.

Given positive integers n, k ≥ 2, a k-uniform ordered hypergraph S of size n is a k-uniform
hypergraph on [n] with an order associated to each of its edges. That is, each edge of a k-
uniform ordered hypergraph is an (ordered) sequence of length k of elements of [n]. Given
x ∈ [n] and i ∈ [k], we write Si(x) for the subset of S consisting of all edges whose i-th entry is
x. Given such an hypergraph S, and a sequence x of length k of elements of [n]∪{∗}, we write
degS(x) for the number of edges of S which agree with x at all positions which do not equal
∗. That is, those entries equalling ∗ are allowed to vary, while the others are fixed to the value
they have in x. For ℓ a positive integer, we write ∆ℓ(S) for the maximum value of degS(x)
over all sequences x with exactly ℓ entries not equal to ∗. This is the standard codegree in
the ordered hypergraph setting, where ℓ vertices are fixed and the number of edges containing
them is counted.

We call a function σ : [n] → [0, 1] over the set of vertices a similarity function. We call a
function ω : S → [0, 1] over the set of edges a subcount. We abuse notation by denoting with
1 any function that takes value 1 on its domain (whatever that might be). We write 1 to
denote the indicator function of a proposition, which is, we write for example 1(y ∈ Y ) to be
the function that has value 1 when ‘y ∈ Y ’ is true, and value 0 when it is false (the domain
is always clear from the context). For any real numbers x, y, z, we also write x = y ± z to
indicate y − z ≤ x ≤ y + z.

Very importantly, we now introduce a general setting that accompanies us for the rest of
this work. That is, we fix now the following quantities, and refer back to them frequently in
the following.

Setting 2. Let k, n ≥ 2 be fixed integers, let c, p > 0 be real numbers with p ∈ (0, 1). Let S
be a k-uniform ordered hypergraph on [n], and let Σ and Ω be sets of respectively similarity
functions on [n] and subcounts of S. Let both Σ and Ω contain the 1 function that takes
value 1 everywhere in their respective domains, and let Σ contain each of the n functions
f(x) ≡ 1(x = i).

We point out that this setting contains no conditions on any of these objects, which is why
we need the following definition.

Definition (C-conditions). Let us be in Setting 2. For C ≥ 0 a real number, we say that
the C-conditions are satisfied if all the following inequalities are respected. We first ask p ≥
C(log2k n)n−1, and that for all 1 ≤ ℓ ≤ k, we have

∆ℓ(S) ≤ cC1−ℓpℓ−1 e(S)
n .

Where e(S) is the number of edges of S. We also ask that Σ and Ω have at most exp
(pn
C

)
elements.

This setting and definition allow us to set up statements as follows. “Let us be in Setting 2.
For every ε > 0 there is C > 0 such that, if the C-conditions are satisfied, then . . . ”.

We need one more set of definitions.

Definition. Let us be in Setting 2. We say that Z ⊆ [n] is an ε-good dense model for Y ⊆ [n]
if it satisfies the following:

(1) For each σ ∈ Σ, we have
∑
y∈[n]

p−1
1(y ∈ Y )σ(y) =

∑
z∈[n]

1(z ∈ Z)σ(z)± εn, and
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(2) For each ω ∈ Ω, we have
∑
s∈S

p−k
1(s ⊆ Y )ω(s) =

∑
s∈S

1(s ⊆ Z)ω(s)± εe(S).

Notice that whether Z is an ε-good dense model of Y depends on Ω and Σ even if this is
not explicit from the notation. We say that Z is an ε-good dense lower model if the second
equality of the definition is just a lower bound, i.e. if it satifies 1 and

∀ω ∈ Ω,
∑
s∈S

p−k
1(s ⊆ Y )ω(s) ≥

∑
s∈S

1(s ⊆ Z)ω(s)− εe(S) .

We are now ready to introduce our general transference principle.

Theorem 3. Let us be in Setting 2. For every ε > 0 there exists a constant C > 0 such that,
if the C-conditions are satisfied, the following holds.

(1) Lower bound: With probability at least 1− exp
(
−pn

C

)
, every subset Y of the binomial

random set X = [n]p has an ε-good dense lower model Z ⊆ [n].
(2) Upper bound: Let

ηn := P
(
|{s ∈ S : s ⊆ [n]p}| ≥ (1 + ε

2) · E(|{s ∈ S : s ⊆ [n]p}|)
)
+ exp(−pn

C ) .

With probability at least 1 − ηn, every subset Y of the binomial random set X = [n]p
has an ε-good dense model Z ⊆ [n].

(3) Dense model with deletion: With probability at least 1 − exp
(
−pn

C

)
, there exists a

subset X̃ with at least (1 − ε)pn elements of the binomial random set X = [n]p such
that for every subset Y ⊆ X̃, there is an ε-good dense model Z ⊆ [n] for Y .

Notice that the probabilities mentioned above are asymptotically optimal. Indeed, the
failure probability has the same order of magnitude of the probability that X contains no
element of S at all for cases 1 and 3. Moreover, for case 2, ηn corresponds to the probability
that X contains many more elements of S than expected, plus an error term of the order of
magnitude of the probability that [n]p contains no element of S at all. In this case, taking
Y = X would show that we cannot ask for the existence of a good dense model for all subsets
of X.

2.1. A further note about graphs. We now see that Theorem 1 follows from Theorem 3.
Indeed, if we take Σ, and Ω to be minimal (as required by Setting 2), we obtain a counting
result that is exactly Theorem 1. This is because for a subset Y of [n]p, Theorem 3 gives
us an ε-good dense model Z ⊆ [n] such that |Y |p−1 = |Z| ± εn and

∑
s∈S 1(s ⊆ Y )p−k =∑

s∈S 1(s ⊆ Z)± εn. The first equality says that Z has the appropriate size, and the second
allows us to know the number of copies of H in Y provided we can count the copies of H in
Z.

2.2. Counting lemma for sparse hypergraphs. We provide a further application of our
transference principle, which is a counting lemma for sparse hypergraphs. However, because
much more notation is needed to state such a theorem, we postpone its statement to Section 12,
where it is presented as Theorem 30. Because Section 12 is completely separated from the
preceding sections, besides for the use of our transference principle, the interested reader can
explore Section 12 independently from the rest of this work.

Theorem 30 is a strong counting result for hypergraphs in the sparse random regime. Indeed,
it provides a more precise counting statement than the one obtained by Balogh, Morris, and
Samotij [1], and by Saxton, and Thomason [16] with the container method. Similarly, with
their version of the transference principle, Conlon, Gowers, Samotij, and Schacht [5] also
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obtained weaker lower bounds, and were able to obtain an upper bound only in the case of
strictly-balanced graphs (while their work can probably be generalised to hypergraphs, no such
generalisation has been completed).

2.3. The Deletion Version of our Transference Principle. Before Section 11, we focus
on item 3 of Theorem 3, which is the deletion version of our Counting Lemma. In Section 11
we show how to obtain the rest of Theorem 3 from item 3. We restate now item 3 of Theorem 3
as an independent theorem and make explicit the notation.

Definition (ε-deletion). Let X be a sample of the binomial random set [n]p. Given ε > 0, we
say that X̃ is an ε-deletion of X if X̃ is a subset of X with at least (1− ε)pn elements.

Theorem 4 (Case 3 of Theorem 3). Let us be in Setting 2. For every ε > 0 there exists C > 0
such that, if the C-conditions are satisfied, then with probability at least 1 − exp

(
− pn

C

)
, the

binomial random set X = [n]p admits an ε-deletion X̃ such that for each Y ⊆ X̃, there is an
ε-good dense model Z ⊆ [n] for Y .

3. Tools

3.1. Concentration Inequalities. We start with some standard concentration inequalities.
Theorem 5, Lemma 16 and Theorem 7 can be found in [18], respectively in Section 2.3, Section
2.8, and Section 2.9.

Theorem 5 (Chernoff’s inequality). Let X1, . . . , Xn be independent Bernoulli random vari-
ables, let Y =

∑n
i=1Xi, and let δ ∈ (0, 1). Then we have

P[Y ≥ (1 + δ)E[Y ]
]
,P[Y ≤ (1− δ)E[Y ]

]
≤ exp

(
− δ2

3 E[Y ]
)
.

The following result is known as Bernstein’s inequality.

Lemma 6 (Bernstein’s inequality). Let Y1, . . . , Yn be independent random variables taking
values in [−M,M ]; let S = Y1 + . . . + Yn. For λ ≥ 0 we have

P
[∣∣S − E[S]

∣∣ ≥ λ
]
≤ 2 exp

(
−λ2/2

Mλ
3 +

∑
iVar(Yi)

)
.

The following result is due to McDiarmid.

Theorem 7 (McDiarmid’s inequality). Let X1, . . . , Xn be independent real-valued random
variables, and let f : Rn → R be a function. Assume that the value of f(x) can change by
at most ci > 0 under an arbitrary change1 of the i-th coordinate of x ∈ Rn. Then, for every
ε > 0 we have

P
[∣∣f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]

∣∣ ≥ ε
]
≤ 2 exp

(
− 2ε2∑n

j=1 c
2
j

)
.

We also require a further concentration inequality, due to Kim and Vu [12] which provides
a concentration result for a multi-variable polynomial over independent Bernoulli random
variables as follows. Let F be an hypergraph with V (F ) = {1, . . . , n} and edge set E(F ). Let
us assume each edge e is associated to a weight w(e) > 0 and that each edge of F contains at
most d vertices. Moreover, for any A ⊆ V (F ), let FA denote the A-truncated sub-hypergraph
of F , which is the hypergraph with vertex set V (F ) \A and edge set E(FA) = {e′ ⊆ V (FA) :

1This means that for any index i and any x1, . . . , xn, x
′
i we have |f(. . . , xi, . . . )− f(. . . , x′

i, . . . )| ≤ ci.
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e′ ∪ A ∈ E(F )}. Note that w extends in a unique way from E(F ) to E(FA), therefore we
abuse notation and use w to denote either function.

Suppose now t1, . . . , tn are independent random variables, such that for each i ∈ [n] there
is pi ∈ [0, 1] such that ti is either a Bernoulli {0, 1} random variable with E(ti) = pi, or the
constant random variable ti ≡ pi. The following polynomial is a well-defined random variable

YF =
∑

e∈E(F )

w(e)
∏
ti∈e

ti .

Analogously we can define YFA
, where by convention

∏
ti∈∅ ti = 1.

In order to provide a concentration statement for YF , we need to introduce a language
to describe its deviations. For i ∈ {0, . . . , d} let Ei(YF ) = maxA⊆V (F ):|A|=i E(YFA

). Note
E0(YF ) = E(YF ) is just the expectation of YF . Let E′(YF ) = maxi Ei(YF ) and E′′(YF ) =
maxi≥1 Ei(YF ).

Theorem 8 (Kim-Vu’s inequality). Let F , w, d, and {t1, . . . , tn} be as above. For λ > 1 and
ad := 8dd!1/2, we have

P
[
|YF − E(YF )| > ad(E′(YF )E′′(YF ))

1/2λd
]
= O(exp(−λ+ (d− 1) log n)) .

The moral of this theorem is that if the average effect of any group of at most d random
variables is considerable smaller than the expectation of YF , then YF is strongly concentrated.

3.2. Optimisation tools. Here and in the following, by polytope we mean a convex polytope,
i.e. the convex hull of a finite set of points in a finite-dimensional Euclidean space. Given a
polytope Φ, the vertex set of Φ is the2 minimal set V of points whose convex hull equals Φ.
The reader should not confuse the vertex set of a polytope with the vertex set of a graph or
hypergraph.

Lemma 9. Consider f : Rn → R a polynomial in n variables that can be written in the
form f(x1, . . . , xn) =

∑n
i=1 aix

d
i , where d is either 1 or any positive even integer, and where

a1, . . . , an ≥ 0. Let Φ be a polytope in Rn with vertex set V . Then f attains its maximum over
Φ at a vertex of Φ, which is:

max
x∈Φ

f(x) = max
v∈V

f(v) .

Proof. We show that if a maximiser is in the interior of a line segment in Φ, then all points
on the line segment are also maximisers.

For distinct (Y1, . . . , yn) and (z1, . . . , zn) in Φ, let us denote by (x1, . . . , xn) their middle
point 1

2(Y1 + z1, . . . , yn + zn). If
∑n

i=1 aix
d
i is at least

∑n
i=1 aiy

d
i and strictly larger than∑n

i=1 aiz
d
i , then it is also larger than

∑n
i=1

1
2ai(y

d
i +z

d
i ). By averaging, there exists i such that

aix
d
i >

1
2ai(y

d
i + zdi ), so xdi >

1
2(y

d
i + zdi ). But the function x→ xd is convex, a contradiction.

If x is in the interior of a face of Φ of some dimension D, by picking a line through x in this
face, we see that there is a maximiser in a boundary face of dimension D − 1, and iterating
we reach a vertex which is a maximiser. □

A functional is a function that has R as codomain. Given a functional h : X → R≥0, we
say a functional f : X → R≥0 is h-bounded if 0 ≤ f(x) ≤ h(x) for all x ∈ X. More generally,
given a collection H of functionals from X to R≥0, we say that a functional f : X → R≥0 is
H-bounded if there exists a functional h ∈ H such that f is h-bounded. Suppose that f is

2A proof of uniqueness follows by greedy selection.
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H-bounded. We say that f is H-extreme if there is h ∈ H such that for every x ∈ X we have
either f(x) = 0 or f(x) = h(x).

A celebrated theorem about the existence of functionals is the Hahn-Banach theorem.

Theorem 10 (Hahn-Banach). Let K be a closed convex set in Rn and let f be a vector that
does not belong to K. Then there is a linear functional ψ on Rn such that ψ(f) > 1 and such
that ψ(g) ≤ 1 for every g ∈ K.

Another celebrated result is the Stone-Weierstrass Theorem, which we present in its original
form, proved by Weierstrass. We refer to Theorem 7.26 of [15].

Theorem 11 (Weierstrass Approximation). If f is a continuous real function on [a, b]. For
every ε > 0 there exists a polynomial P with real coefficients such that for every x ∈ [a, b] we
have |P (x)− f(x)| ≤ ε.

4. Main technical theorem

The focus of this section is to rewrite our setting in the language of functionals, and create
a parallelism between sets, functionals, and vectors. This is done following the example of
Green and Tao [10], and Conlon and Gowers [4] after them.

4.1. Sets, functionals, and vectors. It is fundamental for understanding the rest of this
work the idea that we can represent subsets of a specific set as functionals, and functionals as
vectors, and that tools used in one of these scenarios often have a useful translation in one of
the others.

We start by introducing the equivalence between subsets of [n] and functionals from [n]
to R≥0. The statement of Theorem 4 is about random subsets of a given set [n]. Given a
sample X = [n]p we write µ = µ(X) for the scaled indicator function x→ p−1

1(x ∈ X). This
functional µ is our representation of X in the space of functionals [n] → R. Strictly speaking,
we should not say this, since µ(X) depends not just on X but on the value of p used when
X was chosen, but this is always clear from context. In this language, we think of a weighted
subset of X as being a functional f : [n] → R satisfying 0 ≤ f(x) ≤ µ(x) for all x ∈ [n]. Also,
the unweighted subset Y ⊆ X corresponds to the scaled indicator function p−1

1(x ∈ Y ) which
takes value p−1 on Y and 0 elsewhere.

Often we also want to think of a functional f : [n] → R as a vector of Rn, in order to define
more easily operations and norms over the space of such functionals. While quite standard,
we give an explicit example of how this allows us to define an inner product on the set of said
functionals by

(1) ⟨f, g⟩ := 1
n

∑
x∈[n]

f(x)g(x) .

It is quite important in the following that this operation is indeed an inner-product, and
therefore is, in particular, linear in each component and symmetric. We often apply real
operations and operators to vectors, by which we always intend to apply them pointwise. For
example, the product of two vectors, written fg, is the vector for which the component x
has value the pointwise product f(x)g(x). We also define, maybe in a less standard way, the
operator ·+, which we apply to functionals and vectors alike, as follows. For f a functional,

f+(x) =

{
x if x ≥ 0
0 if x < 0

.
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Also, for a positive integer d, the notation fd indicates the pointwise product, so this
indicates the functional fd(x), or equivalently the vector with d-powers at every component.

4.2. Further definitions towards our goal. The objective of this section is to define a
norm over the set of functionals [n] → R. We want to use this norm to rewrite Theorem 4
in the language of functionals. More precisely, we want to define a norm such that, if the
functional f representing Y and the functional g representing Z are close with respect to this
norm, then Z is a good dense model for Y . We now proceed with introducing the necessary
definitions, before moving to rewriting Theorem 4.

A fundamental operation for our work is the convolution, which is an operation on func-
tionals that is dependent of S.

Definition (Convolution). Given our k-uniform ordered hypergraph S on [n], let i ∈ [k] be
an index, let f1, . . . , fi−1, fi+1, . . . , fk be non-negative functionals from [n] to R≥0, and let
ω : S → [0, 1] be a subcount. The convolution ∗i,S,ω(f1, . . . , fi−1, fi+1, . . . , fk) is the functional
[n] → R defined as follows. For x ∈ [n],

∗i,S,ω(f1, . . . , fi−1, fi+1, . . . , fk)(x) :=
n

e(S)

∑
s∈Si(x)

ω(s)
∏
j ̸=i

fj(sj) .

In the following, we only write ∗i,ω(f1, . . . , fk), as S is fixed. Moreover, we would write “let
f1, . . . , fk be non-negative functionals” instead of “let f1, . . . , fi−1, fi+1, . . . , fk” when we only
need k − 1 functionals, for ease of indexing.

Note that the convolution operator is multilinear, i.e. it is linear in each of the f1, . . . , fk.

The reason we need such a definition is the following. Consider the expression

(2) ⟨fi, ∗i,ω(f1, . . . , fk)⟩ =
1

|S|
∑
s∈S

ω(s)
k∏

j=1

fj(sj) .

