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Alla mia famiglia:
a Anna e Maura, per il supporto di una vita;1 1e l’affetto costante.

a babbo e mamma, per aver sempre fatto il possibile;2 2e l’impossibile.

a Gaia e Rita, complici dall’inizio;3 3e fino in fondo.

a Alberto e Valeria, compagni per scelte.4 4e di vita.

And to you. Yes, you.
As long as you are not who you were yesterday,

as long as your heart keeps changing.



And we shouldn’t be here at all, if we’d known more about it before we started.
But I suppose it’s often that way. The brave things in the old tales and songs, Mr.
Frodo: adventures, as I used to call them. I used to think that they were things
the wonderful folk of the stories went out and looked for, because they wanted
them, because they were exciting and life was a bit dull, a kind of a sport, as you
might say. But that’s not the way of it with the tales that really mattered, or the
ones that stay in the mind. Folk seem to have been just landed in them, usually —
their paths were laid that way, as you put it. But I expect they had lots of chances,
like us, of turning back, only they didn’t. And if they had, we shouldn’t know,
because they’d have been forgotten. We hear about those as just went on — and
not all to a good end, mind you; at least not to what folk inside a story and not
outside it call a good end. You know, coming home, and finding things all right,
though not quite the same. But those aren’t always the best tales to hear, though
they may be the best tales to get landed in! I wonder what sort of a tale we’ve
fallen into?

J.R.R. Tolkien

‘Why did you do all this for me?’ he asked. ‘I don’t deserve it. I’ve never done
anything for you.’ ‘You have been my friend,’ replied Charlotte. ‘That in itself is a
tremendous thing. I wove my webs for you because I liked you. After all, what’s a
life, anyway? We’re born, we live a little while, we die. A spider’s life can’t help
being something of a mess, with all this trapping and eating flies. By helping
you, perhaps I was trying to lift up my life a trifle. Heaven knows anyone’s life
can stand a little of that.’

E.B. White
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le mie fondamenta. Arrivare a questa meta è la fioritura di un albero che è
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Joanna, Mihir, Raymond, Cameron, Karl, Xinyi, Jamie, Cedric, Rennie, Giulia,
you make the office what it is, a place where it is nice to wake up to go to.

Yani, Sharat, Christoph, you were fun to be around.
Alp, Kyriakos, Kalina, Freddie, Alex, Eoin, Nina, Domagoj you are the people

I think of when I say that graph theorists are the best to be around.
Jan van den Heuvel, Bernhard von Stengel, everybody needs a head, and

you’ve been amazing heads of Department while I have been at LSE. Thank
you for your service.

Mentors

Franco Flandoli, grazie per aver scommesso su di me, senza di lei, tutto questo
non sarebbe successo. Giovanni Gaiffi, Elisabetta Fortuna, grazie per essere
professori incredibili, dall’incredibile passione, rigore e generosità. Un ringrazi-
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Abstract

This thesis focuses on three independent areas of research. “If neurotic is
wanting two

mutually exclusive
things at one and

the same time, then
I’m neurotic as hell.

I’ll be flying back
and forth between

one mutually
exclusive thing and
another for the rest

of my days.”
—Sylvia Plath—

In the initial part, we study the occurrence of monochromatic substructures
in coloured combinatorial objects across two different settings. First, we
investigate the presence of monochromatic products in arbitrary, random,
and randomly perturbed colourings of the integers —varying a classical line
of research which originated with Schur and has since drawn considerable
attention. Our results mark the first contributions in this new direction and
lay the foundation for further work. Next, we determine the exact value of
the Ramsey number of the squares of long paths and cycles, expanding the
limited class of graphs for which this number is precisely known.

In the middle part, we extend and address works and conjectures of earlier
authors. First, we resolve a conjecture by Letzter and Snyder on the chromatic
number of graphs with large minimum degree and no short odd cycles. Second,
we extend the Transference Principle of Conlon and Gowers, thereby paving
the way to strengthen and generalise existing counting results in sparse random
settings. As an application, we obtain an asymptotically optimal counting
version of the KŁR Conjecture.

In the final part, we analyse the dynamics that arise when learning agents
repeatedly interact in the framework of games. We first consider the case
of players with finite recall under various monitoring conditions in repeated
games. Here, we establish a Folk Theorem-like result, characterise the set of
payoff vectors attainable under these dynamics, and uncover a wide spectrum
of possibilities for the emergence of algorithmic collusion. We then investigate
best-response dynamics in random potential games, and demonstrate the
robustness of this approach across different regimes of payoff correlation.
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introduction 1

Introduction

Prologue

Mathematics planted in me the fear of small talk. Whenever I meet someone “Per quali prodigi e
qual disegno un

albero cresca ramo
dopo ramo

prendendosi il cielo,
non so.”

—S. Benni—

new, I wait with stress the inevitable approach of the question So, what do you
do for a living? More often than not, I feel the fleeting temptation of lying and
inventing for myself a job people are less scared of, like dentist, or spy. When
I finally admit that I work in maths: surprise and disbelief. Always followed
by the same question: Why?

After a few years of stammering half-baked responses, I finally took the
time to think about how to explain my passion to that majority of people who
seem to see maths as something esoteric (and possibly mysteriously dangerous).
Here, I’d like to share two of these reasons. First and foremost, I like working
with mathematicians. It’s rare to find a profession so collectively in love with
its own craft: we are generally passionate about our research, open to new
ideas, and always on the lookout for collaborations. Second, I find the work
itself exciting. We get to spend our days charting unknown territories, and
building (more or less) eternal roads in new regions that we want to explore.

In this light, I like to think of this thesis as an excerpt from my travel
journal, tracing the key stages of my journey so far. And while I have no
illusions as to the importance of my contributions, I hope my three readers1

can get a sense of what has been my itinerary, from what I found interesting
when I started off to various evolutions of my tastes and passions along the
years of my PhD.

I have been lucky in that my advisors, while guiding me, never imposed any
specific route for my wandering. One side effect of this freedom is that there
is no one specific topic or clear direction in this thesis. The selection of papers
that I choose to make part of this work doesn’t give rise to a monographic text,
and doesn’t follow a straight road. That said, with plenty of insight, this thesis
allows itself to be naturally divided into three parts, that we now introduce.

I A Mathematician Colouring

As children very well know, in a system as complex as clouds it is always “Goccia dopo goccia
nasce un fiume,

E mille fili d’erba
fanno un prato!”

—Zecchino—

possible to recognise something familiar, such as an elephant, or a dragon. As
mathematicians say, regular structures are unavoidable in large systems.

Imagine being given two colours, say red and blue, and being asked to
colour each of the positive integers (1, 2, 3, 4, . . . ) with one of the two, in
such a way that the sum of two red numbers cannot be red (for example you
cannot colour 2, 3 and 5 = 2+3 all red), but also the sum of two blue numbers
cannot be blue (for example you cannot colour 2 and 4 = 2+2 both blue). You
would soon realise that this is impossible. Perhaps surprisingly, you would
discover that you cannot even colour all the numbers up to 5 without creating
a monochromatic2 sum.

1I do not hope, as Manzoni did, for twenty-five people to read this thesis.
2Monochromatic means: of the same colour.
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Even if you were allowed to use any number of distinct colours, let’s
say 1000, these would still not be enough to colour all the positive integers
without eventually creating a monochromatic sum. Sooner or later, you would
be forced to colour a number with a colour that completes a monochromatic
sum. In the concise mathematical jargon, one would say that monochromatic
sums are unavoidable in any finite colouring of N+.

While one might think that the sum structure is quite special in this regard,
the same phenomenon arises in the realm of (hyper)graphs. (Hyper)graphs
are structures that allow us to model generic relationships, and thus are a
natural extension to the sum relationship described above. In the (hyper)graph
setting, our claim that regular structures are somewhat unavoidable in large
systems is known as Ramsey Theorem and formally states the following. For
any k-uniform hypergraph H , there exists a positive integer n such that, no
matter how you colour the edges of K(k)

n with red and blue, there is always a
monochromatic copy of H in your colouring. As with sums, this also holds
for any finite number of colours.

In Part I, we investigate some new directions in the area of combinatorics
that seeks to answer the following question: Given a specific finite structure
H and a finite palette, under which conditions does a system always contain a
monochromatic copy of H in every colouring that uses said palette?

We present two different results. In Chapter 1, we consider a novel trans-
lation to the multiplicative setting of the sum scenario described above. In
Chapter 2, we examine the family of square of paths and ask, for any graph in
this family, how large n must be to ensure that any red-blue colouring of the
edges of Kn contains a monochromatic copy of that graph.

1 On Product Schur Triples in the Integers

Historical context

One could argue that the study of monochromatic structures began with Schur “I didn’t dare believe
it at first, but after a

while there was
nothing else to

believe.”
—K. Ishiguro—

in 1917 [Sch17]. In his seminal paper, Schur explored a local version of Fermat’s
Last Theorem, proving that for any positive integer k, any sufficiently large
prime p is such that the equation xk + yk = zk admits non-trivial solutions
in the field Zp. To do so, Schur proved the following lemma. For any positive
integer k, there exists a positive integer n such that, for any colouring of the
numbers {1, . . . , n} with k colours, there always exists a triple (a, b, c) of
elements in {1, . . . , n} such that a+ b = c, and all three numbers are coloured
with the same colour. We can convince ourselves of Schur’s statement for
k = 2 by observing that there is no way to colour the numbers {1, . . . , 5}
with, say, red and blue, without creating a monochromatic sum. Extending
the result to arbitrary k is not as easy, and was Schur’s key contribution.