If for each j ∈ [k] we select fj to be the scaled indicator function of the sparse subset Y ,
i.e. fj(x) = p−1

1(x ∈ Y ), then we obtain that equation (2) becomes the left-hand side of
point 2 of Theorem 4 (without the error term). On the other hand, if we select as gj the
indicator function of the dense model Z, i.e. gj(x) = 1(x ∈ Z), then equation (2) becomes
the right-hand side of point 2 of Theorem 4 (without the error term).

In order to say that the right and left side of point 2 of Theorem 4 are close to each others
we bound a telescoping sum. Which is, we prove that the quantity

(3) ⟨fi − gi, ∗i,ω(f1, . . . , fi−1, gi+1, . . . , gk)⟩
is small whenever gi is a dense model of fi. The reader should see this as a further example
of taking advantage of the parallelism between the sets, functionals, and vectors formalisms.

We now go one step forward, and define a polytope Φ. The goal of this polytope is contain
some witness functionals so that if ⟨f−g, ϕ⟩ is small for all ϕ in the polytope, then the various
(3) are also small.

Following Conlon and Gowers [4], we give a simplified version of their definition as follows.

Definition. Let us be in Setting 2, and let H be a set of functionals [n] → R.
A functional ϕ is said to be H-anti-uniform if it is in Σ, or if it can be written in the form

∗i,ω(f1, . . . , fk) for some H-bounded functionals f1, . . . , fk, some i ∈ [k], and some ω ∈ Ω. The
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polytope Φ(H,Σ,Ω) of H-anti-uniform functionals is the polytope in the space of functionals
R[n] defined by convex hull of the set containing all the H-anti-uniform functions ϕ and their
inverses −ϕ.

Because we use this definition only under Setting 2, we usually write Φ(H) instead of
Φ(H,Σ,Ω). Also, when we enumerate H we write Φ(h1, . . . , hs) instead of Φ({h1, . . . , hs}).
E.g. we often write Φ(µ̃) or Φ(1) for Φ({µ̃}) and Φ({1}).

Because the convolution operator is multilinear, every vertex of Φ(H) is either in Σ, or it
is a convolution ∗i,ω(f1, . . . , fk) where each fi is H-extreme. Moreover, if we have f1, . . . , fk
non-negative functionals, respectively bounded by H-elements h1, . . . , hk, then we also have
that for all x ∈ [n] it holds

0 ≤ ∗i,ω(f1, . . . , fk)(x) ≤ ∗i,1(h1, . . . , hk)(x) .

This justifies the following definition.

Definition. For h1, . . . , hk in H, we say that an element of Φ(H) that can be written as
∗i,1(h1, . . . , hk) is an H-largest anti-uniform functional of Φ(H) (or a largest anti-uniform
functional of Φ(H)).

Moreover, we call H-extreme anti-uniform functional a functional that is in Σ or of the
form ∗i,ω(h1, . . . , hk), where h1, . . . , hk are H-extreme.

Remark 12. We consider a few properties of H-anti-uniform functionals and of Φ(H).
• Φ(H) is by definition centrally symmetric.
• Because Σ contains by definition all the standard basis vectors, which is all the func-

tions of the form f(x) ≡ 1(x = i), we have that Φ(H) is a full-dimensional polytope
in R[n].

• All H-largest anti-uniform functionals are H-extreme anti-uniform functionals, but not
vice-versa.

• For any set H, and for any v ∈ Φ(H) a vertex of the polytope, there exist a H-largest
anti-uniform functional ∗i,1(h1, . . . , hk) such that we have 0 ≤ v ≤ ∗i,1(h1, . . . , hk)
pointwise. This follows, as mentioned above, from multilinearity of the convolution
operator.

As mentioned, the objective of this section is to rewrite in the language of functionals and
vectors the statement of Theorem 4. The last technical step needed is the definition of a norm
over R[n]. Our candidate is the following:

∥f∥Φ(H) := max
ϕ∈Φ(H)

⟨f, ϕ⟩ .

To see that this is indeed a norm, we can consider that Φ(H) is a centrally symmetric polytope
of dimension n, thus maxϕ∈Φ(H)⟨f, ϕ⟩ is zero if and only if f = 0 by the hyperplane separation
Theorem (section 2.3 of [3]). Moreover, absolute homogeneity comes from equation (1). Finally
we leave triangle inequality as an exercise for the reader. In the following, we write ∥ · ∥ when
Φ(H) is clear from the context.

A useful bit of notation is as follows.

Notation 13. In Setting 2, given X̃ a subset of [n], we denote by µ̃ the functional µ̃(x) =

p−1(x ∈ X̃) with domain [n] and codomain {0, p−1} ⊆ R. We often denote with Φ the polytope
Φ(µ̃,1).
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We now have the language to state our main technical theorem, which is a functional version
of Theorem 4.

Theorem 14. Let us be in Setting 2. For every ε > 0 there exists C > 0 such that, if the
C-conditions are satisfied, then with probability at least 1−exp

(
− pn

C

)
the random set X = [n]p

admits an ε-deletion X̃ such that —using Notation 13— for every µ̃-bounded functional f there
exists a 1-bounded functional g such that ∥f − g∥Φ(µ̃,1) ≤ ε.

Something to note is that we have allowed f to be a general µ̃-bounded function (not just a
scaled indicator function of a subset of X̃, which would be the exact translation of Theorem 4)
but we also relaxed our conclusion to let the dense model g be a 1-bounded function, not
necessarily {0, 1}-valued. To prove Theorem 4, we need to return to integer-valued dense
models, which is the subject of the next section.

5. Integer dense models

5.1. Integer dense models suffice. The following result says that we can approximate the
dense model g given by Theorem 14 by an integer-valued model.

Theorem 15. Let us be in Setting 2. For every ε > 0 there is C > 0 such that, if the C-
conditions are satisfied, then for any functional g : [n] → [0, 1], there is a functional g∗ : [n] →
{0, 1} such that ∥g − g∗∥Φ(1) ≤ ε.

The proof of Theorem 4 from Theorem 14 and Theorem 15 is an exercise in functional anal-
ysis. We write the statement as functionals, then replace the sparse functional f representing
X̃ with its fractional dense model g by a telescoping sum, then the fractional dense model
with its integer dense model g∗ by another telescoping sum. This proof contains the type or
argument needed when converting a statement to the functional setting.

Proof of Theorem 4. We are in Setting 2. Given ε > 0 we can take C such that both Theo-
rem 14 and Theorem 15 hold in Setting 2 with 1

2kε (instead of ε) if the the C-conditions are
satisfied.

Suppose now that the likely event of Theorem 14 occurs for X = [n]p, and let X̃ be the set
that this event provides. Now, for any given Y ⊆ X̃, let f(y) = p−1

1(y ∈ Y ). By definition,
f is µ̃-bounded, so by Theorem 14 there is a 1-bounded g such that

(4) ∥f − g∥Φ(µ̃,1) ≤ 1
2kε .

By Theorem 15, there is an integer 1-bounded function g∗ such that

(5) ∥g − g∗∥Φ(1) ≤ 1
2kε .

Let Z = {z ∈ [n] : g∗(z) = 1}. Given σ ∈ Σ, since σ and −σ are in Φ(µ̃,1) and in its subset
Φ(1), the inequalities (4) and (5) give us

⟨f, σ⟩ = ⟨g, σ⟩ ± ε
2k = ⟨g∗, σ⟩ ± ε

k

which, multiplying by n and filling in the definitions of inner product, f and g∗, gives 1.
Given now ω ∈ Ω, we have the telescoping expression

⟨f, ∗1,ω(f, . . . , f)⟩ = ⟨g, ∗1,ω(f, . . . , f)⟩ ± ε
2k = ⟨f, ∗2,ω(g, f, . . . , f)⟩ ± ε

2k

= . . . = ⟨g, ∗k,ω(g, . . . , g)⟩ ± 1
2ε ,
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where we have in total k replacements of an f with a g, in each case using that the corre-
sponding convolution and its negative are in Φ(µ̃,1); and k rearrangements of terms, where
the value does not change but the inner product is rewritten.

Repeating the same telescoping argument, but this time replacing each occurrence of g with
g∗, and using that the corresponding convolutions are in Φ(1), we get

⟨g, ∗k,ω(g, . . . , g)⟩ = ⟨g, ∗1,ω(g, . . . , g)⟩ = ⟨g∗, ∗1,ω(g, g, . . . , g)⟩ ± ε
2k

= . . . = ⟨g∗, ∗k,ω(g∗, . . . , g∗)⟩ ± 1
2ε ,

Putting these two expressions together we have

⟨f, ∗1,ω(f, . . . , f)⟩ = ⟨g∗, ∗k,ω(g∗, . . . , g∗)⟩ ± ε ,

which filling in the definitions of f , g∗, inner product and convolution, and multiplying by
n · e(S)

n , is 2. □

5.2. Random splitting: a useful technique. In this section we prove Theorem 15. We
start by giving a sketch of the approach, as some of the ideas reappear later. In particular, we
use a refinement of similar techniques to prove Theorem 18.

We start by defining g∗ via randomised rounding. That is, independently for each x, we
generate g∗(x) by choosing 1 with probability g(x) and 0 otherwise. We then argue that the
required closeness in norm is likely.

A first intuitive approach would be to try leverage our optimization Lemma 9 and say that
the extremal value is attained at a vertex. This would allow us to argue that for any given
vertex ϕ of Φ(1), with high probability we have ⟨g − g∗, ϕ⟩ < ε and then take a union bound
over the choices of ϕ. The reason to believe this might work is that g(x) − g∗(x) is, for each
x ∈ [n], a random variable in [−1, 1] with mean zero, while ϕ is a fixed vector, so the inner
product is a sum of independent mean zero random variables. Unfortunately, this fails by a
technical detail: there are too many choices of vertex for the required union bound. To get
around this, we now define a polytope which contains Φ(1) but has fewer vertices.

Definition (Random split). Let L be a positive integer, and let χ : [n] → [L] be a sample
of the uniform random function. For i ∈ [L] we then denote by νi the function on [n] such
that νi(x) = L if χ(x) = i, and νi(x) = 0 otherwise. We have 1 = 1

L

∑L
i=1 νi. We call this a

random split of 1.

By linearity, every vertex of Φ(1) is a convex combination of vertices of Φ(ν1, . . . , νL), so it
suffices to show ⟨g − g∗, ϕ⟩ < ε holds for all vertices ϕ ∈ Φ(ν1, . . . , νL).

It follows from the ∆1(S) bounds of the C-conditions and from the definition of Φ(1) that
any ϕ ∈ Φ(1) only attains values with absolute value at most c. Unfortunately, no such bound
holds for functionals in Φ(ν1, . . . , νL), which can attain values as large as Lk−1c. Such large
values spoil the concentration we require of the random variable ⟨g− g∗, ϕ⟩. We deal with this
by splitting up ϕ in two components ϕsmall and ϕbig: we define ϕsmall(x) = ϕ(x)1(|ϕ(x)| ≤ 2c),
and ϕbig = ϕ− ϕsmall.

We can now write ⟨g − g∗, ϕ⟩ = ⟨g − g∗, ϕsmall⟩ + ⟨g − g∗, ϕbig⟩. The point of this is that
the random variable ⟨g − g∗, ϕsmall⟩ does concentrate well, while we can use a high moment
argument to show that ⟨g − g∗, ϕbig⟩ is tiny. Importantly, while our concentration argument
needs to take a union bound over all vertices of Φ(ν1, . . . , νL) (i.e. all {ν1, . . . , νL}-extreme
functions and their negatives), we only need to bound high moments of the {ν1, . . . , νL}-largest
anti-uniform functions.
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We start with a technical lemma that has apparently nothing to do with the proof we want
to show. We present this lemma separately because we use it also in a later section.

Definition. Let us be in Setting 2. Let d be a positive integer, x ∈ [n] and i1, . . . , id ∈ [k]. A
configuration with spine x and index tuple (i1, . . . , id) is a tuple (s1, . . . , sd) of edges of S such
that sjij = x. If i1 = . . . = id = i, we call this a d-book with spine x.

For i = (i1, . . . , id) and t a positive integer, we denote by α(i, t, x) the number of configura-
tions (s1, . . . , sd) with spine x and index tuple i such that

∣∣∪is
i \ {x}

∣∣ = t.

Lemma 16. Let us be in Setting 2. Let C > 0 be a positive real number and let d and t be
positive integers, with k − 1 ≤ t ≤ d(k − 1). If the C-conditions are satisfied, then for any
x ∈ [n] and any i = (i1, . . . , id) we have:

α(i, t, x) ≤ td · (2dkk!)d · cdCd+t−kdpkd−d−te(S)dn−d .

Moreover, for t = d(k − 1) we have:

α(i, t, x) ≤ cde(S)dn−d

Proof. Let us fix x, t, d and i. We now describe a process that can generate any configuration
with spine x, index tuple (i1, . . . , id), and covering t vertices besides x. By counting the number
of choices we make until a specific configuration is selected, we can upper bound α(i, t, x). We
start by picking non-negative integers m1, . . . ,md ≤ k−1 with m1 = k−1. We choose s1 to be
an edge of S whose i1-th element is x. We then pick k−m2 elements, including x, among the
k elements of s1 that are also to be contained in S2. We then fix a position of these elements
in S2, which is an injection from these k −m2 elements to [k], making sure that x is assigned
position i2 in s2. We then select an element s2 of S that satisfy these constraints. We repeat
a similar procedure, fixing k −m3 elements of S2 to generate S3 (fixing x in i3 for s3), and
repeat the procedure until we get sd.

In this procedure, the main contribution to the number of books constructed comes from
choosing the m1 = k − 1 new elements of s1, the m2 new elements of s2, and so on; the
number of ways to do the i-th step is a constant —that counts the number of ways we have
to fix elements of the previous edges into the new one, and can be upper-bounded by 2kk!,
a constant— multiplied by the codigree of S of the right magnitude ∆k−mi

(S) for which we
have by hypothesis the upper-bound cC1+mi−kpl−1−mi e(S)

n . The total number of elements of
[n] \ {x} our constructed book covers is at most

∑d
i=1mi (we do not enforce that the ‘new’

elements are really distinct from the previously chosen ones). We can therefore ignore books
which cover too few elements of [n] and assume

∑d
i=1mi = t. This means that the product of

codegrees we get is cdCd+t−kdpkd−d−te(S)dn−d. This gives an upper bound on α(i, t, x) of

α(i, t, x) ≤ td · (2dkk!)d · cdCd+t−kdpkd−d−te(S)dn−d .

Indeed, the td counts the ways to choose m1, . . . ,md, the factor 2dkk! corresponds to picking
a subset of used elements and an injection to [k], and the final product is the product of
codegrees. Note that in one special case we can do better: when t = d(k − 1), we have
m1 = . . . = md = k−1, and we do not have to pick any used elements (we must pick x and no
other element every time) nor injection (x must be the ij-th vertex of each Sj , and no other
elements are repeated) and we get the upper bound α(i, t, x) ≤ cde(S)dn−d on the number of
these books. □

We are now ready for the proof of Theorem 15.
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Proof of Theorem 15. We are in Setting 2. Given ε > 0, let d ≥ 4 be an integer such that
24−dc2 ≤ 1

2ε. Let L = ⌈1000c2dε−2⌉ be another integer, and set

C = 100(dk)d+1(2dkk!)dL .

We can assume now that the C-conditions are satisfied in our setting. Let ν1, . . . , νL be
a random split of 1. In the following claim, recall that when ϕ is a vector, ϕd denotes the
pointwise power.

Claim 17. With high probability3, the following properties are satisfied. For each i ∈ [L], we
have the inequality ⟨1, νi⟩ ≤ 2; and in addition, for each j ∈ [k] and i1, . . . , ik ∈ [L], we have

⟨1,
(
∗j,1 (νi1 , . . . , νik)

)d⟩ ≤ 2cd .4

This claim is our bound on high moments of the {ν1, . . . , νL}-extreme functions.

Proof. For the first statement, fix i. As ⟨1, νi⟩ = 1
n

∑n
x=1 νi(x), we are asking for the proba-

bility that νi has more than 2n/L entries equal to L. If we consider
∑

x 1(νi(x) = L), this
is a binomial random variable with mean n/L, so by Chernoff’s inequality (Theorem 5) the
probability that it exceeds 2n/L is at most exp

(
− 1

3n/L
)
. Considering an union bound over

i, the probability of failure of the first statement is o(1).
For the second statement, fix j and i1, . . . , ik. Let Z = ⟨1,

(
∗j,1 (νi1 , . . . , νik)

)d⟩. We first
argue that E[Z] ≤ 3

2c
d. We have

Z =
1

n

∑
x∈[n]

(
∗j,1 (νi1 , . . . , νik)

)d
(x) =

∑
x∈[n]

1

n

nd

e(S)d

 ∑
s∈Sj(x)

∏
t̸=j

νit(st)

d

=
∑
x∈[n]

1

n

nd

e(S)d
Ld(k−1)

 ∑
s∈Sj(x)

∏
t̸=j

1(χ(st) = it)

d

=
∑
x∈[n]

∑
s1,...,sd∈Sj(x)

1

n

nd

e(S)d
Ld(k−1) ·

∏
t̸=j

d∏
h=1

1(χ(sht ) = it) .

Notice that the internal sum of our last equation is a sum of d-books with spine x. Each
term of said sum takes value either zero or 1

n · nd

e(S)d
· L(k−1)d. Let us fix a d-book s1, . . . , sd,

and let us ask what is the probability that the internal sum takes the larger value. If we let
Q = ∪d

t=1s
t \ {x} and q = |Q|, the probability depends only on q. Indeed, notice that for each

element of Q, the random variable χ needs to attain a specific value, otherwise the whole term
is set to zero. Therefore, given s1, . . . , sd, the probability that the corresponding element of
the sum takes value 1

n · nd

e(S)d
· L(k−1)d is at most L−q (it can be that the probability is zero,

for example if we have νi1(y)νi2(y) as a term in our sum). Notice that lower values of q imply
larger probability that the corresponding element of the sum samples the higher value. We
can use Lemma 16 to count the number of books as follows.