A colouring of a set with k colours is called a k-colouring. A triple (a, b, c)
such that a + b = c is called a Schur triple. A set of integers is said to be
k-Schur if every k-colouring of its elements contains a monochromatic Schur
triple. We write {1, . . . , n} as [n].

Schur’s initial result gave rise to a remarkably rich body of work that has
developed for more than a century, with variations of the original result still
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studied in a wide range of scenarios. We focus on formulations of this problem
in the deterministic, probabilistic, and randomly perturbed setting.

We start with the deterministic setting. A natural line of questioning asks:
How many monochromatic Schur triples must appear in a k-colouring of [n]?
Or more deeply: Which ones of the k-colourings of [n] minimise the number of
monochromatic Schur triples? For k = 2, Schoen [Sch99] and, independently,
Robertson and Zeilberger [RZ98] showed that any 2-colouring of [n] contains
at least n2/11 +O(n) monochromatic Schur triples. Moreover, they gave a
complete description of the 2-colourings that attain the minimum number of
monochromatic sums3. Further research is still needed to complete the study
of the cases with k ≥ 3.

Another deterministic question is: Can we find small subsets of [n] that still
have the k-Schur property? In particular, we know that for any k, if n is large
enough, then [n] is k-Schur, but what is the size of a smallest subset of [n] that
still retains this property? This question has been solved for k = 1 (a good
exercise for the interested reader) and k = 2 [Hu80]. For larger k, a specific
value is proposed by the Abbott-Wang Conjecture [AW77].

We also explore the probabilistic and randomly perturbed perspectives.
Given a finite set A and a real number p ∈ [0, 1], we denote by Ap the random
subset of A obtained by including each element of A independently at random
with probability p. A natural probabilistic question in this context is: For
which values of p ∈ [0, 1] do we have that [n]p is k-Schur? While this question
can be answered with routine probabilistic methods, it leads to the following
interesting variation. In 2018, Aigner-Horev and Person [AP19] showed that
if A ⊆ [n] is dense and p≫ n−2/3, then with high probability A ∪ [n]p is 2-
Schur. This is an interesting development of the Schur problem as it combines
both the probabilistic and the deterministic perspectives. In this sense, the
deterministic A is randomly perturbed.

Our Contributions

While the study of Schur triples has been active for over a century, the con-
tribution we offer in Chapter 1 is of a somewhat novel nature. Indeed, we
investigate product Schur triples, that is, triples (a, b, c) such that a · b = c.
Simultaneously with Aragão, Chapman, Ortega and Souza [Ara+24], we are
the first to consider such questions of a non-linear nature. While we make
only modest steps toward generalising the nature of the relationships among
the elements of the triple, we believe our results to be of interest.

In parallel with the aforementioned lines of study, we present results
in the deterministic, probabilistic and randomly perturbed settings. In the
deterministic scenario, among other results, we establish a lower bound of
n1/3−ε for the number of monochromatic product Schur triples in any 2-
colouring of [2, n] := {2, . . . , n}.

Theorem 1.2. For every ε > 0, there exists n0(ε) ∈ N such that for all n ≥
n0(ε), every 2-colouring of [2, n] contains at leastn1/3−ε monochromatic product
Schur triples.

3One of the colour classes needs to be close to
(
4n
11

, 10n
11

]
. See Schoen [Sch99].
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An independent result of Aragão, Chapman, Ortega and Souza [Ara+24]
obtained a better estimate using different methods. We still present our in-
dependent analysis. For the probabilistic variation, we obtain a threshold of
(n log(n))−1/3 for the probability p at which [n]p becomes product Schur.

Theorem 1.3. The threshold for [2, n]p to contain a product Schur triple is of
order (n log(n))−

1
3 .

We also examine the randomly perturbed setting, but for ease of notation
we postpone further statements to the main body of the chapter.

2 The Ramsey Numbers of Sqares of Paths and Cycles

Historical context

Another area where the search for monochromatic structures gave rise to “Not all those who
wander are lost.”

—J.R.R. Tolkien—
a fruitful literature is Graph Theory, where this topic is known as Graph
Ramsey Theory. This branch originated in 1930 with a classical result of
Ramsey [Ram30], who studied the existence of monochromatic copies of
a fixed graph in arbitrary colourings of larger host graphs. To introduce
Ramsey’s result, we recall that for a given positive integer n, the complete
graph on n vertices denotedKn, is the graph on n vertices with edge set the set
of all possible pairs of vertices. That is, Kn = ([n], {{i, j} ⊆ [n] s.t. i ̸= j}).
Ramsey [Ram30] proved that for any graphH and any positive integer k, there
exists an integer n large enough such that any k-colouring of the edges of Kn

contains a monochromatic copy of H .
The study of the minimal number n for which this happens led to the birth

of one of the most prolific areas of graph theory, and has turned out to be an
incredibly complex question. In particular, little is known even for the case
involving only two colours. Therefore, most attention has been paid to the
study of R(H), the minimal number n such that any 2-colouring of the edges
of Kn contains a monochromatic copy of the graph H .

Ramsey-type questions continue to hold a special place for graph theorists.
A recent result of Campos, Griffiths, Morris and Sahasrabudhe [Cam+23]
sparked international interest in the community when they proved R(Kk) ≤
(4− ε)k —the first exponential improvement on the upper bound for R(Kk)

since the 1925 result of Erdős and Szekeres [ES35]4. Stronger bounds are known
for graphs of bounded degree. Chvatál, Rödl, Szemerédi, and Trotter [Chv+83]
showed that for any positive integer ∆, there exists a constant c∆ such that
if H is a graph on n vertices and with maximum degree at most ∆, then
R(H) ≤ c∆n. That is, the Ramsey number of bounded-degree graphs grows
linearly with the number of vertices5.

Even though some bounds are known, and despite the strong effort of
the community, there are not many families of graphs for which the exact
value of the Ramsey number is known. Let us call star graph K1,n the graph
K1,n = ([n] ∪ {∗}, {{∗, i} s.t. i ∈ [n]}) with n+ 1 vertices and all the edges

4The statement with ε = 0.2 is proved in [Gup+24]. A multicolour version is proved in
[Bal+24]

5The problem of determining the correct order of magnitude for c∆ as a function of ∆ has
also received considerable attention, most notably by Graham, Rödl, and Rucinski [GRR00] and
Conlon, Fox, and Sudakov [CFS12].
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between a fixed vertex ∗ and the remaining vertices. A simple argument shows
that R(K1,n) = 2n − 1

2 + (−1)n+1 1
2 [Rad94]. Among the few non-trivial

exceptions, Gerencsér and Gyárfás [GG67] proved that R(Pn) = ⌊3(n −
2)/2⌋. For cycles, results by Bondy and Erdős [BE73], and by Faudree and
Schelp [FS74], lead to the value R(C2n) = 3n− 1 and R(C2n+1) = 4n+ 1.

Our Contributions

After paths and cycles, natural candidates for other simple structures to exam-
ine are the squares of paths and cycles. Given a graph H , the square H2 of H
is the graph on the same vertex set as H but with edges uv whenever u and v
have distance at most 2 in H . In Chapter 2, we determine exact values for the
Ramsey numbers for the squares of sufficiently long paths and cycles.

Theorem 2.1. There exists n0 such that for all n ≥ n0 we have:

R(P 2
3n) = R(P 2

3n+1) = R(C2
3n) = 9n− 3 and R(P 2

3n+2) = 9n+ 1 .

II On the Shoulders of Giants

If I wanted to scare off my three readers, I might have titled this second part “In this way, the
cycle of life in
mathematics

continues forever.”
—P. Erdős—

something like Variations on Density Conditions. As it happens, quite by chance,
that the results gathered here both explore settings where structure emerges
not from size, as we did above, but from conditions related to density.

In the previous part, we saw that for any graph H , a sufficiently large n
guarantees that any 2-colouring of the edges of Kn contains a monochromatic
copy of H . But another natural question (not involving colours) is: What
density conditions on a subgraph G ⊆ Kn ensure that G contains a copy of
H? While this notion of density is not precisely defined, examples of density
conditions would be for example a lower bound on the number of edges or
a minimum degree requirement. This line of investigation can be thought to
be inspired by the simple fact that there are some results that we know hold
for complete structures (such as the ones explored in the previous part), and
that we might obtain some insights by studying how these properties pass to
smaller structures. Which is, whether we really need a complete large system
to guarantee the presence of our favourite substructure.

In this part, we don’t always address directly how a density condition
guarantees a certain structure. Rather, we study settings that consider vari-
ations on density conditions. First, we consider how combining a minimum
degree condition with a girth constraint can force a graph to be 3-colourable,
even though neither condition is sufficient on its own. Then, we turn to dense
subgraphs of sparse random graphs, and study how far can results true in
dense subsets of Kn survive in a sparse setting.