3With probability tending to 0 as n tends to ∞.
4The two 1 in this statement are functionals over different domains.



A TRANSFERENCE PRINCIPLE AND A COUNTING LEMMA FOR SPARSE HYPERGRAPHS 14

Fix i = (j, . . . , j) a d-tuple with all entries equal to j. For the calculation of the expectation
of Z, we need the following to bound the main term.∑

x∈[n]

∑
s1,...,sd∈Sj(x)

∏
t̸=j

d∏
h=1

1(χ(sht ) = it) ≤
∑
x∈[n]

d(k−1)∑
q=k−1

α(i, q, x)L−q .

If we insert the bounds of Lemma 16 in the calculations we obtain:

E[Z] ≤ cd + 1
2c

d .

where the first term cd is the q = d(k − 1), and by choice of C each other term in the sum
contributes at most 1

2(dk)
−1cd.

We next want to apply McDiarmid’s inequality (Theorem 7) to Z. We therefore need to
argue that Z does not vary a lot when just one component of the colouring χ is changed.
For any fixed y ∈ [n], consider that changing the colouring at y affects only the terms of the
sum Z where y is in at least one edge of the book s1, . . . , sd. As before, we upper-bound the
number of these terms by showing a procedure that can generate any such book containing
y, and keeping track of the choices we made. We start by picking i ∈ [d] and i′ ∈ [k] such
that y is vertex number i′ of si. Because the C-conditions are satisfied, ∆1(S) ≤ c e(S)n , and
therefore there are at most c e(S)n choices of si containing y in position i′. For the same reason,
the remaining d − 1 elements of the book (which all contain x at position j) can be chosen
in at most cd−1 e(S)

d−1

nd−1 ways. This means that the chance of value of χ at y can influence at
most dkcde(S)dn−d terms (we multiplied by d to take into account the choice of i and by k to
take into account the choice of i′). Since each term takes value either 0 or 1

n
nd

e(S)d
Ld(k−1), the

effect of changing the colouring at y is at most
1
n

nd

e(S)d
Ld(k−1) · dkcde(S)dn−d = 1

nL
d(k−1)dkcd .

Applying McDiarmid’s inequality, the probability that Z exceeds its expectation by 1
2c

d is
at most

exp
(
− 2·14 c

2d

n·(Ld(k−1)dkcdn−1)2

)
,

which tends to zero exponentially in n.

Taking the union bound over the at most kLd−1 choices of j and i1, . . . , ik−1, the failure
probability for the second statement is o(1). □

Let g be a 1-bounded functional from [n] to [0, 1]. Our aim is to prove that there exists a
functional g∗ : [n] → {0, 1} such that ∥g − g∗∥Φ(1) ≤ ε. We take g∗ to be a random rounding
of g, which means that for each x ∈ [n] we sample g∗(x) independently at random to take the
value 1 with probability g(x).

By Claim 17, there exists ν1, . . . , νL a random split such that the likely event of Claim 17
holds (otherwise it wouldn’t hold with high probability). Fix such ν1, . . . , νL. In order to
prove that ∥g − g∗∥Φ(1) ≤ ε we first show that for any ϕ an arbitrary vertex of Φ(ν1, . . . , νL),
we have ⟨g − g∗, ϕ⟩ ≤ ε. We then show that this is enough because Φ(1) ⊆ Φ(ν1, . . . , νL) and
because linear functions attain their maximum over a polytope at a vertex (Lemma 9).

For a vertex ϕ of Φ(ν1, . . . , νL), we write ϕsmall(x) := ϕ(x)1
(
|ϕ(x)| ≤ 2c

)
and ϕbig =

ϕ− ϕsmall. We first prove that for each vertex ϕ of Φ(ν1, . . . , νL) we have ⟨g − g∗, ϕsmall⟩ ≤ ε
2 ,

and then we prove a similar statement for ϕbig.
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For ϕsmall, we do this by union-bounding, for the choice of ϕ, the probability that we
selected a g∗ that is too far from g with respect to ϕsmall. To apply the union bound, we start
by considering that the number of vertices of Φ(ν1, . . . , νL) is at most

|Σ|+ k · |Ω| · Lk−12(k−1)2n/L .

Indeed, every element of Φ(ν1, . . . , νL) can be seen as the convex combination of elements of
Σ (at most |Σ| many) and ν1, . . . , νL-extreme anti-uniform functionals (by Remark 12). The
number of these latter functionals can be bounded by the fact that each of them is determined
by being of the form ∗i,ω(f1, . . . , fk), where there are k choices for the value i; there are |Ω|
choices for ω; and each of the k−1-many fj comes from the selection of one of L-many elements
of {ν1, . . . , νL} and a subset of the at most 2n/L-many (by Claim 17) non-zero entries of the
selected element of {ν1, . . . , νL}.

We now observe that, considering g∗ as a random variable with E[g∗(x)] = g(x), we have
that ⟨g − g∗, ϕsmall⟩ is a sum of n-many 0-mean random variables, each with range at most
2cn−1 and so variance at most c2n−2 [2]. Applying Bernstein’s inequality, we have

P
[
⟨g − g∗, ϕsmall⟩ > 1

2ε
]
≤ exp

(
− ε2/4

4
3 ·

1
n ·12 ε+n·c2n−2

)
≤ exp

(
− ε2n

32c2

)
.

By choice of L, taking the union we obtain that with high probability we have ⟨g−g∗, ϕsmall⟩ ≤
1
2ε for every vertex ϕ of Φ(ν1, . . . , νL). Therefore, there must exist a g∗ for which this condition
holds. Fix such a g∗.

Let us now prove that ⟨g− g∗, ϕbig⟩ ≤ ε
2 for all ϕ in Φ(ν1, . . . , νL). Take such a ϕ and let ψ

be a {ν1, . . . , νL}-largest anti-uniform functional such that ϕ ≤ ψ pointwise (which exists, as
discussed in Remark 12). We have

|⟨g − g∗, ϕbig⟩| ≤ |⟨g, ϕbig⟩|+ |⟨g∗, ϕbig⟩|

≤ ⟨g, |ϕbig|⟩+ ⟨g∗, |ϕbig|⟩ ≤ 2⟨1, |ϕbig|⟩

≤ ⟨1, (ϕbig)2⟩ ≤ 2 · (2c)2−d⟨1, (ϕbig)d⟩

≤ 2 · (2c)2−d⟨1, ψd⟩ ≤ 4cd(2c)2−d ≤ ε

2
,

where the first line holds by triangle inequality, the second line holds by non-negativity of g, g∗
and |ϕbig|, the third line holds because |ϕbig| is bounded pointwise by (ϕbig)2 and because all
these entries are either zero or at least 2c. The final line follows since ϕbig ≤ ϕ ≤ ψ pointwise,
and then uses Claim 17. By choice of d, this final number is at most 1

2ε.
Putting these two estimates together, we have for every vertex ϕ of Φ(ν1, . . . , νL) the bound

⟨g − g∗, ϕ⟩ ≤ 1
2ε+

1
2ε = ε .

Since linear functionals over a polytope are maximised at vertices, we conclude the same bound
holds for every ϕ ∈ Φ(ν1, . . . , νL).

To complete the proof, we now show Φ(1) ⊆ Φ(ν1, . . . , νL). Because both sets are polytopes,
it is enough to show that all vertices of Φ(1) are in Φ(ν1, . . . , νL). Given a vertex ϕ of Φ(1),
either ϕ ∈ Σ —in which case ϕ ∈ Φ(ν1, . . . , νL) and we are done—, or ϕ = ∗i,ω(f1, . . . , fk) for
some 1-bounded functions f1, . . . , fk. For each j ∈ [k] and t ∈ [L], let fj,t(x) := fj(x)νt(x),
which is νt-bounded. By definition of random split, fj = 1

L

∑
t∈[L] fj,t. Therefore, we have by

linearity
∗i,ω(f1, . . . , fk) = L1−k

∑
t1,...,tk∈[L]

∗i,ω(f1,t1 , . . . , fk,tk) ,
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which is a convex combination of elements of Φ(ν1, . . . , νL). □

6. Reduction to anti-correlation

We now show that an anti-correlation statement implies Theorem 14. Which is, we reduce
Theorem 14 to the following.

Theorem 18. Let us be in Setting 2. For every ε > 0 there exists C > 0 such that, if
the C-conditions are satisfied, then with probability at least 1 − exp

(
− pn

C

)
the random set

X = [n]p admits an ε-deletion X̃ such that —using Notation 13— for every ϕ ∈ Φ(µ̃,1) we
have ⟨µ̃− 1, ϕ+⟩ < ε and |⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c. In addition we have ∥µ̃− 1∥Φ(µ̃,1) < ε.

We now show, following closely the proof of Lemma 2.5 of Conlon and Gowers’ paper [4],
that Theorem 18 implies Theorem 14.

Proof of Theorem 14. We are in Setting 2. Given ε > 0, let δ = 1
10cε

2. Take C such that
Theorem 18 holds in Setting 2 with δ (in place of ε) if the C-conditions are satisfied. Suppose
that the likely event of Theorem 18 occurs; that is, we are given µ̃ such that ⟨µ̃− 1, ϕ+⟩ < δ
and |⟨1, ϕ⟩| ≤ 2 for every ϕ ∈ Φ(µ̃,1). For the rest of the proof, we only consider the polytope
Φ(µ̃,1) and simply denote it by Φ.

Suppose now that f is some µ̃-bounded function which contradicts the conclusion of Theo-
rem 14. That is, we cannot write f = g + h where g is 1-bounded and ∥h∥Φ < ε.

We first show that we can write 1
1+2ε−1δ

f = g + h where g is 1-bounded and ∥h∥Φ ≤ 1
2ε.

Suppose for a contradiction that this is impossible. The set K of functions of the form g + h
where g is 1-bounded and ∥h∥Φ ≤ 1

2ε is a convex set containing the zero function, since the
1-bounded functions form a hypercube (which is convex) containing zero, and norm-balls are
convex and contain zero. By the Hahn-Banach Theorem (Theorem 10), if 1

1+2ε−1δ
f is not in

K there is a hyperplane separation. Because linear functionals can be represented as scalar
products, this means that there is ψ ∈ R[n] such that ⟨ 1

1+2ε−1δ
f, ψ⟩ > 1 but ⟨g + h, ψ⟩ ≤ 1 for

all 1-bounded g and ∥h∥Φ ≤ 1
2ε.

A functional analysis argument shows that ϕ = 1
2εψ is in Φ. To see this, we consider that

maxh′∈Φ⟨h′, ψ⟩ ≤ 2ε−1 due to linearity of the product and from the Hahn-Banach Theorem
(and that 0 is a 1-bounded function). From this, we obtain that the dual norm (see [14,
Ch. 4]) ∥ψ∥∗ is at most 2ε−1, which is sufficient to conclude, considering that Φ is a full-
dimensional polytope containing zero. The fact that ϕ ∈ Φ gives us, because of Theorem 18,
that ⟨µ̃− 1, ψ+⟩ < 2ε−1δ. If we let ḡ(x) = 1(ψ(x) ≥ 0), we can write

(6) 1 + 2ε−1δ < ⟨f, ψ⟩ ≤ ⟨f, ψ+⟩ ≤ ⟨µ̃, ψ+⟩ < ⟨1, ψ+⟩+ 2ε−1δ = ⟨ḡ, ψ⟩+ 2ε−1δ .

Where the first inequality comes from Hahn-Banach, the second from considering that f is
non-negative, the third from the fact that f is µ̃-bounded, the fourth we just proved, and the
last equality follows by definition of ḡ. Since ḡ is 1-bounded, we have ⟨ḡ, ψ⟩ ≤ 1. But (6) now
reads 1 + 2ε−1δ < 1 + 2ε−1δ, a contradiction.

We can therefore write f = g + 2ε−1δg + h, where g is 1-bounded and ∥h∥Φ < 1
2ε. By

triangle inequality, to complete the proof it suffices to show ∥2ε−1δg∥Φ ≤ 1
2ε. But this is

equivalent to showing that for every element ϕ of Φ, we have ⟨g, ϕ⟩ ≤ 1
4ε

2δ−1.
As Φ is the convex hull of non-negative elements and their negatives, and as g is non-

negative, we can assume that ϕ is non-negative as well. We can thus write

⟨g, ϕ⟩ ≤ ⟨1, ϕ⟩ ≤ 2c
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where the first inequality holds because g ≤ 1 and ϕ is non-negative, and the second is by
Theorem 18. By choice of δ, this proves ∥2ε−1δg∥Φ ≤ 1

2ε. □

In this proof we did not use the conclusion ∥µ̃− 1∥Φ(µ̃,1) < ε of Theorem 18, however this
is a convenient fact to record.

The rest of this work is concerned with proving Theorem 18. The proof of this result
follows the same broad lines that we followed in proving Theorem 15. There are however some
important differences. Before entering in details in the next sections, we give a broad informal
outlook of these differences.

First, in Theorem 18 we need to optimize for ϕ+, which is not linear in ϕ. This means that
that we cannot assume ⟨µ̃−1, ϕ+⟩ is maximised at a vertex of Φ as we did in Theorem 15. In
the following Section 7 we show how to reduce this problem to a linear (and thus maximised
at a vertex) optimisation problem over a different polytope.

Second, in Theorem 15 we were approximating a [0, 1]-valued functional via a random
rounding. In Theorem 18 we have to obtain concentration inequalities for µ̃, which is a
sparse random function. Therefore the kind of concentration we can hope for is much weaker.
However, we still need an optimisation over Φ(µ̃,1), which has 2Ω(n) vertices. Thus, the same
union bounds that we used in Theorem 15 would simply not work here.

Third, Φ(µ̃,1) itself depends on the randomness in µ̃. Therefore, one cannot fix a vertex ϕ
of Φ before revealing µ̃.

It turns out that a concept similar to the previously-defined ‘random splitting’ deals with
both these second and third problems; we describe the random splitting in Section 8 and prove
it does the job in Section 9.

Finally, entries of ϕ+ can be as large as log n, which makes bounding inner products more
difficult. However, the same idea that worked for Theorem 15 —applying moment bounds to
control exceptionally large entries— works just as well here. We prove the required moment
bounds hold with high probability in Section 10, and in Section 11 we show that this high
probability can (at the cost of some deletion) be upgraded to exponentially high probability.

7. A linear approximation

Part of proving Theorem 18 is to show that for every ϕ ∈ Φ(µ̃,1) we have ⟨µ̃− 1, ϕ+⟩ < ε.
The difficulty in proving this statement is that the function ϕ → ϕ+ makes this a non-linear
optimisation problem over Φ(µ̃,1). Thus, we cannot use, out-of-the-box, that ⟨µ̃ − 1, ϕ+⟩ is
maximised —as a function of ϕ in Φ(µ̃,1)— at a vertex of Φ(µ̃,1). We show in this section
that we can get around this by using the Weierstrass Approximation Theorem (Theorem 11)
to approximate ϕ → ϕ+ with a polynomial. As we now see, this translates our optimisation
problem to a linear one over the product polytope Φd := {

∏d
i=1 ϕi : ϕi ∈ Φ(µ̃,1)}, with d ∈ N

determined by Weierstrass’ Approximation Theorem. Since the constant 1 function is in Σ,
and therefore in Φ(µ̃,1), any product of at most d elements of Φ(µ̃,1) is in Φd. Any vertex of
Φd is a product of d vertices of Φ(µ̃,1).

We need to be careful because the Weierstrass Approximation Theorem allows us to ap-
proximate well the function x → x+ only within a closed and bounded interval: we use the
interval [−2c, 2c]. We show using high moment bounds that the contribution to the inner
product where ϕ lies outside of this interval is almost surely negligible. This argument is
broadly similar to the one used in the proof of Theorem 15.
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To this end, for any function ϕ on [n], write ϕbig for the function which takes the value ϕ(x)
on x ∈ [n] whenever |ϕ(x)| > 2c, and 0 otherwise, and ϕsmall = ϕ− ϕbig. That is,

ϕsmall(x) =

{
ϕ(x) if ϕ(x) ∈ [−2c, 2c]

0 otherwise
ϕbig(x) =

{
0 if ϕ(x) ∈ [−2c, 2c]

ϕ(x) otherwise
.

Note that ϕbig and ϕsmall have disjoint support. The aim of this section is to prove the fol-
lowing deterministic reduction of Theorem 18, which tells us that the above sketched approach
works.

Lemma 19. Let us be in Setting 2 and let X̃ be a subset of [n]. Let us use Notation 13. For
any ε′ > 0 there exist ε > 0 and d, d′, with d′ even, such that if the following holds:

(1) For all ϕ ∈ Φ(µ̃,1)d, we have |⟨µ̃− 1, ϕ⟩| < ε,
(2) For all ϕ ∈ Φ(µ̃,1) we have |⟨µ̃, ϕd′⟩|, ⟨1, ϕd′⟩| ≤ 2cd

′ ,
then for all ϕ ∈ Φ(µ̃,1) we have

∣∣⟨µ̃− 1, ϕ+⟩
∣∣ < ε′.

Proof. Recall that by ϕ+ we mean applying the operator ·+ on each component of ϕ. Therefore,
in particular for any x ∈ [n] we have ϕ+(x) = ϕ(x)+.

Consider the functional ·+ : [−2c, 2c] → R+ (which we remind the reader can defined
as x+ := x · 1(x ≥ 0)). This is a continuous function from a closed interval of R to R+.
By Weierstrass Approximation Theorem (Theorem 11), for any given ε′ > 0, we can find a
polynomial P (x) = adx

d+ . . . +a1x+a0 of maximum degree d such that for any x ∈ [−2c, 2c]

we have |P (x)− x+| < ε′

12 (note that without loss of generality we can assume d ≥ 2). Define
now M = maxi∈{0,...,d} |ai| and set ε = ε′

2M(d+1) . Moreover, set d′ to be the smallest positive

even integer such that 21−d′(2c)2d ≤ ε′

8M(d+1)+8 .