But as I mentioned, I’m not trying to intimidate my three readers. Since
both chapters build on elegant results by others, I opted for a title that reflects
what this part really is: my small pebble, added to the head of a stony giant,
making it just so slightly taller. In Chapter 3, we answer a question asked
by Letzter and Snyder [LS19] about density and girth condition sufficient to
ensure 3-colourability; in Chapter 4 we extend a method introduced by Green
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and Tao [GT08] and then refined by Conlon and Gowers [CG16], and we show
how this allows us to give our contribution to a well-known conjecture.

3 Graphs With Large Minimum Degree and No Short Odd Cycles Are
3-Colourable

Historical context

We saw in the previous part how much graph theorists enjoy studying colour- “It’s not faith you
need. Only

rationality.”
—K. Ishiguro—

ings; we analysed how arbitrary colourings of large systems are guaranteed
to monochromatically contain regular structures, revealing order within suf-
ficiently large but unstructured environments. In this chapter we shift our
attention to a different notion of order: the existence of a proper 3-colouring,
and we see how this can be guaranteed by a combination of density and girth
conditions.

Graphs are an efficient way of representing entities (the vertices) that are
related to one another via a binary relationship (the edges). In some cases, the
relationship represented by the edges models incompatibility. For example, the
vertices might represent tasks, and an edge uv could indicate that the same
person cannot be assigned both tasks u and v. A natural question in this context
is: What is the minimal number of people needed to complete all tasks while
respecting the constraints encoded by the graph? In the language of graph theory,
this corresponds to asking for the chromatic number of the graph that models
the scenario. More precisely, for a given graph G, the chromatic number χ(G)
is the smallest integer such that there exists a function c : V (G) → [χ(G)]

assigning different values to adjacent vertices.
Determining the chromatic number of a given graph is a task of signif-

icant practical relevance. Moreover, in theoretical studies, graphs are often
divided into classes based on their chromatic number, as graphs with the same
chromatic number often share structural and combinatorial properties.

Describing graphs of a certain chromatic number using other character-
istics is not easy. For example, it is not true that graphs which locally avoid
complex structures necessarily have low chromatic number. Erdős [Erd59]
proved that for any non-tree graph H and any positive integer c, there exists a
graph G that does not contain H as a subgraph and yet has chromatic number
at least c. Moreover, the chromatic number has no non-trivial relationship
with minimum or maximum degree; for instance, it is easy to construct a
2-colourable n-vertex graph with minimum degree as large as ⌊n2 ⌋.

We can therefore understand why Erdős and Simonovits [ES73] asked if
combining the avoidance of a familyH of graphs with a high minimum degree
condition could yield an upper bound on the chromatic number. This area
of study is known as the study of the chromatic profile of H. For example,
Andrásfai, Erdős and Sós [AES74] proved that Kr-free graphs of minimum
degree strictly larger than 3r−7

3r−4 |V (G)| have chromatic number at most r − 1.
Many variations of this question have been explored, for various family of
graphs to be avoided.

We defer a more detailed recounting of the results in this area to Chapter 3,
and focus here on one specific case of particular relevance. It is often given as
an exercise after the first lecture of graph theory to show that any graph G
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avoiding odd cycles has chromatic number 2. Therefore, when investigating
whether we can guarantee a low chromatic number by combining the avoid-
ance of substructures with minimum degree conditions, an obvious choice
for the substructure to avoid is the family of short odd cycles. For a positive
integer k, let C2k+1 be the family of odd cycles {C3, C5, . . . , C2k+1}. We say
that a graph G is C2k+1-free if it contains no copy of a cycle of C2k+1.

Already the methods of Andrásfai, Erdős and Sós [AES74] show that
any C2k−1-free graph G with minimum degree strictly larger than 2n

2k+1 has
chromatic number at most 2. This bound is sharp, as witnessed for example
by a blow-up of C2k+1

6. Moving to 3-colourability, Letzter and Snyder [LS19]
showed that graphs avoiding C5 and having minimum degree at least 1+ε

5 n

are 3-colourable. The C5-avoiding example with the highest known minimum
degree that is not 3-colourable, on the other hand, has minimum degree 14

73n,
and is given by an asymmetric blow-up of a C5-free graph on 22 vertices (cf.
the graph G3,3 in Van Ngoc and Tuza [VT95]).

Our Contributions

Answering a question of Letzter and Snyder, we consider the general case of
a graph G that is C2k−1-free, meaning that its shortest odd cycle has length
at least 2k + 1. Letzter and Snyder conjectured that avoiding odd cycles
up to a higher length would allow weaker minimum degree conditions to
ensure 3-colourability. Our contribution in this direction is to confirm their
conjecture regarding the 3-colourability of graphs with large minimum degree
and containing no short odd cycles.

Theorem 3.1. For any t ∈ N and any integer k ≥ 20t+ 1460, the following
holds. Any C2k−1-free graph G with minimum degree at least 1

2k+tv(G) is
3-colourable.

4 A Transference Principle and a Counting Lemma for Sparse
Hypergraphs

Historical context

As we saw above, a rich literature in extremal combinatorics focuses on “Canti, e cosı́
trapassi

dell’anno e di tua
vita il piú bel fiore.”

—G. Leopardi—

finding density conditions that guarantee that a subset of a complete set
contains a specific structure. Some examples include the celebrated result
of Szemerédi [Sze75] that for every positive δ > 0 and for every positive
integer k there exists a positive integer N such that any subset of [N ] =

{1, . . . , N} of size at least δN contains an arithmetic progression of length
k. Another example is the generalisation of Turán’s Theorem [Tur41] known
as the Erdős-Stone-Simonovits Theorem [ES46; ES66] which states that any
fixed graph H with chromatic number χ(H) is contained in any subgraph
with

(
1− 1

χ(G)−1 + o(1)
)(

N
2

)
edges of the complete graph KN on N vertices.

These results are examples in which subsets having density above a certain
threshold (which is zero in the case of Szemerédi and

(
1 − 1

χ(G)−1

)(
N
2

)
for

the Erdős-Stone-Simonovits Theorem) are guaranteed to contain a desired
6Substitute each vertex of a C2k+1 with a large independent set, and each edge with a

complete bipartite graph.
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substructure. Moreover, they share the property of being “robust”, by which we
mean that subsets of density ε above the required threshold contain a positive
fraction of all the desired structures present in the complete set. That is, in the
graph case, any subgraph of KN with at least

(
1− 1

χ(G)−1 + ε
)(

N
2

)
is going

to contain Ω(Nv(H)) copies of H , as proved by Erdős and Simonovits [ES83]
(see also [PY17] for a survey on the topic).

Given a set A and p ∈ (0, 1) we denote with Ap the random subset of
A where every a ∈ A is included independently with probability p. In re-
cent decades, sparse random variations of these robust extremal results have
attracted much attention. In their seminal paper, Green and Tao [GT08]
showed that arbitrarily long arithmetic progressions could not only be found
in any dense subset of the integers, but also in any dense subset of almost
all “pseudorandom” subsets of the integers. In particular (see [CG16] for a
precise statement), it follows from Green and Tao’s proof that for any δ > 0

and k positive integer, there is a sequence pN of order N−o(1) such that
any subset of [N ]p of relative density δ contains a k-term arithmetic pro-
gression. A similar variation for the Erdős-Stone-Simonovits Theorem has
also been studied by Conlon and Gowers [CG16] for the family of strictly
2-balanced graphs. For a given graph H on at least 3 vertices, we define
m2(H) = maxH′⊆H,|H′|≥3

e(H′)−1
v(H′)−2 . We say that H is strictly 2-balanced if

H is the unique maximiser of e(H′)−1
v(H′)−2 among its subsets7. Conlon and Gow-

ers [CG16] showed that for any graph H in the family of strictly 2-balanced
graphs, and for any ε > 0, there is a sequence pN of order N−o(1) such that
any subset of density at least

(
1− 1

χ(G)−1 + o(1)
)(

N
2

)
of the random graph

GN,pN
contains a copy of H . This was also proved with different methods and

for any graph H by Schacht in [Sch16]. These results were further strength-
ened by Conlon, Gowers, Samotij, and Schacht to a counting argument for
general graphs in [Con+14].

At the basis of the celebrated extremal results [GT08; CG16; Con+14] there
is the transference principle, introduced by Green and Tao in [GT08]. While
it has not been written as a specific statement in any of the aforementioned
papers, the transference principle accomplishes the following. Given a family
H (k-term arithmetic progressions, or copies of a graph H with k edges) of
k-elements subsets of X (X being [N ] or E[KN ] in our examples), if for some
δ > 0 we can robustly find elements of H in any subsets of X of density at
least δ, then for some vanishing sequence pN we can show that with high
probability (with probability tending to 1 as N tends to infinity), any subset
Y of XpN

of density δ has an associated subset Z of X (called the dense
model of Y ) of density δ in X such that if Y contains h elements ofH, then
Z contains about p−k

N h elements ofH. This in particular allows us to transfer
many robust counting results known in the dense setting to the sparse random
setting. Moreover, it is worth noticing that the transference principle as stated
is a counting result. What we mean by this is that it does not simply provide
existence, but it gives an estimation on the number of copies of the desired
structure in a sparse random setting.