What we want to do is to upper bound |⟨µ̃− 1, ϕ+⟩| given an arbitrary ϕ ∈ Φ. We use the
linearity of the inner product and triangle inequality to obtain the following inequality.

(7) |⟨µ̃− 1, ϕ+⟩| ≤ |⟨µ̃− 1, P
(
ϕ
)
⟩|+ |⟨µ̃− 1, P

(
ϕ
)
− ϕ+⟩| .

We remind the reader that every operator here and in the following is defined component-
wise. Therefore, P (ϕ) is defined as the functional such that P (ϕ)(x) = P (ϕ(x)). We now
upper bound each of the right hand side terms with ε′

2 .

To upper bound the first term |⟨µ̃ − 1, P
(
ϕ
)
⟩|, we expand the polynomial into its terms.

Using again linearity of the inner product and triangle inequality, we obtain

|⟨µ̃− 1, P
(
ϕ
)
⟩| = |⟨µ̃− 1,

d∑
i=0

ϕi⟩| ≤M
d∑

i=0

|⟨µ̃− 1, ϕi⟩| .

For any i ∈ {0, . . . , d} and ϕ ∈ Φ, we have that ϕi ∈ Φd. Indeed, we have that 1 ∈ Φ, and
therefore we can make up for the missing d− i terms by multiplying ϕi ·1d−i = ϕi. Therefore,
by 1 of Lemma 19 we have |⟨µ̃− 1, ϕi⟩| ≤ ε = ε′

2M(d+1) . Summing over the various terms, we
obtain

|⟨µ̃− 1, P
(
ϕ
)
⟩| ≤M(d+ 1)ε ≤ ε′

2 .

We now turn to the second term of (7), for which we apply the splitting of ϕ into the
two functionals ϕbig and ϕsmall. As before, we have ϕsmall(x) = x1(|x| ≤ 2x) and ϕbig(x) =
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ϕ(x) − ϕsmall(x). In general, neither of these is in the polytope Φ. Since ϕbig, ϕsmall have
disjoint support, and all operations are done pointwise, we have

P
(
ϕsmall + ϕbig

)
−
(
ϕsmall + ϕbig

)+
= P

(
ϕsmall

)
−
(
ϕsmall

)+
+ P

(
ϕbig

)
−
(
ϕbig

)+
.

In order to complete the proof, by linearity of inner product, it suffices to show

|⟨µ̃, P (ϕsmall)− (ϕsmall)+⟩|, |⟨1, P (ϕsmall)− (ϕsmall)+⟩| ≤ ε′

8 and(8)

|⟨µ̃, P (ϕbig)− (ϕbig)+⟩|, |⟨1, P (ϕbig)− (ϕbig)+⟩| ≤ ε′

8 .(9)

Of these, we address (8) first. Consider first that by definition of ϕsmall, we have that
ϕsmall(x) is always in [−2c, 2c]. Moreover, for every x, we have that by definition of P it
holds

∣∣P (ϕsmall)(x)− (ϕsmall)+(x)
∣∣ ≤ ε′

12 . The upper bound |⟨1, P (ϕsmall) − (ϕsmall)+⟩| ≤ ε′

8
follows by triangle inequality as the inner product with 1 can be upper bounded by

1
n

∑
x

∣∣∣P (ϕsmall)(x)− (ϕsmall)+(x)
∣∣∣ ≤ ε′

12 <
ε′

8

as we just saw. For the inner product with µ̃, observe that by 1 of Lemma 19, we have

|⟨µ̃− 1,1⟩| = |⟨µ̃,1⟩ − ⟨1,1⟩| = 1
n |p

−1|X̃| − n| < ε ,

so µ̃ takes the value p−1 on at most (1+ε)np < 3
2pn entries, and it is zero elsewhere. Thus, by

these considerations, triangular inequality, and definition of P , we get that the inner product
with µ̃ is bounded by

|⟨µ̃, P (ϕsmall)− (ϕsmall)+⟩| ≤ 1
n

∑
x

1(µ̃(x) ̸= 0) · p−1 · ε′

12 ≤ 3
2pn · p−1 · ε′

12 · n−1 = 1
8ε

′ .

It remains to deal with (9). Here we use 2 of Lemma 19. Since every entry of ϕbig is either
equal to zero or has absolute value larger than 2c > 1, we have pointwise (ϕbig)+ ≤ ϕ2. For
the same reason, we have pointwise

(10) ∀i, j ≥ 0, (ϕbig)i ≤ (ϕbig)2i ≤ (2c)−2jϕ2i+2j .

In particular, for any fixed 1 ≤ i ≤ d, let j = 1
2(d

′ − 2i). Then we have by 2 of Lemma 19

(11) ⟨µ̃, ϕi⟩, ⟨1, ϕi⟩ ≤ (2c)−d′+2i(2cd
′
) ≤ 21−d′(2c)2d ≤ ε′

8M(d+1)+8 ,

where the final inequality is by choice of d′.
We now use the triangle inequality and (10) to write

|⟨µ̃, P
(
ϕbig

)
−
(
ϕbig

)+⟩| ≤ d∑
i=0

|ai|⟨µ̃, ϕ2i⟩+ ⟨µ̃, ϕ2⟩ ,

and from (11) we get

|⟨µ̃, P
(
ϕbig

)
−
(
ϕbig

)+⟩| ≤M(d+ 1) ε′

8M(d+1)+8 + ε′

8M(d+1)+8 = ε′

8 .

An identical argument replacing µ̃ with 1 completes (9) and hence completes the proof. □
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8. More independence, less vertices

We introduced Lemma 19 to be of use in the proof of Theorem 18. When proving Theorem 18
we start by showing that µ̃− 1 is unlikely to correlate with any ϕ ∈ Φ(µ̃,1)d, for some large
fixed d given to us by Weierstrass Approximation Theorem. Much as in Section 5, a problem
we encounter when doing so is that Φd has too many vertices, and therefore we cannot directly
apply a union bound. As in Section 5, the solution to this problem is to randomly split µ̃ and
1. An additional problem that exists in this section, which was not present in Section 5, is
that in order to write down a vertex ϕ of Φ(µ̃,1)d we need to know µ̃. Therefore, we cannot
then ask for µ̃−1 to be independent of ϕ, if ϕ is a vertex of Φ(µ̃,1)d. It turns out that random
splitting deals with this problem as well.

We now introduce a finer notation for dealing with random splitting, and then prove that
anti-correlation over Φ(µ̃,1)d is implied by anti-correlation over a new polytope with fewer
vertices.

Notation 20. Let us be in Setting 2. We assume we are using Notation 13 throughout when-
ever needed.

If it is given a function χ1 : [n] → {1, . . . , ⌈Lp−1⌉} —called 1-colouring—, we denote by νi
(for i ∈ [⌈Lp−1⌉]) the functional:

νi(x) =

{
⌈Lp−1⌉ if χ1(x) = i

0 else
.

If it is given a function χµ : [n] → {1, . . . , L} —called µ-colouring— and a subset X of [n],
we denote by µi (for i ∈ [L]) the functional:

µi(x) =

{
Lp−1 if x ∈ X and χµ(x) = i

0 else
.

We call each pre-image χ−1
µ (x) a part of the µ-colouring (similarly for χ1), and we call colours

the codomains of χ1 and χµ.

If, in addition to χµ, it is given X̃ a subset of [n], we denote by µ̃i (for i ∈ [L]) the functional:

µ̃i(x) =

{
Lp−1 if x ∈ X̃ and χµ(x) = i

0 else
.

If, in addition to χµ, χ1, and X̃, it is given a positive integer d, we denote by Φ′ the polytope
Φ′ := Φ

(
µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉

)d.
Also, for any ϕ a vertex of Φ′, let Qϕ ⊆ [L] be the minimum set of µ-colours such that we

can write ϕ as a product of at most d functions which are {µ̃j : j ∈ Qϕ} ∪ {ν1, . . . , ν⌈Lp−1⌉}-
anti-uniform. We denote by Y (ϕ) the revealed part of ϕ, i.e. the set {x ∈ [n] : χµ(x) ∈ Qϕ}.

Finally, for ϕ ∈ Φ(µ̃,1)d, we write ϕsmall(x) := ϕ(x)1(|ϕ(x)| ≤ 2cd) and ϕbig(x) = ϕ(x) −
ϕsmall(x).

We now prove that, with the above notation, Φ′ contains Φd in the following deterministic
lemma.
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Lemma 21. Let us be in Setting 2. Let χ1 : [n] → {1, . . . , ⌈Lp−1⌉} and χµ : [n] → {1, . . . , L}
be an arbitrary 1- and µ-colouring respectively, and let X̃ be an arbitrary subset of [n]. Let us
use Notation 20. For all d ≥ 1, we have the set inclusion Φ(µ̃,1)d ⊆ Φ′.

Proof. It is enough to show that the vertices of Φd are in Φ′. By definition of Φd and Φ′ (as
the power of polytopes generated by anti-uniform functionals and their negatives), we can
consider a vertex ϕ ∈ Φd which is a product of at most d of the {µ̃,1}-anti-uniform functions.
We say at most d and not exactly d because 1 ∈ Φ.

By definition, every vertex of Φ is either in Σ or is of the form ∗i,ω(f1, . . . , fk), where
i ∈ [k], ω ∈ Ω, and f1, . . . , fk are {µ̃,1}-bounded, or is the negative of such a vertex. Therefore,
we can write our vertex ϕ as

ϕ =

ℓ∏
j=1

∗ij ,ωj (f
(j)
1 , . . . , f

(j)
k )

ℓ′∏
j=1

σj

where ℓ+ ℓ′ ≤ d and where each σj is in Σ. Consider a specific j ∈ [ℓ] and j′ ∈ [k]\{ij}. Then
f
(j)
j′ is bounded either by µ̃ or by 1.

If f (j)j′ is bounded by µ̃, then we can write

f
(j)
j′ =

1

L

∑
j′′∈[L]

f
(j)
j′
µ̃j′′

µ̃
.

Where the fraction µ̃j′′
µ̃ is to be interpreted pointwise and if µ̃(x) = 0 (so µ̃j′′(x) = 0 too) then

we define the result to be 0.

On the other hand, if f (j)j′ is bounded by 1, then we can write

f
(j)
j′ =

1

⌈Lp−1⌉
∑

j′′∈[⌈Lp−1⌉]

f
(j)
j′ νj′′ .

Recall that ∗ij ,ωj (f
(j)
1 , . . . , f

(j)
k ) is linear in each argument. Therefore, substituting the two

equations above into the definition of ϕ, and pulling the sums and coefficients 1
L and 1

⌈Lp−1⌉ out
by linearity, we have written ϕ as a weighted sum of vertices of Φ′. The sum has Lq⌈Lp−1⌉q′

terms, where q is the number of functions bounded by µ̃ and q′ the number bounded by 1.
Each term in the sum has the same coefficient L−q⌈Lp−1⌉−q′ , so that this weighted sum is a
convex combination and we proved ϕ ∈ Φ′. □

9. The final probabilistic estimate

In this section, we finally show that, assuming some moment bounds, it is likely that∣∣⟨µ̃− 1, ϕ⟩
∣∣ < ε for all ϕ ∈ Φ′.

This proof looks quite similar to the corresponding statement from the proof of Theorem 15
in Section 5. As before, it is enough to prove anti-correlation for vertices of Φ′. And as before,
we split the anti-correlation into anti-correlation with ϕsmall(x) and the remaining ϕbig.

Much as in Section 5, we can show that ⟨µ̃ − 1, ϕbig⟩ is small by applying some moment
bounds. However, proving ⟨µ̃ − 1, ϕsmall⟩ is small requires some new ideas. There are two
reasons for this: first, the entries of µ̃ are not independent random variables, and second, in
order to describe a vertex of ϕ we first need to reveal some entries of µ̃.



A TRANSFERENCE PRINCIPLE AND A COUNTING LEMMA FOR SPARSE HYPERGRAPHS 22

In the case when X̃ is an ε-deletion ofX, we have that µ and µ̃ are equal in most components.
Therefore, we show that it suffices to prove ⟨µ − 1, ϕsmall⟩ is small. We then show that this
holds as this inner product is a sum of independent mean zero random variables. It turns out
we do not need to reveal many entries of µ in order to describe ϕ. We give more details of
why this is later, but the idea is as follows.

Given a vertex ϕ of Φ′, recall that ϕ is a product of some at most d functions which are
{µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉}-anti-uniform. Therefore, with Notation 20, we have that |Qϕ| ≤
d(k − 1), and hence that Y (ϕ) is a small subset of [n]. The idea is to split the inner product
⟨µ − 1, ϕsmall⟩ into the contribution from Y (ϕ), which we can bound using moment bounds,
and the contribution from the remainder, which we can bound using Bernstein’s inequality.
We do this latter bound in the next lemma. That is, we now show how to apply Bernstein’s
inequality to the contributions not from Y (ϕ).

Lemma 22. Let us be in Setting 2. Given d be a positive integer, and δ > 0, let C =
100c2ddkδ−2. If L ≥ 16C and the C-conditions are satisfied in Setting 2, then with probability
at least 1 − exp

(
− 1

10δ
2pn
)

over the uniform and independent choices of X = [n]p, and
χµ : [n] → {1, . . . , L}, and χ1 : [n] → {1, . . . , ⌈Lp−1⌉}, the following holds. For any given
X̃ ⊆ X, let us use Notation 20. For each vertex ϕ of Φ′, we have

(12)
∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ < δ .

Something we need to be a little careful about in the above statement is that in order to
know any vertices of Φ′, we need to reveal all of µ (because Φ′ depends on µ̃). We actually
show the above bound for vertices of Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)

d, and deduce the required
statement for Φ′.

Proof. By Chernoff’s inequality and by doing a union bound, we get that with probability at
least 1 − 2Lp−1 exp

(
− 1

300pn
)

each part of the µ-colouring of [n] has size at most 1.1n
L , and

each part of the 1-colouring has size at most 2pn
L . Suppose this likely event occurs, and reveal

the µ- and 1-colourings χµ and χ1.
Without revealing X, we know that every vertex ϕ of Φ′ has a revealed part Y (ϕ) which

is the union of some at most d(k − 1) parts of the µ-colouring. We can therefore prove the
lemma by a union bound over the possible choices of Y ; which is, over the choices of at most
d(k − 1)-many µ-colours of [L].

Let Q be a set of at most d(k− 1) colours in [L], and let Y be the union of the parts of the
µ-colouring that are mapped to Q. We can now consider the random variable X ∩Y (where Y
is fixed and X needs to be sampled). By Chernoff’s inequality and by doing a union bound, we
obtain that with probability at least 1−|Q| exp

(
− 1

8pn
)
, for each q ∈ Q the number of elements

of X with µ-colour q is at most 2pn
L . Suppose that this likely event occurs, and reveal X ∩ Y .

We now can define the set Ψ(Q) of {µj : j ∈ Q} ∪ {ν1, . . . , ν⌈Lp−1⌉}-extreme anti-uniform
functions. For this proof only, let us denote with HQ = {µj : j ∈ Q} ∪ {ν1, . . . , ν⌈Lp−1⌉}.

We can upper bound |Ψ(Q)| as follows. First consider that by definition every vertex of
Ψ(Q) is either in Σ, or of the form ∗i,ω(f1, . . . , fk) where f1, . . . , fk are HQ-extreme. By
definition, fj is HQ-extreme if there is hj ∈ HQ such that for every x ∈ [n] we have either
f(x) = 0 or f(x) = h(x). Therefore, to upper bound |Ψ(Q)| we can consider that every H-
extreme anti-uniform function can be in Σ, or of the form ∗i,ω(f1, . . . , fk) obtained as follows.
We first select ω ∈ Ω and a sequence of k − 1 bounding functions h1, . . . , hk from H; we then
choose for each bounding function hj , from the at most 2pn

L non-zero entries, the non-zero
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entries of fj (which by definition of ‘extreme’ are equal to the corresponding entries of hj).
The total number of elements of Ψ(Q) is therefore is at most

|Σ|+ |Ω|(2Lp−1)k−1 · 2
2pn
L (k−1) .

We now select a function ϕ which is a product of at most d elements of Ψ(Q). The number
of possible choices for ϕ is at most

d
(
|Ω|(2Lp−1)k−1 · 2

2pn
L (k−1) + |Σ|

)d
≤ d(2Lp−1)d(k−1)2δ

2pn/162
4pn
L d(k−1) .

By definition, the entries of ϕsmall · 1
(
[n] \ Y (ϕ)

)
are in [−2cd, 2cd], and only the entries

outside Y (ϕ) can be non-zero. Thus, the quantity

⟨µ− 1, ϕsmall · 1
(
[n] \ Y (ϕ)

)
⟩

is a sum of n− |Y (ϕ)| ≤ n independent random variables
1
n

(
1(x ∈ X)p−1 − 1

)
cx

where the number cx = ϕsmall(x) · 1
(
x ∈ [n] \ Y (ϕ)

)
is in [−2cd, 2cd]. Since the probability of

x ∈ X is p, these random variables all have mean zero, and are bounded between −2cd

n and
2cd

n p−1. It remains to calculate the variance. We have

Var(1(x ∈ X)p−1 − 1) = p(p−1 − 1)2 + (1− p)(−1)2 = p−1 − 1 ≤ p−1 ,

so that the variance of each of our random variables is at most 4c2d

n2 p
−1.

By Bernstein’s inequality (Lemma 6), the probability that when we reveal X \ Y (ϕ) we get∣∣⟨µ− 1, ϕsmall · 1
(
[n] \ Y (ϕ)

)
⟩
∣∣ ≥ δ

is at most

2 exp
(
− δ2/2

2p−1δ/(3n) + n4c2d

n2 p−1

)
≤ 2 exp

(
− 1

16c2d
δ2pn

)
.

Taking a union bound over the choices of ϕ, the probability that there exists any product
ϕ of at most d elements of Ψ(Q) with∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ ≥ δ

is at most

d(2Lp−1)d(k−1) · 2
4pn
L d(k−1)+δ2pn/16 · 2 exp

(
− 1

16c2d
δ2pn

)
+ d(k − 1) exp(−1

8pn) .

Finally, taking a union bound over the choices of Q, the probability that there exists Q and
a product ϕ of at most d elements of Ψ(Q) such that∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ ≥ δ

is at most

2Ld(2Lp−1)d(k−1) · 2
4pn
L d(k−1)2δ

2pn/16 · 4 exp
(
− 1

16c2d
δ2pn

)
≤ exp

(
− 1

100c2
δ2pn

)
,

where the final inequality is by choice of L and since pn ≥ 100c2dδ−2dk log n.
Suppose now that X is such that this unlikely event does not occur. Given X̃, we can now

calculate the polytope Φ′. Let ϕ be a vertex of this polytope: then ϕ is a product of at most
d extreme restricted anti-uniform functions. Letting Q be the set of µ-colours bounding ϕ,
we see ϕ is a product of at most d members of Ψ(Q), because for each j the function µ̃j is
pointwise either equal to µj or equal to zero. The lemma statement follows. □
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There is a last anti-correlation lemma we need. But before introducing that, we state a
moment bound lemma (Lemma 23) which is needed in its proof. The proof of Lemma 23 is
left for a later section.

Lemma 23. Given δ > 0, and d′ an even positive integer, there exists L0 such that, if
L ≥ L0, then there exist C such that, if the C-conditions are satisfied in Setting 2, then with
probability at least 1−3 exp(−1

8δ
2pn) over the choice of X = [n]p, the following happens. With

probability at least 0.9 over the choice of χµ : [n] → [L] and χ1 : [n] → [⌈Lp−1⌉] independent
and uniform at random, there is a δ-deletion X̃ of X such that the following happens. Let
us use Notation 20. For any 1 ≤ ℓ ≤ d′ and ψ an largest anti-uniform functional in either
Φ(µ̃,1)ℓ or Φ(µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉)

ℓ,

⟨µ̃, ψ⟩ ≤ 2cℓ and ⟨1, ψ⟩ ≤ 2cℓ .

In addition, if ψ is any largest anti-uniform functional in Φ(µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉)
ℓ, and

1 ≤ j ≤ L and 1 ≤ j′ ≤ ⌈Lp−1⌉ then we have

⟨µ̃j , ψ⟩ ≤ 2cℓ and ⟨νj′ , ψ⟩ ≤ 2cℓ .

We are now in a position to state and prove the final anti-correlation lemma we need:
Lemma 24. The main probabilistic inputs to this lemma are the above Lemma 22 and the
moment bounds Lemma 23, which we prove in a following section.

Lemma 24. Let us be in Setting 2. Given d, d′ positive integers with d′ even, given ε > 0,
there exist L0 such that, if L ≥ L0, there exists C such that, if the C-conditions are satisfied
in Setting 2, then with probability at least 1 − exp

(
− pn

C

)
over the choice of X = [n]p, there

is an ε-deletion X̃ of X such that the following happens. There exist functions χµ : [n] → [L]
and χ1 : [n] → ⌈Lp−1⌉ such that, using Notation 20, we have ⟨µ̃ − 1, ϕ⟩ < ε for all ϕ ∈
Φ(µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉)

d. In addition, for all ϕ ∈ Φ(µ̃,1), we have |⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c

and ⟨µ̃, ϕd′⟩, ⟨1, ϕd′⟩ ≤ 2cd
′.

Proof. In this proof, let us use the notation H̃ = {µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉} and H =
{µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉}.

Given d, d′, ε > 0 with d′ even, we set δ = ε
12cd

and d′′ = max(d′, d
(
1 + ⌈log2 2cd

δ ⌉
)
. Let

L0 = 1600c2ddkδ−2, which guarantees that if L ≥ L0, then it satisfies the conditions for
Lemma 22 with input δ. Let C be large enough for Lemma 23 and Lemma 22. Without loss
of generality we assume C ≥ 16dδ−2 and that the C-conditions are satisfied.

Chernoff’s inequality tells us that with probability at least 1−exp
(
− 1

3pn
)
, the set X = [n]p

has at most 2pn elements. Moreover, Lemma 22, with input δ, tells us that with probability
(over the product probability space of [n]p and the µ- and 1-colourings) at least 1−exp

(
1
10δ

2pn
)

we have, for each vertex ϕ ∈ Φ′, the following inequality holds:

(13)
∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ < δ .

In particular, with probability at least 1 − exp
(

1
20δ

2pn
)

over [n]p, the probability of the µ-
and 1-colourings having this property is at least 0.9.

In addition, because of the conditions on L and d′′ and C, Lemma 23 tells us that with
probability at least 1 − exp

(
− 1

8δ
2pn
)

(over the choice of [n]p), the set X = [n]p has the
following property. There exists a δ-deletion X̃ of X such that we have, with probability at
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least 0.9 (over the random choice of χµ and χ1) that for any 1 ≤ ℓ ≤ d′′ and ψ′ a H̃-largest
anti-uniform functional in Φ(H̃)ℓ, and 1 ≤ j ≤ L, it holds

(14) ⟨µ̃j , ψ′⟩, ⟨µ̃, ψ′⟩, ⟨1, ψ′⟩ ≤ 2cℓ .

Suppose now that X is such that all three likely events occur, which by the union bound has
probability at least

1− exp
(
− 1

3pn
)
− exp

(
1
20δ

2pn
)
− exp

(
1
8δ

2pn
)
≥ 1− exp

(
1
30δ

2pn
)
.

Fix X̃ a δ-deletion witnessing the likely event occurring. The probability that the µ- and 1-
colourings are such that their likely events occur is by the union bound at least 0.8. Suppose
this likely event occurs: this gives us that there exist χµ and χ1 as in the lemma statement.

We next establish the anti-correlation claimed in the lemma.

Claim 25. For each H̃-largest anti-uniform functional ψ ∈ Φ′ and each j ∈ [L], we have

⟨µ̃j , ψ⟩ ≤ 2cd ,(15)

⟨µ̃, ψbig⟩ ≤ δ ,(16)

⟨1, ψbig⟩ ≤ δ .(17)

Proof. Equation (15) is immediate from (14) taking ψ′ = ψ with ℓ ≤ d and using c ≥ 1.
For the remaining two equations, choose ℓ minimal such that ψ is a H̃-largest anti-uniform

functional in Φ(H̃)ℓ, and note ℓ ≤ d. Let a = ⌈log2 2cd

δ ⌉, and note (1 + a)ℓ ≤ (1 + a)d ≤ d′.
For (16), observe that by definition of H̃-largest anti-uniform functional (with this specific

H̃), if ψ ̸= 0 for some x then ψ(x) > 2cd. It follows that

⟨µ̃, ψbig⟩ · (2cd)a ≤ ⟨µ̃, (ψbig)1+a⟩ ≤ ⟨µ̃, ψ1+a⟩ ≤ 2c(1+a)ℓ ,

where the final inequality is by (14) with ψ′ = ψ1+a. By choice of a, we have the upper bound
2c(1+a)ℓ(2cd)−a ≤ δ, giving (16). Swapping 1 for µ̃ in the above calculation establishes (17).

□

By Lemma 9, the maximum maxϕ∈Φ′
∣∣⟨µ̃ − 1, ϕ⟩

∣∣ is attained in one of the vertices of Φ′.
By central symmetry in the definition of Φ′ and linearity of the inner product, the maximum
value of

∣∣⟨µ̃ − 1, ϕ⟩
∣∣ over Φ′ is also an extremal value of |⟨µ̃− 1, ϕ⟩| over the vertices of Φ′

which are products of d restricted anti-uniform functions (and not their opposites).
Let us therefore fix such a vertex ϕ in Φ′, and let Y = Y (ϕ). Our goal is to show that

|⟨µ̃− 1, ϕ⟩| < ε. We use linearity of the inner product and the triangle inequality to split this
up. Write µ̃′ = µ̃1([n] \ Y ) and µ̃′′ = µ̃1(Y ); define similarly µ′, µ′′ and 1′ and 1′′. We obtain∣∣⟨µ̃− 1, ϕ⟩

∣∣ ≤ ∣∣⟨µ̃′ − 1′, ϕ⟩
∣∣+ ∣∣⟨µ̃′′ − 1′′, ϕ⟩

∣∣ .
We can further split the first term∣∣⟨µ̃′ − 1′, ϕ⟩

∣∣ ≤ ∣∣⟨µ′ − 1′, ϕsmall⟩
∣∣+ ∣∣⟨µ′ − µ̃′, ϕsmall⟩

∣∣+ ∣∣⟨µ̃′ − 1′, ϕbig⟩
∣∣ .

Of these terms, (13) tells us that the first term is bounded by δ. Since µ̃ and µ differ in at most
δpn places, µ′ − µ̃′ is equal to p−1 in at most δpn places and otherwise equal to zero, while
|ϕsmall| is bounded by 2cd, so the second term is at most 1

n · p−1 · δpn · 2cd = 2cdδ. Splitting
the third term ∣∣⟨µ̃′ − 1′, ϕbig⟩

∣∣ ≤ ⟨µ̃′, ϕbig⟩+ ⟨1′, ϕbig⟩ ≤ ⟨µ̃, ϕbig⟩+ ⟨1, ϕbig⟩ ,
where in the final two inner products, all terms are non-negative.



A TRANSFERENCE PRINCIPLE AND A COUNTING LEMMA FOR SPARSE HYPERGRAPHS 26

Returning to split ∣∣⟨µ̃′′ − 1′′, ϕ⟩
∣∣ ≤ ⟨µ̃′′, ϕ⟩+ ⟨1′′, ϕ⟩ ,

again all the terms in the inner products are non-negative. In particular, if ψ is any function
which is pointwise greater than or equal to ϕ, replacing ϕ with ψ gives an upper bound on all
these non-negative inner products. Let ψ then be a largest restricted anti-uniform function
which is pointwise at least ϕ. By (16), (17), we have ⟨µ̃, ψbig⟩, ⟨1, ψbig⟩ < δ.

We apply (15) to obtain ⟨µ̃j , ψ⟩ ≤ 2cd where µ̃j is revealed by ϕ, that is, χ−1
µ (j) ⊆ Y . Recall

that the normalisation of µ̃j is p−1L, so that µ̃′′ = 1
L

∑
j µ̃j , where the sum ranges over j with

χ−1
µ (j) ⊆ Y . This gives

⟨µ̃′, ϕ⟩ ≤ ⟨µ̃′′, ψ⟩ = 1
L

∑
j

⟨µ̃j , ψ⟩ ≤ 2cdd(k−1)
L .

Finally, we come to ⟨1′′, ψ⟩. Here we split ψ = ψsmall + ψbig, and write

⟨1′′, ψ⟩ = ⟨1′′, ψsmall⟩+ ⟨1′′, ψbig⟩ ≤ ⟨1′′, ψsmall⟩+ ⟨1, ψbig⟩ .

To deal with the first term of this, observe that 1′′ takes the value 1 in at most 2d(k−1)n
L

places, and zero elsewhere, while ψsmall is bounded by 2cd, so that the first inner product is at
most 1

n · 2d(k−1)n
L · 2cd = 4cdd(k−1)

L . The second inner product is one we have already bounded,
using (17), by δ.

Putting the pieces together, we have∣∣⟨µ̃− 1, ϕ⟩
∣∣ ≤ δ + 2cdδ + δ + δ + 2cdd(k−1)

L + 4cdd(k−1)
L + δ ≤ ε ,

as required.

Finally, we need to prove the moment bounds required in the lemma. By Lemma 21, we have
Φ(µ̃,1) ⊆ Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉), so it suffices to prove the required moment bounds
hold for all ϕ in the latter polytope.

Consider the optimisation problem maxϕ⟨µ̃, ϕd
′⟩, over ϕ ∈ Φ(H). By Fact 9, the maximum

is attained at a vertex of Φ(H). Since µ̃ is a non-negative vector, the vertex in question is
a H-anti-uniform function ψ (and not a negation). If ψ ∈ Σ, then since 0 ≤ ψ ≤ 1 we have
⟨µ̃, ψ⟩ ≤ ⟨µ̃,1⟩ ≤ 2 since X has at most 2pn elements, which is sufficient. So we may assume
ψ is not in Σ. Again since µ̃ is non-negative, we may assume this anti-uniform function
is pointwise maximised, in other words it is an H-largest anti-uniform functional in Φ(H),
and therefore ψd′ is an H-largest anti-uniform functional in Φ(H)d

′ . Applying (14), we have
⟨µ̃, ψd′⟩ ≤ 2cd

′ as required.
A similar argument applies to the optimisation problem maxΦ |⟨µ̃, ϕ⟩|. Since Φ is centrally

symmetric, the maximum is the same as for the linear problem maxΦ⟨µ̃, ϕ⟩; as above, this is
attained for ϕ an H-largest anti-uniform functional in Φ(H), and (14) gives ⟨µ̃, ψ⟩ ≤ 2c for
such functionals.

The same argument, replacing µ̃ with 1, gives the other required moment bounds. □

Finally, we are in a position to prove Theorem 18: at this stage, this simply amounts to
putting together the lemmas we showed in the last two sections.

Proof of Theorem 18. Given ε > 0, let ε1 > 0 and d, d′ be returned by Lemma 19 for input ε.
Without loss of generality, we may assume ε1 ≤ ε. Note that d′ is guaranteed to be even. We
now input d, d′, and ε1 to Lemma 24, which returns L0, and, provided L ≥ L0 also C.
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Now, assume that our setting satisfies the C-conditions. In particular, the conditions of
Lemma 24 are satisfied, so with probability at least 1−exp

(
− pn

C

)
, the set X = [n]p has an ε1-

deletion X̃ such that there exist χµ, χ1 for which the following hold, with Notation 20. For all
ϕ ∈ Φ′, we have ⟨µ̃− 1, ϕ⟩ < ε1, and in addition for all ϕ ∈ Φ(µ̃,1) we have |⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤
2c and ⟨µ̃, ϕd′⟩, ⟨1, ϕd′⟩ ≤ 2cd

′ . Suppose X satisfies the likely event, and fix X̃ and χµ, χ1

witnessing this.
The inequalities |⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c for all ϕ ∈ Φ(µ̃,1) are as required for Theorem 18,

while the inequalities ⟨µ̃, ϕd′⟩, ⟨1, ϕd′⟩ ≤ 2cd
′ for ϕ ∈ Φ(µ̃,1) verify 2 of Lemma 19.

Applying Lemma 21, we have Φ(µ̃,1)d ⊆ Φ′, so in particular we obtain ⟨µ̃ − 1, ϕ⟩ < ε1
for all ϕ ∈ Φ(µ̃,1)d. This verifies 1 of Lemma 19, and hence we obtain the conclusion that
|⟨µ̃−1, ϕ+⟩| < ε for all ϕ ∈ Φ(µ̃,1). In addition, since Φ(µ̃,1) ⊆ Φ(µ̃,1)d, we have ⟨µ̃−1, ϕ⟩ <
ε1 ≤ ε for all ϕ ∈ Φ(µ̃,1), which is the same as ∥µ̃ − 1∥Φ(µ̃,1) < ε, completing the proof of
Theorem 18. □

It remains to prove Lemma 23.

10. Moment estimates

Ultimately, as per the reduction in Theorem 18, we seek that our random subset X contains,
outside of an event with exponentially small probability, a large subset X̃ whose corresponding
functional µ̃ satisfies certain anti-correlation and moment bound properties with the functions
in the polytope Φ′. In this section we show that these properties hold with a reasonably high
probability for X itself; we use this to prove that a subset with these properties X̃ ⊆ X exists
with the required exponential probability in the next section.

To state the precise lemma, we need the following definition.

Definition ((q, d)-special product). Let us be in Setting 2. A (q, d)-special product is a
random functional ψ : [n] → R obtained as the product of at most d convolution functions
∗i,1(f1, . . . , fk), in which each of the fj is either equal to the 1 function, or it is a scaled copy
of the random set [n]q (having entries valued 0 or q−1). Moreover the copies of [n]q in the prod-
uct comprising ψ have the property that each is either identical to, or completely independent
from, any of the other copies of [n]q used in ψ.

The technical lemma we require is as follows.

Lemma 26. Let us be in Setting 2. Given d′ ∈ N and α ≥ 0, there exists a C such that
the following holds if the C-conditions are satisfied. Let q be at least C log2k n−1. Then with
probability at least 1− 1

nαk over the sample of a (q, d′)-special product ψ, and over the choice of
X as a copy of [n]q which is either identical to a copy of [n]q in ψ, or completely independent
from all copies, we have the following:

⟨µ, ψ⟩ ≤ 2cd
′

and ⟨1, ψ⟩ ≤ 2cd
′
.

Proof. Let C = (1 + α)2kd′d
′+1k3k+d′2kd

′2+8k. As ψ is a (q, d′)-special product we have for
some d ≤ d′ that ψ(x) =

∏
j∈[d] ∗ij ,1(f

(j)
1 , . . . , f

(j)
k ) for some i1, . . . , id ∈ [k] and some f (j)ℓ that

are either equal to the 1 function, or to a scaled copy of independent random sets [n]q (with
possibility of two functionals being the same, but all different samples taken independently).
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For such ij and f (j)ℓ we can therefore write explicitly

ψ(x) =
( n

e(s)

)d d∏
j=1

∑
s∈Sij

(x)

∏
ℓ̸=ij

f
(j)
ℓ (sℓ) .