Introduced for a specific use-case in [GT08], the transference principle
7As an example, cliques are strictly 2-balanced.
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has been applied in [CG16] to many different settings, but without an explicit
formulation. Its use has been extended again in [Con+14], but also only for
specific cases. We identify three opportunities for improvement in the previous
literature. First, as just mentioned, while used in many different situations,
there is yet no explicit transference principle statement. Second, as introduced
by Conlon and Gowers in [CG16], the transference principle only works for a
specific class of graphs, the class of strictly balanced graphs. While sufficient
to prove many important instances, this additional assumption limits the use
of this method. Finally, while previous results obtained a lower bound on
the counting, an upper bound was not obtained with the optimal order of
magnitude for the probability.

Our Contributions

In Chapter 4, we aim to improve in the aforementioned directions, proving an
explicit statement for the transference principle that works for generic hyper-
graphs with probability of the right order of magnitude. This allows us to prove
a precise counting result for sparse random settings that holds with probability
of the optimal order of magnitude and provides an optimal counting (both
lower and upper bound are asymptotically optimal). In particular, with this
result we can obtain directly most of the results introduced in [CG16] without
assuming the base graphs to be strictly balanced and with an asymptotically
optimal probability of success. To show in what sense our result extends the
previous literature, we prove a counting result for hypergraphs in the sparse
setting that does not follow from the techniques used in [CG16; Con+14] and
in particular gives an asymptotically optimal counting version of the KŁR
Conjecture for any hypergraph.

Another consequence, maybe less theatrical but easier to state formally
without much notation, of our Transference Principle is the following counting
result we obtain in the sparse graph setting. This is a strengthening of the
results of Conlon and Gowers [CG16], as we do not require our graphs to be
strictly 2-balanced. For graphs H and G, let c(H,G) be the number of copies
of H in G and let m2(H) = maxH′⊆H,|H′|≥3

e(H′)−1
v(H′)−2 .

Theorem 4.1. Let H be a fixed graph and ε > 0. Then there exists a constant
C > 0 such that the following holds. Suppose that pN > CN−1/m2(H), and let
ηN be the probability that the number of copies of H in G = GN,pN

exceeds
(1 + ε

2 )p
e(H)
N Nv(H). Then with probability at least 1− ηN , for every subgraph

Y ⊆ G there exists a graph Z on V (G) that satisfies:

e(Y )p−1
N = e(Z)± εN2 and c(H,Y )p

−e(H)
N = c(H,Z)± εNv(H) .

III Learning to Play

The last part of this thesis contains chapters on Game Theory. Some of the “Io non penso col
naso, né bado al

mio naso, pensando.
Ma gli altri?”

—L. Pirandello—

conventions of this discipline are somewhat different than the conventions
in other areas of mathematics. In particular, it is common in works of Game
Theory to have most of the proofs postponed to an Appendix. We follow this
practice here.
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Graph theory works on abstractions that are often quite far removed from
the real-world phenomena they aim to model. As a result, when working
in graph theory, it is easy to lose sight of any real-world implications, or to
study questions with no application whatsoever. Game theory, on the other
hand, studies (you might have guessed it) games, which are models that are
often more closely related to real-world scenarios. That is, when working on
game theory problems, one often has a real-world intuition to guide theoretical
investigation and mathematical reasoning.

This closer relationship with real-world phenomena is one reason why
game theorists are often found in economics departments: the problems they
study are often directly connected to the study of economic behaviour. It is, of
course, well-known that John Nash —a remarkably versatile mathematician
who made foundational contributions to game theory (among other areas)—
was awarded the Nobel Prize in Economics. This closer relationship to real-
world behaviour is also one of the main appeals I find with the area.

While surely reductive in general, for game theorists (when doing maths) a
game is a mathematical model used to represent strategic interactions. In this
context, a (finite) game is defined by a finite set P of players; each player i is
equipped with a finite setAi of actions that they can choose from at each round,
and a (not necessarily deterministic) reward function Ri :

∏
i∈P Ai → R

that specifies their payoff (or reward) for any given action profile. Using this
language, we can easily describe games such as rock-paper-scissors: a two-
player game where each player has the action set {rock, paper, scissors} and
where the rewards for each outcome are the well-known ones.

While fascinating in its own right, the study of games has also been a
fertile ground for breakthroughs in Artificial Intelligence. Games, in particular,
have served as a favourite benchmark for the development of learning agents.
Before the advent of ChatGPT, many of the most celebrated milestones in
Artificial Intelligence were associated with AI surpassing human performance
in playing a game. I am thinking, of course, of Kasparov vs Deep Blue, and
more recently AlphaGo vs Lee Sedol. Other lesser-known but still surprising
examples include AlphaStar and IBM Watson. Moreover, companies such
as DeepMind have shown strong interest in developing agents capable of
competing in progressively more complex games, and even across multiple
games. This suggests their belief that strategic reasoning (i.e., doing well
in games) can serve as a meaningful proxy for intelligence. And there is
good reason to believe this is justified: the mathematical structure of games
can be used to describe real-world decision-making scenarios, justifying the
substantial investments in agents that just play games.

While the examples mentioned above feature learning agents playing
against humans, it is natural to generalise the setting to agents playing against
one another. This happens for example, in the World Computer Chess Cham-
pionship, which has taken place annually since the 1970s. It is in this context
that the question arises: What can the interaction of learning agents over games
tell us about learning mechanisms? This question parallels insights into hu-
man nature that can come from studying how humans interact over games,
of which I only give one example. There are multiple behavioural studies of
the dictator game, in which one player has to decide how to allocate a finite
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amount of resources between themselves and another player, who has no
say in the matter. While the dictator keeping all the resources is the strategy
that guarantees the highest payoff, experiments show that adults rarely do so,
suggesting that fairness is an important factor in human strategic behaviour
and is part of the utility function that humans optimise for.

So the question remains: What do machines learn to do in this scenario?
This is the question we study in this part, broadly framed as: What kind
of behaviour can arise from the strategic interaction of learning agents who
are simultaneously learning to play a common game? Besides the genuine
mathematical interest, these questions are of importance because learning
agents are increasingly used in practice to guide many real-world operations
such as trading, auctions, and more. Studying the dynamics that can arise
when agents learn simultaneously is therefore important for understanding
the type of long-term effects we can expect in practice in multi-agent learning
environments.

Before discussing the contributions of each chapter, we introduce the
concept of strategy. Indeed, while we have defined the concept of a game,
we have not yet explained how players are modelled. In this part, a player
at any given time is determined by their strategy, a probability distribution
over the set of actions available to them. Given a strategy profile (that is, a
vector containing a strategy for each player), each player has an associated
expected reward, the mathematical expectation of the reward obtained when
all players independently draw actions according to their distribution. More
formally, our research goal is to study the dynamics that emerge over the
space of strategy profiles, under the assumption that each player is a learning
agent who adapts their strategy in order to maximise their expected reward,
according to a specific learning algorithm.

5 Reinforcement Learning, Collusion, and the Folk Theorem

In Chapter 5, we consider a repeated game setting. At each round, players “Scientific truth is
beyond loyalty and

disloyalty.”
—I. Asimov—

simultaneously apply Reinforcement Learning (RL) algorithms to iteratively
adjust their strategies, which possibly condition on the recent history of play,
in order to improve their expected reward.

When the players simultaneously apply learning algorithms, a dynamical
system is induced in each agent’s strategy space. These dynamics describe how
each agent’s decisions influence the learning trajectories of the other agents
by shaping the environment in which they learn.

To establish whether a strategy profile is learnable (meaning that there is
a set of initial conditions with non-zero measure from which the dynamics
converge to it) we formulate a pair of variational inequalities that must be
satisfied. These inequalities are typically derived in the context of stochastic
games, where players condition their actions on a common public state. Our
approach extends this framework to settings in which players condition their
actions on private states or histories, marking the first generalisation of this
kind. We further characterise the full set of learnable strategy profiles, and
identify the associated payoff vectors, ultimately establishing a Folk Theorem8

for multi-agent learning in repeated games.
8A result describing which payoff profiles can be reached by the learning dynamics.
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To the best of our knowledge, this chapter presents the first Folk Theorem
for learning in general finite-player, finite-action games, thus extending the
literature in two different ways.

First, much of the literature on multi-agent RL focuses on static games,
overlooking the dynamics that emerge when agents repeatedly interact [San10;
MS18]. This represents a significant gap, since transitioning from single-agent
RL to multi-agent RL in the context of repeated interactions introduces funda-
mentally more complex strategic dynamics. In single-agent RL, the distinction
between learning in a one-shot environment and a repeated environment is
minimal, as the optimal strategy often involves repeating the one-shot opti-
mal strategy. In contrast, multi-agent RL in repeated games can give rise to
equilibrium strategies that support more complex and cooperative behaviours.