It is helpful to refer to each of the terms in this summation individually. To this end we use
the following notation

ψ̂(x; s(1), . . . , s(d)) =

d∏
j=1

∏
ℓ ̸=ij

f
(j)
ℓ (s

(j)
ℓ ) .

We require that with high probability ⟨1, ψ⟩ ≤ 2cd
′ and ⟨µ, ψ⟩ ≤ 2cd

′ . Since we may assume
c ≥ 1, it is enough to show that ⟨1, ψ⟩ ≤ 2cd and ⟨µ, ψ⟩ ≤ 2cd. To do so, we prove the
concentration of the following polynomials around their expectations. We have:

Y1 = ⟨1, ψ⟩ = 1

n

(
n

e(S)

)d ∑
x∈[n]

∑
s(1)∈Si1

(x)
...

s(d)∈Sid
(x)

ψ̂(x; s(1), . . . , s(d))

Yµ = ⟨µ, ψ⟩ = 1

n

(
n

e(S)

)d ∑
x∈[n]

∑
s(1)∈Si1

(x)

...
s(d)∈Sid

(x)

µ(x)ψ̂(x; s(1), . . . , s(d)) .

It is extremely important to notice that all of these terms make use of the same set of
functionals f (j)ℓ (evaluated in different points of different edges). Thus, the difference between
terms is not given by a difference in functionals, which are always the same, but a different
in indices and hyperedges. This justifies the following notation: we denote by l the number
of the d(k − 1) functions f (j)ℓ comprising ψ (and thus each of the ψ̂) that are copies of [n]q,
and l′ = d(k − 1) − l are copies of 1. Moreover, recalling that any copies of [n]q must be
either identical or completely independent from each other, we denote by w ≤ l the number
of independent copies of [n]q in ψ. As mentioned above, it is important to keep in mind that
l, l′ and w hold term-by term, as the functionals do not change in between terms.

Our plan now is to first calculate the expectation of Y1 and Yµ. We then use Kim-Vu’s
inequality (Theorem 8) to prove the concentration. This result applies since we may form new
polynomials Ỹ1, Ỹµ, having the same value as Y1, Yµ, but consisting of independent Bernoulli
random variables (as required by Theorem 8) by factoring out q−1 from each {0, q−1} valued
Bernoulli variable into a collective weight, and dropping any repeat copies of the now {0, 1}
valued Bernoulli variables within a configuration, we obtain the polynomials Ỹ1, Ỹµ as required.
The details are as follows.

Observe that each term in Y1 and in Yµ corresponds to a tuple (s(1), . . . , s(d)) of d hyperedges
of S for which the i1, . . . , id-th vertices within the corresponding hyperedge are the same
element x ∈ [n]. We thus refer to the terms within these polynomials as (linked hyper-edge)
configurations. Each configuration is completely determined by (s(1), . . . , s(d)).

Notice that each of the f (r)j (s
(r)
j ) with r ∈ [d], j ∈ [k] \ {ir}, is a random variable taking

a value of 1 if f (r) = 1 is the constant one function, or else q−1 with a probability q, and 0
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with probability 1 − q, if f (r) is a copy of [n]q. Since ψ is a (q, d′)-special product, any two
of the random variables, f (i1)j1

(s
(i1)
j1

) and f
(i2)
j2

(s
(i2)
j2

), are dependent if and only if f (i1)j1
, f

(i2)
j2

are the same copy of [n]q (if one of them is 1, or if they’re two distinct copies of [n]q, they’d
be independent) and s

(i1)
j1

= s
(i2)
j2

(every entry of [n]q is selected independently). In this

case, they are identical. The second condition s
(i1)
j1

= s
(i2)
j2

, corresponds to the hyperedges
s(i1), s(i2) overlapping on their j1-th and j2-th elements respectively. We again point out
that the number of independent variables in each configuration is not given by any choice of
functionals (which are always the same), but rather by how much the corresponding hyperedges
of the configuration intersect one another (thus possibly allowing for two identical functionals
to be evaluated at the same value).

We first calculate the quantities E(Y1),E(Yµ) whose concentration we wish to establish.
Let us consider the polynomial Y1. We want to calculate E(Y1) applying the linearity of
expectation and summing the contribution from each edge configuration. As mentioned above,
every term of Y1 makes use of always the same functions f (j)ℓ which never change. Thus, in
Y1, the number of independent variables f (r)j (s

(r)
j ) within a configuration is at least max(k −

1, l′+w) and at most d(k−1). The lower bound k−1 holds since each hyperedge s(r) contains
k distinct elements of [n], so for any fixed r ∈ [d], the set {f (r)j (s

(r)
j )}, j ∈ [k] \ {iu} is a set

of mutually independent (possibly constant) random variables. The lower bound l′ +w, holds
because, as mentioned above, each term comprises of l′ + w independent random functionals
(evaluated at some of their points, possibly the same). That is, if {f (u1), . . . , f (uw+l′ )} is a
maximal independent set of functionals —containing w independent copies of [n]q and l′ copies
of constant 1— for ψ (and thus for the specific term we are considering) then any set of random
variables formed taking one argument from each of these, is a set of mutually independent
variables. Note for E(Yµ) the corresponding bounds are max(k−1, l′+w)+1 and d(k−1)+1
since µ(x) contributes one variable independent from all the others.

For E(Y1), suppose that, in a given configuration the edges are such that t of the variables
are mutually independent with max(k − 1, l′ + w) ≤ t ≤ d(k − 1). The number of repeat
{0, q−1}-valued Bernoulli variables is then d(k − 1) − t, each of which contributes an extra
factor of q−1 to the expectation of this configuration. To see this, consider the product of s
such identical variables Z = x1 . . . xs. We have that Z takes value q−s with probability q and
0 otherwise, so E(Z) = q−(s−1), whereas the expectation of each of the xi is 1.

To calculate the expectation of Y1, it is therefore enough to enumerate the configurations
having the same number t of independent variables. To this end, let S(ψ, t, x) ⊆ Si1(x) ×
Si2(x)× . . . ×Sid(x) be those d-tuples (s(1), s(2), . . . , s(d)) in which exactly t of the {f (i)j (s

(i)
j )}

are mutually independent (counting also those for which f
(i)
j is the constant functional 1),

and let α(ψ, t, x) = |S(ψ, t, x)|. For the sake of notational brevity, let t′ = d(k − 1) and
a = max(k − 1, l′ + w). We have

E(Y1) =
1

n

( n

e(S)

)d ∑
x∈[n]

∑
a≤t≤t′

(q−1)(t
′−t)α(ψ, t, x) .

Note that E(Y1) = E(Yµ) as µ(x) is independent from all other variables within a given
configuration, since the k elements in each edge s of S are distinct; therefore the argument



A TRANSFERENCE PRINCIPLE AND A COUNTING LEMMA FOR SPARSE HYPERGRAPHS 30

of µ does not occur as the argument of any other f (i)j within this configuration, and for any
x ∈ [n] we have that µ(x) contributes an expectation factor of E(µ(x)) = 1.

To obtain an upper bound for α(ψ, t, x) with a ≤ t ≤ t′, first note that when t = t′ = d(k−1),
we may take the crude upper bound fixing only x in each Si(x), thus α(ψ, d(k − 1), x) ≤∏

j∈[d] |Sij (x)| ≤ (∆1)
d ≤

(
c e(S)n

)d
. If the number of independent variables t is less than

d(k − 1) in a configuration, we have at least two random variables that are identical, say
f
(i1)
j1

(s
(i1)
j1

) = f
(i2)
j2

(s
(i2)
j2

). Note that this can only occur if s(i1)j1
= s

(i2)
j2

. Thus, in order to have
precisely t independent variables in the configuration (s(1), s(2), . . . , s(d)) ∈ S(ψ, t, x), it must
be that the union of underlying hyperedges, ∪i∈[d]s

(i), together covers at most t vertices other
than x. But this calculation is exactly what is given by Lemma 16 setting i = (i1, . . . , id) and
forgiving the horrible notation α(ψ, t, x) ≤ α(i, t, x) (which is only needed here). We therefore
obtain:

E(Y1) =
( n

e(S)

)d 1
n

∑
x∈[n]

∑
a≤t≤t′

(q−1)(t
′−t)α(ψ, t, x)

≤
( n

e(S)

)d 1
n

∑
x∈[n]

α(i, t′, x) +
( n

e(S)

)d 1
n

∑
x∈[n]

∑
a≤t≤t′−1

(q−1)(t
′−t)α(i, t, x)

≤ cd +
∑

k−1≤t≤t′−1

(q−1)(t
′−t)2kd

2
cdtdC−(t′−t)qt

′−t

= cd + 2kd
2
cd

∑
a≤t≤t′−1

tdC−(t′−t)

= cd + 2kd
2
cd

∑
1≤s≤t′−a

(t′ − t)dC−s

≤ cd + 2kd
2
cd(kd)(d+1)C−1 ≤ cd(1 + k1−3k) ≤ 3cd/2 .

Where the last line follows because of our lower bound on C.
We now advise the reader to familiarise themselves with the notation of Kim-Vu’s inequality

(Theorem 8), which we now want to apply. It is not difficult to see, as claimed above, that Y1
is a polynomial in random variables exactly as the one studied by Kim-Vu’s inequality (up to
a scaling factor). We use here the notation introduced for Kim-Vu’s inequality.

Consider now the calculation for Ei(Y1) with i ≥ 1. Suppose we fix the variables A ⊆
{f (u)j (x) : u ∈ [d], j ∈ [k] \ {iu}, x ∈ [n]}. Note that if we have f (u)j (a), f

(u)
j (b) ∈ A with

a ̸= b then the expectation is 0 since no term in the sum contains both. Thus, also Ei(Y1) =
0 whenever i > d(k − 1), and we may equivalently describe any subset of variables A for
which E(Y1A) is non-vanishing, by specifying the elements s(i)j held fixed in the corresponding

functions f (i)j in ψ. To this end, we introduce the following notation. Write mi for the vector

of length k, and whose entries may be empty, for the elements s(i)j held fixed in s(i). Let mi be
the number of non-empty elements in mi and M =

∑
mi ≤ l (the total number of elements

held fixed). For instance, suppose ψ = ∗i1,1(f
(1)
1 , . . . , f

(1)
k ) . . . ∗id,1 (f

(d)
1 , . . . , f

(d)
k ) and we fix

f
(1)
1 (s

(1)
1 ), f

(1)
k (s

(1)
k ), f

(2)
1 (s

(2)
1 ), with all other variables allowed to vary. Then letting ⋆ denote

the empty element, we have m1 = (s
(1)
1 , ⋆, . . . , ⋆, s

(1)
k ), m2 = (s

(2)
1 , ⋆, . . . , ⋆) and for all other

3 ≤ j ≤ l, mj is the empty vector of length k. Write M = (m1, . . . ,md) for the collection of
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mi and HM for the truncated polynomial retaining those configurations fixing M. We use the
notation S(m) for the collection of hyperedges fixing m, and Si(x;m) for the set of hyperedges
with x in the i-th position, and the elements of the m in the positions in which they occur.
Note that wherever we use this notation, we have m empty in the i-th position, so there is no
potential conflict here. Recalling that l is the number of copies of [n]q in ψ, let l̃ = l̃(M) be
the number of these whose entries are fixed in M. In this notation, the truncated polynomial
H1,M fixing m1, . . . ,md in the edges s(1), . . . , s(d) takes the form

(18) H1,M =
q−l̃

n

( n

e(S)

)d ∑
x∈[n]

∑
s(1)∈S1(x;m1)

...
s(d)∈Sd(x;md)

g1(·) . . . gl−M (·) .

where we have omitted explicitly writing any variables corresponding to constant one functions
since it does not change the value of the polynomial. g1(·) . . . gl−M (·) denote only the l −M

unfixed variables f (i)j (·) where f (i)j is a copy of [n]q and · the appropriate element x ∈ [n] at
which it is evaluated within the configuration.

In this form, it is clear that fixing additional constant-one valued variables decreases the
polynomial expectation since it only amounts to dropping terms, each having a strictly positive
expectation. Specifically given any M, if M′ fixes all the elements of M, along with elements
s
(i1)
j1
, . . . , s

(ia)
ja

for which the corresponding f (i1)j1
, . . . , f

(ia)
ja

are all constant-one valued, then the

polynomial HM′ retains only those configurations (if any) of HM which fix also s(i1)j1
, . . . , s

(ia)
ja

in s(i1), . . . , s(ia) respectively and so E(HM) ≥ E(HM′). We may therefore assume that no
constant-one variables are fixed for the purpose of maximising Ei(Y1) to apply Theorem 8.
Recalling that ψ has l of its d(k − 1) comprising functions being copies of [n]q and the rest
being constant one, we are interested only in Ei(Y1) with 1 ≤ i ≤ l. In general, the greater
the number i of 0, q−1 valued variables being fixed, the larger the premultiplying coefficient
q−i. However, fixing these variables also reduces the number of contributing configurations
by a factor of order (C−1q)i < qi (arising from the maximum co-degree condition), meaning
an overall reduction in Ei(Y1) with greater i. Moreover, where a fixed variable corresponds
to an f

(i)
j which is identical to an unfixed copy of [n]q, there is a further reduction from

the interdependence. Although in almost all configurations, the arguments for these indicator
functions differs and thus the corresponding variables are independent. In this way one expects
that Ei(Y1) is greatest for i = 1, decreasing by a factor of about C−1 per variable fixed.

Recalling 1 ≤M ≤ l. When M = l,
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E(H1,M) =
q−l

n

∑
x∈[n]

(
n

e(S)

)d ∑
s(1)∈Si1

(x;m1)
...

s(d)∈Sid
(x;md)

≤ q−l

n
·
(

n

e(S)

)d ∑
s(1)∈S(m1)

s(2)∈Si2
(s

(1)
i1

;m2)
...

s(d)∈Sid
(s

(1)
i1

;md)

1

≤ q−l

n
·
(

n

e(S)

)d

∆m1∆m2+1 . . .∆md+1

≤ q−l

n
·
(

n

e(S)

)d

cdCd−(M+d−1)q(M+d−1)−d

(
e(S)

n

)d

≤ q−1cdC1−l

n

≤ cdC−l

log2k(n)
.

Thus, El(Y1) ≤ cdC−l

log2k(n)
. Otherwise, M < l and within each configuration in HM there

are l −M Bernoulli-{0, q−1} variables, which may or may not be independent. As with the
calculation for E0(Y1), we allow that any configuration fixing m1, . . . ,m2 in s(1), . . . , s(d) may
result in precisely t ∈ [l −M ] of the gi(·) being mutually independent. We follow a similar
approach to that for E0(Y1), counting configurations which have the same number of mutually
independent gi(·). Note first that

E(H1,M) =
q−M

n

(
n

e(S)

)d ∑
x∈[n]

∑
s(1)∈Si1

(x;m1)
...

s(d)∈Sid
(x;md)

Eg1(·) . . . gM−l(·)

=
q−M

n

( n

e(S)

)d ∑
s(1)∈S(m1)

∑
s(2)∈Si2

(s
(1)
i1

);m2)
...

s(d)∈Sid
(s

(1)
i1

;md)

Eg1(·) . . . gM−l(·) .

For a given s(1) ∈ S(m1), let α(ψ,M, t, s(1)) be the size of the set S(ψ,M, t, s(1)) ⊆ {s(1)}×
Si2(s

(1);m2) × . . . × Sid(s
(1);md) for which t of the gi(·) are mutually independent. The

expectation of the product g1(·) . . . gl−M (·) for such a configuration is q−(l−M−t). We have

α(ψ,M, t, s(1))≤
∑

r2+...+rd
=l−M−t

(
(k − 1)

r2

)
∆m2+1+r2

(
2(k − 1)− r2

r3

)
∆m3+1+r3 · . . .

. . . ·
(
(d− 2)(k − 1)−

∑
i∈[d−1]\{1} ri

rd

)
∆md+1−rd

≤ 2kd
2
(l −M − t)d−1cd−1C−l+t+m1ql−t−m1

(e(S)
n

)d−1
.

Thus



A TRANSFERENCE PRINCIPLE AND A COUNTING LEMMA FOR SPARSE HYPERGRAPHS 33

E(H1,M) ≤ q−M

n

( n

e(S)

)d ∑
s(1)∈S(m1)

∑
t∈[l−M ]

q−(l−M−t)2kd
2
(l −M − t)d−1cd−1

· C−l+t+m1ql−t−m1

(e(S)
n

)d−1

≤ q−1

n
2kd

2
(l −M)dcdC1−M

≤ cd2kd
2
(l −M)dC−M

log2k(n)
.

Hence, for M ≥ 1, E(HM) is maximised when M = 1. Using the notation as in Theorem 8

we have E′(Y1) ≤ cd2kd
2
(l−1)dC−1

log2k(n)
≤ cd

k3klog2k(n)
and using the lower bound for q and C. Clearly

E′(Y1) ≪ 1 < E0(Y1) = E(Y1).
Using (Theorem 8) we have

P
[
|Y1 − E0(Y1)| > (8k · k!1/2)(E(Y1)E′(Y1))

1/2λk
]
= O(e(−λ+(k−1) log(n))) .

To achieve the concentration we require, take λ = k(1 + α) log(n). It then follows that we
have e(−λ+(k−1) log(n)) ≤ e−(αk+1) log(n) ≤ 1

nαk . We then have

(8k · k!1/2)(E(Y1)E′(Y1))
1/2λk ≤ (8k · kk/2)

( 3c2d

2k3klog2k(n)

)1/2
(k(1 + α) log(n))k

≤ 2cd8k(1 + α)k .

We now turn to the concentration of Yµ = ⟨µ, ψ⟩. Observe first that since the argument
of µ is distinct from the argument of any other f (i)j within a configuration, then µ(x) is
independent of all other variables in the configuration. Since E(µ(x)) = 1 for any x, we have
E0(Yµ) = E0(Y1) ≤ 3/2.