The second extension is to go beyond the more commonly studied classes of
potential games and zero-sum games (as, for example, in [LC03; DFG20; Per+21;
Fox+22; Mgu+21]). This broader framework allows for a greater perspective on
the type of behaviours that agents might learn, including long-term behaviours
that may be collusive, competitive, or of entirely different strategic character.

For the RL literature, this chapter highlights how game theory offers
a foundational framework for understanding which behaviours RL agents
can learn and under what circumstances. Conversely, for the game theory
literature, our findings shed new light on well-established solution concepts.
We show that, within the bounded memory framework, any strategy profile
in which every player is playing their strict best-response is learnable.

We state the main result of this chapter here, though we do not expect the
formal statement to be fully appreciated at this stage.

Theorem 5.5. Let π∗ ∈ Πℓ be an ℓ-recall strict equilibrium and q a non-negative
real number. Then, there exists a neighbourhood U of π∗ in Πℓ such that, for any
η > 0, for any π0 ∈ U , any p ∈ ( 12 , 1], and any positive m, there are (γi)i∈N

small enough such that we have the following: let (πn)n∈N be the sequence of
play generated by q-replicator learning dynamics with step sizes γni = γi

(n+m)p

and q-replicator estimates v̂ni (π
n) such that p+ ℓb > 1 and p− ℓσ > 1/2. Then,

P (πn → S(π∗) as n→∞) ≥ 1− η .

Here, Πℓ is the space of strategies with ℓ-recall (i.e. those that can condition
on up to ℓ past states); the topology is Euclidean; q-replicator learning dynamics
refer to a broad class of update rules that generalise (among other things)
gradient descent [Sak+23]; and the estimates v̂ni (πn) are unbiased estimates of
the gradient of the expected reward function at the point πn, subject to some
additional technical conditions.

6 Simultaneous Best-Response Dynamics in Random Potential Games

I decided to close my thesis with this chapter as a to be continued. . . state- “Manuscripts don’t
burn.”

—M. Bulgakov—
ment. It studies a topic of interest to both the graph theory and game theory
communities, two groups I hope to continue working with in the future9.

9This project started as a spin-off of a collaboration between the Game Theory and the Graph
Theory groups of LSE initiated by my collaborators for this chapter and I, and J. Skokan, following
the common interest in a paper by Johnston, Savery, Scott and Tarbush [Joh+24]
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We begin by introducing a variation of the setting described earlier. Con-
sider a game with a player set P , where each player i ∈ P has an identical
action set A. As suggested by the title, we are interested in random games,
i.e. deterministic games whose reward functions are drawn at random prior
to play. For a parameter λ ∈ [0, 1], we can construct a λ-correlated random
game by drawing independently for each action profile a ∈ AP the reward
vector (Ri(a))i∈P from a multivariate normal distribution with mean zero,
unit variances, and pairwise correlations λ. When λ = 1, all players share
identical reward functions, and the game is called a potential game.

This chapter focuses on a widely studied class of learning dynamics: si-
multaneous best-response dynamics (SBRD). Under this rule, at the end of
each round all players simultaneously update their deterministic strategies
by switching to the best response to the action profile just played. That is,
after each round, every player chooses the action that would have maximised
their reward against the opponents’ played actions. The process starts from
an arbitrarily fixed action profile agreed to in advance.

Once the game is drawn, the resulting SBRD is fully deterministic. Starting
from the initial profile, the players play s distinct action profiles before even-
tually entering a cycle of length ℓ. For fixed values of λ, A, and P , we may
ask: What are the expected values of s and ℓ? And what is the probability that
ℓ = 1 (i.e., that the dynamics converge to a Nash equilibrium)? These ques-
tions are of interest to both graph theorists, who may see this as a variant of a
random uniform walk over a lattice, and to game theorists, who are interested
in finding quick and reliable ways to find equilibria.

In this chapter, we characterise the limiting behaviour of SBRD in random
potential games as the number of actions grows. Our theoretical analysis is
supported by simulations in the two-player setting, while the multi-player
case is explored through numerical experiments. We also test how these
insights extend to games that are close to potential games, i.e. games with
highly correlated but not identical payoffs. Finally, we compare SBRD to the
benchmark learning methods of softmax gradient descent, both in terms of
convergence rate and in terms of the resulting rewards.

Our main theoretical result is as follows.

Theorem 6.1. Let ε ∈ (0, 1), F be a continuous real distribution, and G be
a two-player m-actions F -random potential game. If m is large enough, then
SBRD converges to a two-cycle in at most log ε

log(3/4) steps with probability at least
1− ε.
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Part I

A MATHEMATICIAN COLOURING



It isn’t only art that’s incompatible with happiness; it’s
also science.

A. Huxley1
On Product Schur Triples in the Integers

An ordered triple of positive integers (a, b, c) (not necessarily distinct) is called a Schur triple
if a+ b = c1. The smallest integer n such that every k-colouring of the set [n] := {1, . . . , n}
contains a monochromatic Schur triple is denoted by S(k) and called the Schur number2 of
k. In 1917, Schur [Sch17] proved the following bounds:

3k + 1

2
≤ S(k) ≤ ⌊k!e⌋ .

In 1966, Abbott and Moser [AM66] introduced a technique, refined by Abbott and Han-
son [AH72], to obtain lower bounds for S(k). This method gives S(k) ≥ c321k/5 when
paired with Heule’s result S(5) = 161 [Heu18]. The upper bound was improved by Irv-
ing [Irv74] to ⌊k!(e− 1

24 )⌋ by applying a result of Whitehead [Whi73] on Ramsey numbers.
Determining the asymptotic behaviour of S(k) remains an open problem.

In 1977, Abbott and Wang [AW77] explored a variation of this line of study. In their
work, they define a set A to be k-Schur if every k-colouring of A contains a monochromatic
Schur triple, and study the size g(k, n) of a largest subset A ⊆ [n] that is not k-Schur. In
particular, for every k and n, they provide a method to construct a large non-k-Schur subset
of [n]. They conjecture that this construction is extremal (this is known as the Abbott–Wang
Conjecture). We give as an example their construction for the case k = 2. Let A be the set of
integers in [n] not divisible by 5. Note that A has size ⌈4n/5⌉. By colouring red the elements
of A congruent to 1 or 4 modulo 5, and the rest blue, we create no monochromatic Schur
triple. In 1980, Hu [Hu80] proved that this construction is extremal for k = 2.

In general, the method by Abbott and Wang gives

g(k, n) ≥ n−
⌊

n

H(k)

⌋
,

where H(k) is the smallest integer such that every k-colouring of [H(k)] has a monochro-
matic Schur triple modulo H(k) + 1. While it is conjectured that this is tight for all k,
only the cases k = 1 —which can be obtained considering that if A is sum-free then A and
{max(A)− a : a ∈ A} are disjoint, thus |A| ≤ ⌈n/2⌉— and k = 2 are known.

In this chapter, we introduce the notion of product Schur triple, and study what we
believe to be natural variations of both Schur’s Theorem and the Abbott–Wang Conjecture,

1Some authors, such as Schoen [Sch99], define a Schur triple as a set {a, b, c} such that a+ b = c. While this
does not affect existence results, it changes counting statements: for instance, (2, 3, 5) and (3, 2, 5) are distinct
ordered triples by our definition but correspond to the same set {2, 3, 5}.

2We warn the reader that some authors, such as Heule [Heu18], define S(k) as the largest n for which there
exists a k-colouring of [n] with no monochromatic Schur triple.

16
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in deterministic and random settings. Our work partly originated from a question posed by
Prendiville [Pre22] (see Problem 1.11 in the concluding remarks).

We say that an ordered triple (a, b, c) of integers (not necessarily distinct) forms a product
Schur triple if ab = c. We call a set of integers product-free if it contains no such triple.

One might ask in what way classical Schur results translate to this new multiplicative
setting. Beginning such a translation is the main focus of this chapter. A first example.
Considering 2a · 2b = 2a+b and by applying Schur’s Theorem to the set of powers of 2
contained in [2, n] = {2, 3, . . . , n},3 we can see the following. If n is sufficiently large, then
every k-colouring of [2, n] contains a monochromatic product Schur triple. This was already
observed by Abbott and Hanson in [AH72], who also proved that values of n lower than
23·S(k−1)−2 do not suffice.

The deterministic setting

Following the definition of Abbott and Wang [AW77] of g(k, n), for a fixed positive integer k
and sufficiently large n, we define g∗(k, n) as the smallest integer s such that everyA ⊆ [2, n]

of size at least s, under any k-colouring, contains a monochromatic product Schur triple. Our
first result provides upper and lower bounds on g∗(k, n). These bounds depend on classical
Schur numbers and on a related quantity we call the double-sum Schur number, previously
studied by Abbott and Hanson [AH72] in their analysis of strongly sum-free sets. We define
the double-sum Schur number S′(k) as the smallest n ∈ N such that every k-colouring of [n]
contains a monochromatic solution4 to either a+ b = c or a+ b = c− 1.

Theorem 1.1. Let ε > 0, and let k be a positive integer. For every n > ( 2ε )
S(k)2 we have

n− n1/S′(k) ≤ g∗(k, n) ≤ n− (1− ε)n1/S(k) .

Numerical computations give S′(k) = S(k) for k ∈ {1, 2, 3} (we have S(1) = 2, S(2) =

5, S(3) = 14). Hence, Theorem 1.1 is asymptotically optimal for k ≤ 3. For k = 4,
we have S′(4) = 41 < 45 = S(4). For k > 4, computing S(k) has proven extremely
challenging [Heu18] and precise values of S′(k) are not known to us. The lower bound
S′(k) ≥ 3S(k − 1) − 2 was obtained by Abbott and Hanson [AH72] and can be used to
obtain an explicit lower bound for S′.

Another question that raised interest is the following. For which k-colourings of [n] the
minimum number of monochromatic Schur triples is attained? A first result in this direction
was accidentally obtained by Graham, Rödl and Ruciński [GRR96], who showed that any
2-colouring of [n] contains at least n2/19 + O(n) monochromatic Schur triples.5 In the
late 1990s, Schoen [Sch99], and independently Robertson and Zeilberger [RZ98], improved
this bound to n2/11 + O(n). This is tight, as shown by the colouring [n] = R ∪ B with
R = ( 4n11 ,

10n
11 ] and B = [n] \R. For k > 2, similar results are not known.

In the same spirit, Prendiville [Pre22] asked for the minimum number of monochromatic
product Schur triples in any 2-colouring of [2, n]. Our next theorem establishes a lower
bound of n1/3−o(1).

3Throughout, we focus on subsets of [2, n] as we want to exclude from our counting product Schur triples of
the form (1, a, a) or (a, 1, a). This mirrors the standard exclusion of 0 from [n] when counting classical Schur
triples. We may occasionally abuse notation and write [n] for [2, n].

4Here and in the following, given a coloured set X and an equation (e.g. a+ b = c), we call a monochromatic
solution of the equation, an ordered triple (x1, x2, x3) of same-coloured elements from X satisfying the equation.

5Note that, due to our use of ordered triples, our bounds differ by a multiplicative factor of two from those in
the literature that consider Schur triples as unordered sets.
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Theorem 1.2. For every ε > 0, there exists n0(ε) ∈ N such that for all n ≥ n0(ε), every
2-colouring of [2, n] contains at least n1/3−ε monochromatic product Schur triples.

Independently and concurrently, Aragão, Chapman, Ortega, and Souza [Ara+24] proved
that any 2-colouring of [2, n] contains at least ( 1

2
√
2
− o(1))n1/2 log(n) monochromatic

solutions to ab = c, and that this is asymptotically optimal as shown by the colouring
[n] = R ∪B with R = ((n2 )

1
2 , n2 ] and B = [n] \R. They also established a lower bound of

Ω(n1/S(k−1)) for larger values of k. They show that this lower bound is tight for k ≤ 4.
We believe that the minimum number of monochromatic sums in any k-colouring of

[n] can be expressed as a function of Schur numbers. In support of this, we observe that
the k − 1-colouring of [n1/S′(k), n] used to construct the lower bound for g∗(k − 1, n) in
Theorem 1.1 can be extended to a k-colouring of [2, n] which produces O(n1/S

′(k−1) log(n))

monochromatic product Schur triples, which is a further proof for the case k = 3, 4 that the
lower bound of [Ara+24] is tight (as S(k) = S′(k) for k = 2, 3).

Product Schur triples in random sets

As already known to Cameron and Erdős [CE90], among all subsets of [n] that do not contain
a Schur triple, only two achieve the maximal size of ⌈n/2⌉: the set of odd numbers in [n],
and the interval (n/2, n] ∩ N. Therefore, a typical set of size n/2 contains a Schur triple.
From a probabilistic perspective, it is natural to ask: For which densities does a typical random
subset of [n] contain a Schur triple?

To formalise this question, we begin with some definitions. Given a set A ⊆ N and
p ∈ [0, 1], we denote with Ap the random set formed by including each element of A
independently at random with probability p. For a collection P of subsets of N, usually
referred to as a property, we say that a function p̂ : N→ [0, 1] is a threshold for P in A if

P [Ap ∈ P ]→

0 if p≪ p̂

1 if p≫ p̂
.

Here and in the following, p≪ p̂ stands for p = o(p̂).
A well-celebrated result of Bollobás and Thomason [BT87] guarantees that threshold

functions exist for any non-trivial monotone property. Moreover, any two such threshold
functions are asymptotically equivalent: if p̂α and q̂α are both thresholds for P , then p̂α =

Θ(q̂α). For this reason, we refer to any specific threshold function as the threshold function.

A routine application of the second moment method shows that the threshold function
for [n]p to contain a Schur triple is n−2/3. However, in the case of product Schur triples,
the situation is more delicate and the same method is not directly applicable. Nevertheless,
we are able to prove the following result which, to the best of our knowledge, is the first
threshold result for non-linear equations in random subsets of integers.

Theorem1.3. The threshold for [2, n]p to contain a product Schur triple is of order (n log(n))−
1
3 .

The lower bound (i.e. the statement that [2, n]p does not contain a product Schur triple
with high probability6 when p ≪ (n logn)−1/3) follows from a standard first-moment
argument. The main challenge lies in proving the corresponding upper bound.

6A family of events (En)n∈N is said to occur with high probability if limn→∞ P[En] = 1.



on product schur triples in the integers 19

Product Schur triples in randomly perturbed sets

One may also ask: How much do we need to randomly perturb a set to ensure that a given
property appears?

This line of inquiry dates back to the work of Bohman, Frieze, and Martin [BFM03], who
investigated how many random edges must be added to an arbitrary dense graph to make
it Hamiltonian with high probability. In 2018, Aigner-Horev and Person [AP19] initiated
the study of randomly perturbed structures in additive combinatorics. They showed that
if A ⊆ [n] is a dense set and p ≫ n−2/3, then with high probability every 2-colouring of
A ∪ [n]p contains a monochromatic Schur triple. This result is best possible: if p≪ n−2/3,
then [n]p contains no Schur triple with high probability. In that case, one may take A to
be the set of odd numbers, colour it red, and colour the elements of [n]p \A blue to avoid
a monochromatic Schur triple. More recently, Das, Knierim, and Morris [DKM24] refined
these results by analysing random perturbations of sets whose sizes range between

√
n and

εn. The analogous non-coloured problem is considerably simpler.7

Inspired by the work of Aigner-Horev and Person [AP19], and of Das, Knierim, and
Morris [DKM24], we initiate the study of product Schur triples in randomly perturbed sets.
Let α : N→ (0, 1] be a function; we say that a function p̂α : N→ (0, 1) is a threshold for the
α-randomly perturbed product Schur property if it satisfies the following conditions:

(A1) There exists a sequence of sets (Cn)n∈N with Cn ⊆ [2, n] and |Cn| ≥ (1 − α(n))n,
such that for all p≪ p̂α we have

lim
n→∞

P [Cn ∪ [2, n]p contains a product Schur triple] = 0 .

(A2) For all sequences of sets (Cn)n∈N with Cn ⊆ [2, n] and |Cn| ≥ (1− α(n))n, and for
all p≫ p̂α, we have

lim
n→∞

P [Cn ∪ [2, n]p contains a product Schur triple] = 1 .

Observe that if α ≡ 1, then p̂α reduces to the threshold for [2, n]p to contain a product
Schur triple. If α ≤ 1/

√
n, then Cn necessarily contains a product Schur triple, and we may

take p̂α = 0 (note that in this case, condition (A1) is vacuously satisfied). More generally,
a threshold p̂α is known to exist for every non-increasing function α; see [BT87]. As with
standard thresholds, if two functions p̂α and q̂α both satisfy conditions (A1) and (A2), then
p̂α = Θ(q̂α). For this reason, we again slightly abuse notation and refer to any such function
p̂α as the threshold function for the α-randomly perturbed product Schur property.

To state our first result in the randomly perturbed model, we introduce the following
constant, which is related to the number of integers in [n] that have a divisor within a given
interval [For08].

δ = 1− 1 + log log(2)

log(2)
∼ 0.086071 . (1.1)

See Equation (1.11) in Section 1.3 for the precise statement in which the constant δ is used.
The smallest function α for which we are able to determine the threshold p̂α for the

appearance of a product Schur triple in randomly perturbed sets, is of order (log(n))−δ+o(1).

7If A is dense and p ≫ n−1, then A∪ [n]p contains a Schur triple with high probability, since (A−A)∩ [n]
is also dense. This bound is tight, as [n]p = ∅ with high probability if p ≪ n−1, and there exist dense sets such as
the odd numbers that contain no Schur triple.
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Theorem 1.4. For (log(n))−δ(log log(n))3/2+δ ≤ α = o(1), we have p̂α(n) = n−1/2+o(1)

is a threshold for the α-randomly perturbed product Schur property.

We have also obtained upper and lower bounds on the threshold for the α-randomly
perturbed product Schur property for a wide range of values of α, which coincide when α is
constant. Moreover, these bounds interpolate between the regime n−1/2 from Theorem 1.4
and n−1/3, which is the approximate threshold for [2, n]p alone (see Theorem 1.3).