For any subset A of variables that we fix in Y1 to calculate EA(Y1), we have E(Y1A) =
EA(YµA) and for a fixed x ∈ [n] and B = A∪{µ(x)}, we have E(YµB ) ≤ E(YµA) since we merely
sum the same expectations over fewer configurations. Thus, Ei(Yµ) is maximised for i = 1 as
for Ei(Y1). Note that if A = {f (i)j (s

(i)
j )} then E(Y1A) = E(YµA). If A = {µ(x)} for some fixed

x ∈ [n] then the calculation E(Y1A) proceeds just as for E0(Y1) except with the summation
over x ∈ [n] dropped. That is, for A = {µ(x)}, we have EA(YµA) ≤ 3/2n ≤ q−l

n 2kd
2
ldcd, thus

the upper bound for E′(Y1) holds for E′(Yµ) also, and the concentration obtained from the
Kim-Vu inequality applies.

□

We deduce the following corollary.

Corollary 27. Given d positive integer, there exist C and L0 such that, if the C-conditions
are satisfied in Setting 2 and L ≥ L0, then with high probability over the choice of X = [n]p,
and independently χµ : [n] → {1, . . . , L} uniformly at random, and independently χ1 : [n] →
{1, . . . , ⌈Lp−1⌉} uniformly at random, the following holds. Let us use Notation 20. For any
1 ≤ ℓ ≤ d and ψ a largest anti-uniform functional in Φ(µ,1)ℓ or Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)

ℓ.

⟨µ, ψ⟩ ≤ 2cℓ and ⟨1, ψ⟩ ≤ 2cℓ .
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In addition, if ψ is any largest anti-uniform functional in Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)
ℓ, and

1 ≤ j ≤ L and 1 ≤ j′ ≤ ⌈Lp−1⌉ then we have

⟨µj , ψ⟩ ≤ 2cℓ and ⟨νj′ , ψ⟩ ≤ 2cℓ .

The idea of the proof is to take a union bound over choices of ψ and j, of which there are
only polynomially many, and use Lemma 26 to obtain the correlation bounds.

The only place where we need to be a bit careful is that the µj are not independent; and
similarly the νj′ . We find some related functions µ̂j and ν̂j′ which are independent and to
which we apply Lemma 26, and deduce the required correlation bounds from these.

Proof. Let H = {µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉}, let α be such that both dkd · 2(k−1)d 1
nαk and

dkd(2Lp−1)d(k−1)+1 1
nαk are o(1). Let C be large enough so that Lemma 26 works for the

choice q = p, α, and d′ = d. Assume the C-conditions are satisfied.
We first establish bounds on ⟨µ, ψ⟩ and ⟨1, ψ⟩ for ψ ∈ Φ(µ,1)ℓ. Given 1 ≤ ℓ ≤ d, if ψ

is a largest anti-uniform functional in Φ(µ,1)ℓ, then ψ =
∏ℓ

j=1 ∗ij ,1(fj,1, . . . , fj,k−1), where
1 ≤ ij ≤ k for each j and each fj,j′ is either µ or 1. For any such function, the probability of

⟨µ, ψ⟩ > 2cℓ or ⟨1, ψ⟩ > 2cℓ

is, by Lemma 26, at most 1
nαk . Taking the union bound over the at most dkd · 2(k−1)d choices

of ℓ, ij and fj,j′ , we see that the probability of any of these events occurring is at most
dkd · 2(k−1)d 1

nαk , which is o(1) because of our choice of α.
We now establish corresponding bounds on ⟨µj , ψ⟩ and ⟨νj , ψ⟩. Observe that, as before, we

can describe any largest anti-uniform functional ψ in Φ(H)ℓ as follows. We choose i1, . . . , iℓ,
and for each of the ℓ(k − 1) functions in the product, we must choose one of H. Finally, to
describe the entire inner product, we must choose the left term in the inner product (either
µj or νj) from H. In total, the number of choices is at most dkd(2Lp−1)d(k−1)+1.

Fix now one such set of choices. Let T denote a collection of d(k − 1) + 1 indices in [L]
such that µt is one of the chosen functions for each t ∈ T , and T ′ a subset of [⌈Lp−1⌉] of size
d(k − 1) such that νt is chosen for each t ∈ T ′.

Consider the following random experiment. For each t ∈ T , we first generate independent
binomial random subsets Zt = [n]q, with 0 < q < 1 chosen such that (1− q)|T | = 1− t pL . We
now obtain sets Z ′

t for t ∈ T as follows. For each x ∈
⋃

t∈T Zt independently, pick t uniformly
at random from the set {t : x ∈ Zt}, and let x ∈ Z ′

t.
By definition of q, for a given x ∈ [n] the probability that x ∈

⋃
t∈T Zt is tp

L , and conditioning
on this event occurring, the events x ∈ Z ′

t are disjoint over t ∈ T , and x is equally likely to
appear in any given Z ′

t for t ∈ T , so that probability of x ∈ Z ′
t is p

L . Observe that this
is the same probability as the event that x ∈ X and χµ(x) = t, which are also disjoint
events over t ∈ T . It follows that the distribution of (Zt)t∈T is the same as the distribution of
(X∩{x : χµ(x) = t})t∈T , so we can consider the coupling in which the latter sets are generated
according to the above random experiment.

Let µ̂t(x) = q−1
1(x ∈ Zt). By construction, we have 0 ≤ µt(x) ≤ Lp−1qµ̂t(x).

We now perform a similar, independent, random experiment. For each t ∈ T ′, we generate
independently Wt = [n]q where q is as defined above. Letting now 0 < q′ < 1 solve (1−q′)|T ′| =
1−t 1

⌈Lp−1⌉ , we observe q′ ≤ q. We generate W ′′
t by sampling the elements of Wt independently

with probability q′

q , so that the W ′′
t are independent copies of [n]q′ . Finally, we generate W ′

t

by, as above, picking t from {t : x ∈W ′
t} independently and uniformly and letting x ∈W ′

t .
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As before, the distribution of (W ′
t)t∈T ′ is identical to the distribution of ({x : χ1(x) = t})t∈T ′

and we consider the coupling in which the latter sets are generated by the above random
experiment. Letting ν̂t(x) = q−1

1(x ∈Wt), we have 0 ≤ νt(x) ≤ ⌈Lp−1⌉qν̂t(x).
Let ψ̂ denote the function obtained by replacing each µt with µ̂t for t ∈ T , and each νt with

ν̂t for t ∈ T ′, in the product defining ψ. Then we have

⟨µj , ψ⟩ ≤ (⌈Lp−1⌉q)d(k−1)+1⟨µ̂j , ψ̂⟩ and ⟨νj , ψ⟩ ≤ (⌈Lp−1⌉q)d(k−1)+1⟨ν̂j , ψ̂⟩ .

Now, ψ̂ is a (q, d)-special product. Assume C is also large enough that so that Lemma 26
holds for d′ = d, our α, and q = q.

⟨µ̂j , ψ̂⟩ > 7
4c

ℓ and ⟨ν̂j , ψ̂⟩ > 7
4c

ℓ

each have probability at most 1
nαk by Lemma 26. Since 7

4(⌈Lp
−1⌉q)d(k−1)+1 < 2, the same

probability bounds hold on the events

⟨µj , ψ⟩ > 2cℓ and ⟨νj , ψ⟩ > 2cℓ .

Finally taking the union bound, the probability that any one of these events fails is o(1) by
our choice of α.

Suppose that none of the above bad events occur. We deduce, deterministically, the re-
maining bounds of Corollary 27. We begin with 1 ≤ ℓ ≤ d and ψ ∈ Φ(H)ℓ, for which we
have

⟨µ, ψ⟩ = 1
L

L∑
i=1

⟨µi, ψ⟩ ≤ 1
L

L∑
i=1

2cℓ = 2cℓ .

Similarly, we have

⟨1, ψ⟩ = 1
⌈Lp−1⌉

⌈Lp−1⌉∑
i=1

⟨νi, ψ⟩ ≤ 1
⌈Lp−1⌉

⌈Lp−1⌉∑
i=1

2cℓ = 2cℓ . □

11. Deletion method

11.1. A general deletion method. In this section we prove that the required X̃ satisfying
moment estimates exists with exponentially small failure probability. This follows from the
Harris inequality. Recall that a subset D of P

(
[n]
)

is called decreasing if whenever S′ ⊆ S ∈ D
we have S′ ∈ D, and increasing if the same statement holds with ⊆ replaced by ⊇.

Theorem 28 (Harris [11]). For any p ∈ [0, 1] and n, let A and B be two subsets of P
(
[n]
)
,

which are both decreasing. Then

P([n]p ∈ A ∩ B) ≥ P([n]p ∈ A)P([n]p ∈ B) .

Spöhel, Steger and Warnke [17] deduced the following theorem. They state their result for
the specific case [n] =

(
[m]
2

)
(i.e. for the random graph), but their proof works verbatim in the

more general situation. For completeness, we give the details.

Theorem 29 ([17, Theorem 4]). Let D be a decreasing subset of P
(
[n]
)
. Given α, δ ∈ (0, 1], let

p ∈ (0, 1] be such that P
(
[n]p ∈ D

)
≥ δ. Then with probability at least 1− δ−1 exp

(
− 1

2α
2pn
)
,

there is a subset of [n]p with at least (1− α)pn elements which is in D.
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Proof. Let I be the subset of P([n]) consisting of sets with at least (1−α)pn elements. Let S
be the subset of sets S ∈ P([n]) such that S has a subset in I ∩D, which is clearly increasing,
so S is decreasing. By Theorem 28, we have P

(
[n]p ∈ S

)
P
(
[n]p ∈ D

)
≤ P

(
[n]p ∈ S ∩ D

)
.

Rearranging, and observing S ∩ D ⊆ I, we get

P
(
[n]p ∈ S

)
≤

P
(
[n]p ∈ S ∩ D

)
P
(
[n]p ∈ D

) ≤ δ−1P
(
[n]p ∈ I

)
.

Chernoff’s inequality now gives P
(
[n]p ∈ I

)
≤ exp

(
− 1

2α
2pn
)
, which gives the required

probability bound. □

We now have the tools to prove the last remaining Lemma, i.e. Lemma 23.

Proof of Lemma 23. We are in Setting 2. Let C and L be large enough so that Corollary 27
works for our choice of d = d′. Assume the C-conditions are satisfied.

Let D ⊆ P([n]) be the set of subsets Y ⊆ [n] satisfying the following. Letting µ(x) =
p−1

1(x ∈ Y ), for uniform random choices of χµ and χ1, with probability at least 0.9, for all
1 ≤ ℓ ≤ d and all largest anti-uniform functionals ψ either in the set Φ(µ,1)ℓ or in the set
Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)

ℓ, we have

⟨µ, ψ⟩ ≤ 2cℓ and ⟨1, ψ⟩ ≤ 2cℓ .

In addition, if ψ is any largest anti-uniform functional in Φ(H)ℓ, and 1 ≤ j ≤ L and 1 ≤ j′ ≤
⌈Lp−1⌉ then we have

⟨µj , ψ⟩ ≤ 2cℓ and ⟨νj′ , ψ⟩ ≤ 2cℓ .

Observe that since all the left hand sides of these conditions are increasing in X, the event D
is a decreasing event. Furthermore, Corollary 27 states that P(D) = 1− o(1) ≥ 1

2 .
We now apply Theorem 29 with this D, with α = 1

2δ, and with P(D) ≥ 1
2 , to deduce that

with probability at least 1 − 2 exp
(
− 1

8δ
2pn
)

there is a subset X̃ of X which is in D and
which has at least

(
1− 1

2δ)pn elements. Additionally, the probability that [n]p has more than(
1 + 1

2δ
)
pn elements is by Theorem 5 at most exp

(
− 1

8δ
2pn
)
. Suppose that X satisfies both

conditions, which occurs with probability at least 1 − 3 exp
(
− 1

8δ
2pn
)

by the union bound.
Then |X \ X̃| ≤ δpn as required. □

11.2. Transference Principle without Deletion. We are finally ready to prove items 1
and 2 of Theorem 3.

1 and 2 of Theorem 3. We are in Setting 2. We have that 1 follows immediately from 3 as an
ε-good dense model for X̃ provides an ε-good lower dense model for X.

Let us now show how to get 2 from 3 in Theorem 3. First, we may assume without loss of
generality that Ω̄ = {ω̄ = 1 − ω : ω ∈ Ω} is contained in Ω. This is because this assumption
at most doubles the size of Ω, and therefore doesn’t affect the order of magnitude of its size.
Let C be large enough to guarantee that 3 works for ε = ε

2k+2 . Assume the C conditions are
satisfied. Let X be a sample of [n]p such that |{s ∈ S : s ⊆ X}| ≤ (1+ ε

2)E[|{s ∈ S : s ⊆ [n]p}|]
and such that X admits an ε

2k+2 -deletion X̃ such that all subsets of X̃ have an ε
2k+2 -good dense

model. This happens with probability at most 1− ηn on the choice of X = [n]p. Notice that
we have |{s ∈ S : s ⊆ X \ X̃}| ≤ ε

2E[|{s ∈ S : s ⊆ [n]p}|] because of our upper bound on
|{s ∈ S : s ⊆ X}| and because by Theorem 18 we have that 1 is a dense model of X̃. Let µ
and µ̃ be the p−1 scaled indicator functions of X and X̃ respectively.
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Let us now consider a subset Y of X. Let Ỹ = Y ∩ X̃, and let Ȳ = X̃ \ Y . Let f be the
scaled indicator function of Ỹ . We use f̄ for the complements in X̃.

Fix an arbitrary ω ∈ Ω, and let ω̄ = 1− ω. We have the following.

⟨µ̃, ∗i,1(µ̃, . . . , µ̃)⟩ = ⟨µ̃, ∗i,ω(µ̃, . . . , µ̃)⟩+ ⟨µ̃, ∗i,ω̄(µ̃, . . . , µ̃)⟩

Consider now that we can split the set of edges of S contained in X̃ by grouping together
edges depending on what are the indices corresponding to elements of Y and which to element
of Ȳ .

⟨µ̃, ∗i,ω(µ̃, . . . , µ̃)⟩ =
∑

f∈{f,f̄}k
⟨fi, ∗i,ω(f1, . . . , fk)⟩

Because Ỹ is a subset of X̃, we can ask for an ε
2k+2 -good dense model ZỸ of Ỹ . Let g be

the scaled indicator function of its model ZỸ and define ḡ as 1 − g. Because ZỸ is a good
model of Ỹ we have ∥f − g∥Φ(1) ≤ ε

2k+2 . We therefore have:

∑
f∈{f,f̄}k

⟨fi, ∗i,ω(f1, . . . , fk)⟩ =
∑

g∈{g,ḡ}k
⟨gi, ∗i,ω(g1, . . . ,gk)⟩ ±

ε

4
.

We can substitute this to obtain the following:

⟨µ̃, ∗i,1(µ̃, . . . , µ̃)⟩≥⟨µ̃, ∗i,ω̄(µ̃, . . . , µ̃)⟩+ ⟨f, ∗i,ω(f, . . . , f)⟩ − ⟨g, ∗i,ω(g, . . . , g)⟩

+
∑

g∈{g,ḡ}k
⟨gi, ∗i,ω(g1, . . . ,gk)⟩ −

ε

4
.

Considering now that g + ḡ = 1, and that, by Theorem 18 we have ∥µ̃− 1∥Φ(µ̃,1) <
ε

2k+2 , we
obtain:

⟨µ̃, ∗i,1(µ̃, . . . , µ̃)⟩≥⟨µ̃, ∗i,ω̄(µ̃, . . . , µ̃)⟩+ ⟨f, ∗i,ω(f, . . . , f)⟩ − ⟨g, ∗i,ω(g, . . . , g)⟩

+⟨µ̃, ∗i,ω(µ̃, . . . , µ̃)⟩ −
ε

2
.

By cancelling out the terms (which we can do as 1 = ω + ω̄), we obtain:

⟨f, ∗i,ω(f, . . . , f)⟩ ≤ ⟨g, ∗i,ω(g, . . . , g)⟩+
ε

2
.

Returning to the definition of inner product (i.e. noticing that by definition we have that
⟨f, ∗i,ω(f, . . . , f)⟩ = pk

e(S)

∑
s∈S ω(s)1(s ⊆ Y ) and similarly for µ̃ and X̃, f and Ỹ , and X and

µ) we conclude. □

12. A sparse counting lemma

In this section we prove Theorem 30. This turns out to be an application of Theorem 3,
together with a standard counting lemma for hypergraphs; most of what follows is simply
dealing with the somewhat complicated hypergraph regularity setup.

Let k be a positive integer. A k-complex is a down-closed hypergraph in which all edges
have size at most k. Given a k-complex H with at least k+ 1 vertices, we define its k-density
as dk(H) := ek(H)−1

v(H)−k , where ek(H) is the number of edges of size k in H, and v(H) denotes
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the number of vertices of H. We also define mk(H) := maxH′⊆H dk(H
′), where the maximum

is taken over all sub-k-complexes H ′ of H with at least k + 1 vertices.

Given a vertex set [N ], a k-partition with ℓ clusters V consists of a family of disjoint subsets
V{1}, . . . , V{ℓ} ⊆ [N ] called clusters, together with, for each integer 2 ≤ i ≤ k and each subset
E ⊆ [ℓ] of size i, a collection VE of subsets of [N ] of size i, called i-edges. These VE must
satisfy the following compatibility condition: for every e ∈ VE and every j ∈ E, the set e
intersects the cluster V{j} in exactly one element, and the remaining i− 1 elements of e form
an (i−1)-edge in VE\{j}. The supporting (i−1)-graph of VE is the (i−1)-uniform hypergraph
consisting of all (i− 1)-sets that arise in this way from some edge of VE .