Describing these bounds requires two auxiliary functions f : (0, 1)→ R and β : (0, 1)→
R, defined by

(4f(α))δ log(1/(2f(α)))−3/2 = α and β(α) =
f(α)

1 + 2f(α)
. (1.2)

Technical but elementary calculations show that for α ∈ (0, 2−7) we have f(α) ≤ 1/4, and

α1/δ
(
log
(
2α−1/δ

))−3/(2δ)

≤ f(α) ≤ α1/δ
(
log
(
2α−1/δ

))3/(2δ)
. (1.3)

A proof of this estimate is given in Claim 1.9. Our general theorem in the randomly perturbed
setting is stated below. Note that the parameter α ranges from a logarithmic-like function to
a fixed constant.

Theorem 1.5. There exists a constant 0 < γ ≤ 1 such that for any α with

(log(n))−δ(log log(n))3/2+δ ≤ α ≤ 2−7 ,

the following holds:

(B1) There exists a sequence of sets (Cn)n∈N with |Cn| ≥ (1 − 2γ−1α)n such that for all
p≪ n−

1
2+β(α) we have:

lim
n→∞

P [Cn ∪ [2, n]p contains a product Schur triple] = 0 .

(B2) For any sequences of sets (Cn)n∈N with |Cn| ≥
(
1− 2−1γα

)
n and for all p ≫

α−1n−
1
2+β(α) we have:

lim
n→∞

P [Cn ∪ [2, n]p contains a product Schur triple] = 1 .

If (log(n))−δ(log log(n))3/2+δ ≤ α = o(1), then Theorem 1.5 directly implies Theo-
rem 1.4. On the other hand, when α ≥ 1

2γ, the set Cn may be empty, in which case the
threshold is (n logn)−1/3, as given by Theorem 1.3. We believe that the theorem in fact holds
with γ = 1, and that it can be further improved so that the exponent of n in p̂α tends towards
−1/3 as α increases. We note that more accurate numerical estimates of f(α) are available
for α ≥ 2−7 compared to those in (1.3), but the constant γ remains the main bottleneck.

The remainder of this chapter is organised as follows. Section 1.1 contains the proofs
of Theorems 1.1 and 1.2; Section 1.2 proves Theorem 1.3; Section 1.3 establishes Theorem 1.5;
and Section 1.4 presents some open problems.

1.1 Product Schur in deterministic sets

We begin this section with the proof of Theorem 1.1.
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Proof of Theorem 1.1. We first prove the upper bound. Let ε > 0 and k, n ∈ N. Assume for a
contradiction that we can find a set A ⊆ [2, n] of size larger than n− (1− ε)n1/S(k) which
can be partitioned into k product-free sets A1, . . . , Ak . Fix A′ = [ 12εn

1/S(k), n1/S(k)] which
has size (1− 1

2ε)n
1/S(k).

Importantly, for distinct a, b ∈ A′ and any choice of i, j ∈ [S(k)] we have that ai ̸= bj .
Indeed, without loss of generality we have j > i and it suffices to show that for all b ∈ A′

we have b j
i > n1/S(k), because this implies b j

i ̸∈ A′ and therefore ai ̸= bj for all a ∈ A′.
Because 1

2εn
1/S(k) ∈ A′ and for any b ∈ A′ we have b j

i ≥ ( 12εn
1/S(k))

j
i , our statement

is implied by ( 12εn
1/S(k))

j
i > n1/S(k) for any choice of j > i in [S(k)]. It suffices to verify

the case j = S(k), i = S(k) − 1 and a short calculation shows that this holds because
( 12ε)

S(k)2 > n−1 by assumption.
Next, we show that there is an element a inA′ such that P (a) :=

{
ai : i = 1, . . . , S(k)

}
is contained in A. Indeed, notice that for all a in A′ we have P (a) ⊆ [2, n]. Moreover, if
a, a′ ∈ A′ are distinct, then P (a) and P (a′) are disjoint. Therefore, if for each one of the
elements of A′ a different element of [2, n] was missing from A, we would get

|A| ≤ n− |A′| = n− (1− 1
2ε)n

1/S(k) .

Fix now an a ∈ A′ such that P (a) ⊆ A. By applying loga(·) to the elements of P (a), the
partition A1, . . . , Ak of A restricted to P (a) induces a partition S1, . . . , Sk of [S(k)]. As the
partition A1, . . . , Ak is product-free, the partition S1, . . . , Sk is sum-free, in contradiction
to the definition of S(k).

It remains to give the construction of a colouring for the lower bound. For an integer k let
χ : [S′(k)− 1]→ [k] be a k-colouring of [S′(k)− 1] without monochromatic a+ b = c and
a+ b = c−1. We colour each integer a ∈ (n1/S

′(k), n] with colour χ(⌈S′(k) · logn(a)⌉−1).
For a contradiction assume that there is a monochromatic product ab = c in this colouring.
Then let a′ = ⌈S′(k) · logn(a)⌉−1, b′ = ⌈S′(k) · logn(b)⌉−1, and c′ = ⌈S′(k) · logn(c)⌉−1

and note that logn(a) + logn(b) = logn(c) implies a′ + b′ = c′ or a′ + b′ = c′ − 1. But as
ab = c was monochromatic we have χ(a′) = χ(b′) = χ(c′), a contradiction.

In order to prove Theorem 1.2, we need the following supersaturation lemma. This lemma
is sharp up to a constant factor, as the set [n] \ [⌊ 12

√
n⌋] contains at most 4n product Schur

triples. Indeed, if a, b, c ∈ [n] \ [⌊ 12
√
n⌋] are such that ab = c, then

√
n/2 ≤ a, b (and hence

a, b ≤ 2
√
n as their product is at most n), which implies that the number of product Schur

triples in the set is at most (2
√
n)2 = 4n.

Lemma 1.6. There exists n0 ∈ N such that the following holds for all n ≥ n0. If A ⊆ [2, n] is
a set of size at least n− 1

2

√
n, then there are at least n/8 solutions in A to ab = c.

A tool needed in the proof of Lemma 1.6 and Theorem 1.2 is the following well known
result of number theory [HW79] on the number of divisors of an integer.

Lemma 1.7. For every ε > 0 there exists n0(ε) > 0 such that if n ≥ n0(ε), then n has at
most nε divisors.

Proof of Lemma 1.6. Let us write B = A ∩ [
√
n] and C = [n] \A and note that

|C| ≤
√
n

2
≤ |B| .

Let A be the set of triples (a, b, c) ∈ B × B × A such that ab = c and let C be the set of
triples (a, b, c) ∈ B ×B × C such that ab = c. Our main goal is to lower bound the size of
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A. For this, we first note that

|A|+ |C| = |{(a, b, c) ∈ B ×B × [n] : ab = c}| = |B|2 ≥ n/4 .

In the last inequality, we used that |B| ≥
√
n/2. This implies that |A| ≥ n/4 − |C|, and

hence it suffices to upper bound the size of C . Note that |C| is at most the number of solutions
of ab = cwith c ∈ C . Fix a small ε > 0 and consider the n0 = n0(ε) given by Lemma 1.7. As
each c ∈ C contains at most nε divisors, it follows that |C| ≤ nε|C| ≤ n1/2+ε. We conclude
that the size of A is at least n/4− n1/2+ε ≥ n/8, as required.

Proof of Theorem 1.2. Let us fix ε ∈
(
0, 1

12

)
, take n to be large enough, and fix a red-blue

colouring of [2, n]. We denote by R the set of numbers in [⌊n1/3⌋] that are coloured red, and
by B the set of those coloured blue. Without loss of generality, we assume that |R| ≥ |B|.

If |B| < n1/6/2, then |R| ≥ n1/3 − n1/6/2, and hence by Lemma 1.6 we would have at
least n1/3/8 red product Schur triples. Thus, we may assume that |R| ≥ |B| ≥ n1/6/2. Set

PR = {ab : a, b ∈ R} and PB = {ab : a, b ∈ B} .

By Lemma 1.7, we have that these two sets have size at least n1/3−ε. Moreover, we may
assume that PR contains at least n1/3−ε/2 blue elements and that PB contains at least
n1/3−ε/2 red elements, otherwise we are done.

For a set {s1, s2, s3, s4}, we say that (a, b, c) is a product Schur triple associated to it if
there exist distinct indices i, j, k ∈ {1, 2, 3, 4} such that a = si, b = sjsk and c = sisjsk.
We now define S to be the set of all pairs

(
(a, b, c), {r1, r2, b1, b2}

)
with the following

properties:

(i) r1, r2 ∈ R, b1, b2 ∈ B (all distinct), and the products r1r2 ∈ B and b1b2 ∈ R;

(ii) (a, b, c) is a product Schur triple associated to {r1, r2, b1, b2}.

We claim that if {r1, r2, b1, b2} is a set as in (i), then there exists a monochromatic product
Schur triple associated to {r1, r2, b1, b2}. In fact, if r1r2b1 is blue, then (b1, r1r2, r1r2b1) is a
blue product Schur triple, and if b1b2r1 is red, then (r1, b1b2, b1b2r1) is a red product Schur
triple. Thus, we may assume that this is not the case, and hence we have that r1r2b1 is red
and that b1b2r1 is blue. Now, if r1b1 is red, then (r2, r1b1, r1r2b1) is a red product Schur
triple; if r1b1 is blue, then (b2, r1b1, b1b2r1) is a blue product Schur triple. This proves our
claim.