Let E ⊆ [ℓ] with |E| = i ≥ 2, and suppose VE is given along with its supporting (i − 1)-
graphs W1, . . . ,Wi. For any subsets Q1 ⊆ W1, . . . , Qi ⊆ Wi, define R(Q1, . . . , Qi) to be the
collection of i-element subsets of [N ] that contain one element from each Qj . In particular,
R(W1, . . . ,Wi) contains VE . If R(W1, . . . ,Wi) is nonempty, and given p ∈ (0, 1], we define
respectively the relative density of VE and the relative p-density of VE as follows:

d∗(VE) :=
|VE |

|R(W1, . . . ,Wi)|
and d∗p(VE) :=

|VE |
p · |R(W1, . . . ,Wi)|

.

Finally, for singleton sets, we define d∗(V{i}) := |V{i}|N−1.

Let E ⊆ [ℓ] be a set of size i, with 2 ≤ i ≤ k, and let p ∈ (0, 1]. Consider VE and let
W1, . . . ,Wi denote the supporting (i−1)-graphs of VE . We say that VE is (ε, r, p)-regular
with respect to its supporting (i−1)-graphs if the following holds. For any set R∗ of the form
R∗ =

⋃r
j=1R(Q

(j)
1 , . . . , Q

(j)
i ) where Q(j)

i ⊆Wi, we have that if |R∗| ≥ ε|R(W1, . . . ,Wi)|, then

|VE ∩R∗|
p|R∗|

= d∗p(VE)± ε.

If any of the parameters r, p, or both are omitted, they are understood to be equal to 1.

A k-partition is said to be (εk, ε, d1, . . . , dk, r, p)-regular if the following conditions hold:
• For each i ∈ [ℓ], we have |V{i}| ≥ d1N ;
• For every E ⊆ [ℓ] with 2 ≤ |E| ≤ k−1, the set VE is ε-regular with respect to its

supporting (|E| − 1)-graphs, and its relative density satisfies d∗(VE) ≥ d|E|;
• For every E ⊆ [ℓ] with |E| = k, the set VE is (εk, r, p)-regular with respect to its

supporting (k−1)-graphs, and its relative p-density satisfies d∗p(VE) ≥ dk.
Let H be a k-complex. An injective map ϕ : V (H) → [ℓ] is called a k-complex homomor-

phism if for every edge e ∈ E(H), the image ϕ(e) has size |e|. That is, ϕ maps the vertices of
each edge to distinct cluster indices. Given a k-partition V with ℓ clusters over the vertex set
[N ], a map ψ : V (H) → [N ] is said to be a ϕ-partite copy of H in V if ψ is injective and for
every edge e ∈ E(H), the image ψ(e) is an element of Vϕ(e).

We are finally ready to introduce the hypergraph counting result.

Theorem 30 (Counting lemma for sparse hypergraphs). Given k ≥ 2, a fixed k-complex H,
and δ > 0, there exists εk > 0 such that for any d2, . . . , dk > 0 (with 1/di ∈ N)5 there exist
ε > 0 and r ∈ N such that for any d1 > 0 there exists C∗ with the following property. Suppose

5This condition is not necessary for any reason besides formality. We insert this for completeness as we use
in the proof [6, Lemma 4]. Any similar result without this condition would extend to our setting.
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that N is sufficiently large, and p ≥ max
(
C∗N−1, C∗N−1/mk(H)

)
. With high probability, the

random k-uniform hypergraph Γ = G(k)(N, p) has the following property.
Given any k ≤ ℓ ≤ v(H) and (εk, ε, d1, . . . , dk, r, p)-regular k-partition V with ℓ clusters

on [N ], such that for each E ⊆ [ℓ] with |E| = k we have VE ⊆ Γ, and given any k-complex
homomorphism ϕ : v(H) → [ℓ], the number of ϕ-partite copies of H in V is

(1± δ)Nv(H)
∏

e∈E(H)

d∗
(
Vϕ(e)

)
.

In the above theorem, we do allow for the possibility that some edges of H of uniformity
smaller than k are not contained in any k-edges of H; that is, H need not be just the down-
closure of a k-uniform hypergraph. This turns out to be required in some applications for
k ≥ 3; for k = 2 this extra generality is not interesting.

The proof of Theorem 30 is conceptually divided in four steps. The first one, deals with the
special case where p = 1, H is the complete k-graph K(k)

v(H), and ℓ = v(H) is exactly [6, Lemma

4]. The second step is to drop the assumption that H is the complete k-graph K(k)
v(H) (keeping

the assumptions p = 1, and ℓ = v(H)). This step requires only a few lines of explanation,
which we now provide. Indeed, what [6, Lemma 4] allows us to do is to count ϕ-partite copies
of the complete k-graph over v(H) in any given k-partition. Imagine now we want to count
ϕ-partite copies of H in the k-partition V for some H that is not the complete graph. What
we can do, is to form a new partition V ′ by adding all possible supported edges to Vϕ(e) for
each e /∈ E(H). That is, for each such e, we let Vϕ(e) in V ′ consist of all k-sets supported by
the relevant lower-level graphs. Under this modification, the number of ϕ-partite copies of H
in V becomes equal to the number of ϕ-partite copies of the complete k-graph K

(k)
v(H) in V ′,

which is counted precisely by [6, Lemma 4]. The next step is to drop the condition ℓ = v(H),
which requires a bit more care. The final step, dropping the condition p = 1, is where we
actually make use of our transference principle.

Proof of Theorem 30, p = 1. Let εk > 0 be small enough for the ℓ = v(H) case of Theorem 30
with input 1

2δ (which is given by our previous step and [6, Lemma 4]). Given d2, . . . , dk (such
that 1/di ∈ N), let ε > 0 and r ∈ N be returned by the ℓ = v(H) case for the same input.
Suppose v(H)N is sufficiently large for this case with a final input 1

v(H)d1.
Given ℓ and V as in the statement of Theorem 30, let V ′ on vertex set [v(H)N ] be obtained

from V by, for each i ∈ [ℓ], taking
∣∣ϕ−1(i)

∣∣ copies of V{i} and adding all incident edges between
them. Note that the increased size of the vertex set is sufficient to contain all these copies.
Letting the clusters of V ′ be indexed by [v(H)], let ϕ′ : V (H) → [v(H)] be an injective map
sending each x ∈ V (H) to a copy of V{ϕ(x)}.

Now, the ϕ-partite copies of H in V and ϕ′-partite copies of H in V ′ are almost in one-to-one
correspondence: the difference is that some ϕ′-partite copies of H in V ′ do not correspond to
injective maps to V. However, there can be at most

(
v(H)
2

)
(v(H)N)v(H)−1 such copies, so

applying the known case of Theorem 30 we conclude that the number of ϕ-partite copies of H



A TRANSFERENCE PRINCIPLE AND A COUNTING LEMMA FOR SPARSE HYPERGRAPHS 40

in V is (
1± 1

2δ
)
Nv(H)

∏
e∈E(H)

d∗
(
V ′
ϕ′e)

)
±
(
v(H)

2

)
(v(H)N)v(H)−1

= (1± δ)Nv(H)
∏

e∈E(H)

d∗
(
Vϕ(e)

)
.

as required, where the equality uses the fact that N is sufficiently large. The fact that the
vertex set of V ′ has size v(H)N is exactly cancelled by the corresponding decrease by a factor
v(H) in each d∗

(
{i}
)
. □

Finally we use Theorem 3 to deduce the general case.

Proof of Theorem 30. The case ek(H) = 0 of Theorem 30 is precisely the p = 1 case viewing
H as a (k − 1)-complex.

The case ek(H) = 1 is standard and does not require Theorem 3. We give only a sketch.
Letting H ′ be the (k − 1)-complex H with the one k-edge removed. An application of the
Extension Lemma [6, Lemma 5] shows that all but a tiny fraction of k-sets supported by any
given V ′ a (k − 1)-partition are in roughly the same number of ϕ-partite copies of H ′, and
that the exceptional k-sets account for only a tiny fraction of all ϕ-partite copies of H ′. A
standard application of Chernoff’s inequality shows that with very high probability, when G(k)

N
is revealed, there are very few edges on these exceptional k-sets and the number of ϕ-partite
H-copies they generate is tiny compared to those on typical k-sets. Critically, this ‘very high
probability’ is sufficient for a union bound over choices of V ′ and ϕ. Supposing now this likely
event occurs, given any regular V, letting V ′ the the (k − 1)-partition obtained by removing
the k layer, we see that (using the fact that εk is much smaller than dk) most of the k-edges of
V are on typical k-sets and a short calculation gives the desired count of ϕ-partite H-copies.

Given H with ek(H) ≥ 2 and δ > 0, let 2εk > 0 be small enough for the p = 1 case of
Theorem 30 with input 1

2δ. Given d2, . . . , dk > 0, let ε and r be given by the p = 1 case of
Theorem 30 for input d2, . . . , dk−1,

1
2dk. Let finally d1 > 0 be given.

We set c = 2v(H)!, and apply Theorem 3 with input k = ek(H)6, c and error parameter

ε∗ =
δdkε

2
k

10v(H)!

∏
e∈E(H)

d|e| .

Let C be the constant returned by Theorem 3. Order arbitrarily the k-edges ofH. Let n =
(
N
k

)
enumerate the edges of K(k)

N , and let S consist of the ordered subsets of [n] corresponding to
ek(H)-sets in [N ] which form isomorphic copies of the k-uniform edges of H, in the chosen
order.

Let C∗ = 10rkCk!. We now verify the maximum degree condition on S holds for p ≥
C∗n−1/mk(H). To begin with, we estimate e(S). Let q(H) be the number of vertices of H
which are not in any k-uniform edge of H. There are (1 + o(1))Nv(H)−q(H) injective maps
from the vertices of H which are in k-edges to [N ], each of which gives one element of S, so
e(S) = (1 + o(1))Nv(H)−q(H).

Given 1 ≤ ℓ ≤ ek(H), let x be a sequence of length ek(H) from [n] ∪ {∗} with exactly ℓ

entries not equal to ∗. For ℓ = 1, by symmetry we have degS(x) =
e(S)
n , which is as required.

6This is bad notation, but k is only used in this proof as in the statement of Theorem 30, we have it here
k = ek(H) because k also has a meaning in Theorem 3.
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We now assume ℓ ≥ 2. Let W ⊆ [N ] be the vertices of K(k)
N which are contained in some edge

in x. By definition, if x has two identical non-∗-entries, then degS(x) = 0, so we can assume
that x has at least two distinct non-∗ entries, and hence |W | ≥ k+1. By definition of mk(H),
we have

ℓ−1
|W |−k ≤ mk(H) , so |W | ≥ ℓ−1

mk(H) + k .

To obtain a member of S which agrees with x at the non-∗ coordinates, we can at most pick a
further v(H)− |W | − q(H) vertices in k-edges of H and one of the at most v(H)! maps from
the vertices of H in k-edges to the picked vertices together with W . Thus, we have

degS(x) ≤ Nv(H)−|W |−q(H)v(H)!

≤ 2v(H)!e(S)N−|W |

≤ 2v(H)!e(S)N
− ℓ−1
mk(H)−k

= 2v(H)! e(S)
Nk

(
N−1/mk(H)

)ℓ−1

≤ 2v(H)! e(S)n

(
p/C∗)ℓ−1 ,

which is the required bound.
By construction, there can be at most 2kNk−1 possible sets R(Q1, . . . , Qk) with the condition

that Q1, . . . , Qk are disjoint subsets of
( [N ]
k−1

)
. Let Σ consist of the indicator functions of the

unions of any up to r sets of the form R(Q1, . . . , Qk). Then we have

|Σ| ≤ 2 · 2rkNk−1 ≤ exp
(pn
C

)
,

where the inequality uses p ≥ C∗N−1 and the choice of C∗.
For each k ≤ ℓ ≤ v(H), consider each choice of a k-partition V with ℓ clusters whose k

level is complete (i.e. each VE with |E| = k is equal to R(W1, . . . ,Wk) where W1, . . . ,Wk are
the supporting (k − 1)-graphs), and each ϕ : v(H) → [ℓ]. For each such (ℓ,V, ϕ) we construct
a subcount ω as follows. For each member s of S, we count the number w(s) of ϕ-partite
copies ψ of H in V such that the i-th edge of H is mapped to the i-th member of s, for
each 1 ≤ i ≤ ek(H). Observe that necessarily 0 ≤ w(s) ≤ (v(H))!N q(H), where q(H) is the
number of vertices of H not in any k-edge of H. We define ω(s) = 1

(v(H))!Nq(H)w(s), which
is therefore in [0, 1]. We say this is the subcount corresponding to (ℓ,V ′′, ϕ) for any choice
V ′′ of a k-partition which is identical to V on any level except perhaps the k-th. We now
upper bound the size |Ω| of the set of all such subcounts. There are v(H) choices of ℓ, and
at most v(H)ℓ ≤ v(H)v(H) choices of ϕ. What remains is to estimate the number of choices
of V. Observe that V is defined by the choices of VE for 1 ≤ |E| ≤ k − 1. There are at most
Nv(H)+1 ways to choose the clusters, since the clusters are disjoint. Again since the clusters
are disjoint, to define VE for each 2 ≤ |E| ≤ k− 1 it suffices to choose a subset of each of

(
[N ]
2

)
through

( [N ]
k−1

)
, which can be done in at most 2N

2 · · · 2Nk−1 ways. We conclude

|Ω| ≤ v(H)v(H)+1Nv(H)+12kN
k−1 ≤ exp

(pn
C

)
,

where as before the inequality uses p ≥ C∗N−1 and the choice of C∗, and this time also that
N is sufficiently large.

Suppose now that X = [n]p satisfies the likely event of Theorem 3 for this ε∗, S, Σ and Ω.
Let Γ be the corresponding instance of G(k)(N, p).
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Given k ≤ ℓ ≤ v(H) and an (εk, ε, d1, . . . , dk, r, p)-regular k-partition V with ℓ clusters on
N , such that for each VE with |E| = k we have VE ⊆ Γ, let Y be the subset of X consisting
of elements in any VE with |E| = k. Let Z be the dense model guaranteed by the likely event
of Theorem 3, and let V ′ be the k-partition with ℓ clusters on N obtained by replacing each
VE where |E| = k with V ′

E corresponding to the elements of Z that are supported on the
(k − 1)-graphs supporting VE .

We claim that V ′ is (2εk, ε, d1, . . . , dk−1,
1
2dk, r, 1)-regular and that the relative densities of

the top level are close to the relative p-densities of V. The regularity of the levels from 1 to
k − 1 follows from the regularity of V, and what needs to be proved is that each V ′

E with
|E| = k is (2εk, r, 1)-regular with density d∗(V ′

E) =
(
1± δ

10ek(H)

)
d∗p(VE) ≥ 1

2dk.
To see this holds, fix E and let W1, . . . ,Wk be the supporting (k− 1)-graphs of VE (so also

of V ′
E). Let R∗ be a union of at most r sets of the form R(Q1, . . . , Qk) (as defined where

we described the set Σ of similarity functions), with the extra condition Qi ⊆ Wi for each
1 ≤ i ≤ k. Abusing notation slightly, we think of R∗ as both a subset of

([N ]
k

)
and of [n].

Because Z is a dense model of Y , using the similarity function σ which takes the value 1
precisely on R∗, we have

p−1|R∗ ∩ Y | = |R∗ ∩ Z| ± ε∗n .

Taking the particular case that R∗ is all k-sets supported by W1, . . . ,Wk, this immediately
says that

d∗(V ′
E) = d∗p(Ve)± ε∗nN−k

k−1∏
i=1

d
−(ki)
i =

(
1± δ

10ek(H)

)
d∗p(Ve) ≥

dk
2 ,

where the final equality is by choice of ε∗. Suppose now |R∗| contains at least an εk-fraction
of all k-edges supported by W1, . . . ,Wk. Because V is regular, we have

|R∗ ∩ Y | = |R∗ ∩ VE | = (1± εk)d
∗(VE)|R∗| = (1± εk)pd

∗
p(VE)|R∗| .

Putting these bits together, we have

|R∗ ∩ Z| = (1± εk)d
∗
p(VE)|R∗| ± ε∗n

= (1± εk)
(
1± δ

10ek(H)

)
d∗(V ′

E)|R∗| ± ε∗n

= (1± 2εk)d
∗(V ′

E)

which verifies (2εk, r, 1)-regularity of V ′
E . Here again the final inequality is by choice of ε∗.

Applying the p = 1 case of Theorem 3 to V’, we see that the number of ϕ-partite copies of
H in V ′ is (

1± 1
2δ
)
Nv(H)

∏
e∈E(H)

d∗
(
V ′
ϕ(e)

)
.

Letting ω be the subcount corresponding to (ℓ,V, ϕ), we have by definition of ω∑
s∈S

1(s ⊆ Z)ω(s)(v(H))!N q(H) =
(
1± 1

2δ
)
Nv(H)

∏
e∈E(H)

d∗
(
V ′
ϕ(e)

)
=
(
1± 3

4δ
)
Nv(H)p−e(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
.

Where the final equality uses that d∗p(VE) = p−1d(VE) =
(
1± δ

8ek(H)

)
d∗(V ′

E) whenever |E| = k.
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Since Z is a dense model of Y , we have

p−ek(H)
∑
s∈S

1(s ⊆ Y )ω(s) =
∑
s∈S

1(s ⊆ Z)ω(s)± ε∗e(S) .

We therefore get(
1± 3

4δ
)
Nv(H)p−ek(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
= p−ek(H)

∑
s∈S

1(s ⊆ Y )ω(s)(v(H))!N q(H) ± ε∗e(S)(v(H))!N q(H)

= p−ek(H)
∑
s∈S

1(s ⊆ Y )ω(s)(v(H))!N q(H) ± ε∗Nv(H)(v(H))! ,

and so ∑
s∈S

1(s ⊆ Y )ω(s)(v(H))!N q(H) =
(
1± 3

4δ
)
Nv(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
± ε∗(v(H))!Nv(H)pek(H)

=
(
1± δ

)
Nv(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
by choice of ε∗. Since the left-hand side of this is, by definition of ω, the number of ϕ-partite
copies of H in V, this completes the proof. □
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