As we are assuming that PR = {ab : a, b ∈ R} contains at least n1/3−ε/2 blue elements
and that PB = {ab : a, b ∈ B} contains at least n1/3−ε/2 red elements, we have at least
n2/3−2ε/4 sets {r1, r2, b1, b2} as in (i). This, together with our previous claim, implies that

|S | ≥ n2/3−2ε/4 . (1.4)

Fix now a monochromatic product Schur triple (a, b, c). By Lemma 1.7, there are at
most nε ways to write c as a multiplication of three numbers, say c = s1s2s3. Given s1, s2
and s3, there are at most max{|R|, |B|} ≤ |R| ways to choose a fourth element s4 so that(
(a, b, c), {s1, s2, s3, s4}

)
is in S . Thus,

|S | ≤ nε|R|#{monochromatic product Schur triples} . (1.5)

By combining (1.4) and (1.5), and using that |R| ≤ n1/3, we obtain that the number of
monochromatic product Schur triples is at least

n2/3−2ε

4nε|R|
≥ n1/3−4ε .

This concludes our proof.
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1.2 Product Schur triples in random sets

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. To lower bound the threshold we want to estimate the expected number
of product Schur triples. In [2, n] there are at most

√
n product Schur triples (a, b, c) with

a = b. We denote the remaining triples by Tn and note that |Tn| is exactly the number of
ordered pairs (a, b) of elements of [2, n] such that a ·b ≤ n and a ̸= b. Next, we count |Tn|/2,
which is precisely the number of triples (a, b, c) with a < b and a · b ≤ n. Note that

1

2
|Tn| =

⌊√n⌋∑
a=2

|{b ∈ [2, n] : a < b, a · b ≤ n}| =
⌊√n⌋∑
a=2

|{b ∈ [2, n] : a · b ≤ n} \ [a]| .

As |{b ∈ [2, n] : a · b ≤ n}| =
⌊
n
a

⌋
, it follows that

1

2
|Tn| =

⌊√n⌋∑
a=2

(⌊n
a

⌋
− a
)
=

⌊√n⌋∑
a=2

⌊n
a

⌋
+O(n) =

⌊√n⌋∑
a=2

n

a
+O(n) .

As the harmonic numbers Hx =
∑x

i=1
1
i asymptotically behave like log(x), it follows that

|Tn| = (1 + o(1))n log(n).
Let now Xp be the random variable which counts the number of product Schur triples in

[2, n]p. We have

E [Xp] =
∑

(a,b,c)∈Tn

P [(a, b, c) ∈ [2, n]p] +O(p2
√
n) = O(p3n log(n) + p2

√
n) .

Thus, if p ≪ (n log(n))−1/3, then E [Xp] ≪ 1. By Markov’s inequality8, it follows that
P [Xp ≥ 1]→ 0 if p≪ (n log(n))−1/3. This implies that p̂(n) ≥ (n log(n))−1/3.

In order to prove that p̂(n) ≤ (n log(n))−1/3, we consider two independent copies of a
random set. As containing a product Schur triple is a monotone property, we can assume that
p = f(n)(n log(n))−1/3, where f(n)→∞ as n→∞ but f(n) ≤ log(n). Let q ∈ [0, 1] be
such that (1− q)2 = 1− p; note that q is asymptotically equal to p/2. Let A := [2, n]q and
B := [2, n]q to be two independent random sets and set C = A ∪ B. Observe that q was
chosen so that C has the same distribution as [2, n]p.

To show that C contains a product Schur triple with high probability, we claim that it
suffices to show that

∣∣A2 ∩ [2, n]
∣∣≫ 1/q with high probability. Indeed, set Y =

∣∣A2 ∩B ∩
[2, n]

∣∣. Observe that Y ≥ 1 if and only if there exist x, y ∈ A (not necessarily distinct) and
z ∈ B such that xy = z. If

∣∣A2 ∩ [2, n]
∣∣≫ 1/q, then EB(Y )≫ 1, and hence by Chernoff’s

inequality9 we have
PB

[
Y = 0

]
≤ e−ω(1) .

Thus, Y ≥ 1 with high probability as long as
∣∣A2 ∩ [2, n]

∣∣≫ 1/q with high probability.
Next, we show that for a typical set A, no number c ∈ [2, n] should have more than

two representatives (a, b) ∈ A×A such that a ≤ b and ab = c. Indeed, for each c ∈ [2, n]

consider the set of representatives of c given by

Pc = {(a, b) : a, b ∈ [2, n], a ≤ b and ab = c} .
8Markov’s inequality states that if Xp is a non-negative random variable and t > 0, then P [Xp ≥ t] ≤

E [Xp] /t.
9Chernoff’s inequality states that ifXp is a binomial random variable and t ≥ 0, thenP [|Xp − E [Xp] | ≥ t] ≤

2e−t2/(2E[Xp]+t).
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Let ε ∈ (0, 10−1) be a constant. If n is sufficiently large, then number of divisors of c is
at most O(nε), for all c ∈ [n] by Lemma 1.7. Thus, |Pc| = O(nε) and hence Pc has at
most O(n3ε) subsets of size three. For each {(ai, bi) : i ∈ [3]} ⊆ Pc, the probability that
(ai, bi) ∈ A×A for all i ∈ [3] is at most q5, as one of the elements can be repeated in case c
is a perfect square. Thus, we have

P [|Pc ∩ (A×A)| ≥ 3] = O(n3εq5) (1.6)

for all c ∈ [2, n]. By (1.6) combined with the union bound, it follows that the event that there
exists a c ∈ [2, n] for which |Pc ∩ (A× A)| ≥ 3 has probability at most O(n1+3εq5). This
tends to 0 as n tends to infinity, and hence |Pc ∩ (A×A)| ≤ 2 for all c ∈ [2, n] with high
probability.

From the discussion above, it follows that∣∣A2 ∩ [2, n]
∣∣ ≥ 1

2

∣∣∣{(a, b) : a, b ∈ A, a ≤ b and ab ≤ n
}∣∣∣

with high probability. In other words, we have∣∣A2 ∩ [2, n]
∣∣ ≥ 1

2

∑
a∈A∩[

√
n]

∣∣[a, n/a] ∩A∣∣ = 1

2

∑
a∈[2,

√
n]

∣∣[a, n/a] ∩A∣∣1a∈A

with high probability. By Chernoff’s inequality we have with high probability that for every
a ≤
√
n/2 it holds that∣∣[a, n/a] ∩A∣∣ ≥ (1± 2−1)q

(n
a
− a
)
≥ qn

4a
.

This implies that

|A2 ∩ [2, n]| ≥ qn

8

∑
a∈[2,

√
n/2]

1a∈A

a
(1.7)

with high probability.
We now bound the right-hand side of (1.7). We decompose almost the whole interval

[2,
√
n/2] into disjoint sub-intervals of size 1/q. Note that

[2,
√
n/2] ⊇

⌊q
√
n/4⌋⋃

i=1

(i/q, (i+ 1)/q] .

Then, we have

∑
a∈[2,

√
n/2]

1a∈A

a
≥

⌊q
√
n/4⌋∑

i=1

q

i+ 1
1A∩(i/q,(i+1)/q]̸=∅ . (1.8)

As the size of the interval (i/q, (i+ 1)/q] ∩ N is of order 1/q and A = [2, n]q , we have

P [A ∩ (i/q, (i+ 1)/q] = ∅] ∼ (1− q)1/q ∼ e−1 . (1.9)

By simplicity, denote

S :=

⌊q
√
n/4⌋∑

i=2

Ji
i
,

where Ji := 1A∩((i−1)/q,i/q]̸=∅ for every i ≥ 2. Note that (Ji)i are independent and
identically distributed Bernoulli random variables with constant probability, see (1.9). By
combining (1.7) and (1.8), it follows that

|A2 ∩ [2, n]| ≥ q2nS/8 (1.10)
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with high probability.
Our problem is now reduced to bounding S. Observe that

Var(S) =

⌊q
√
n/4⌋∑

i=2

Var(Ji)

i2
= Θ(1) and E(S) = Θ(log(n)) .

By Chebyshev’s inequality10, it follows that S = Θ(log(n)) with high probability, and hence
it follows from (1.10) that

|A2 ∩ [2, n]| = Ω(q2n log(n))≫ 1/q .

In the last inequality, we used that q = Θ(p) and that p ≫ (n log n)−1/3. This concludes
our proof.

1.3 Product Schur triples in randomly perturbed sets

For a positive integer n and an interval I ⊆ [2, n], we denote by

H(n, I) =
{
x ∈ [n] s.t. x = d · y, for some d in I

}
,

the set of positive integers in [n] that have a divisor in I . The main tool behind Theorem 1.5
is the following result of Ford [For08].

Theorem 1.8. There is an absolute constant γ ∈ (0, 1) such that for any integers n, y, z with
n ≥ 105, 100 ≤ y, y ≤

√
n, 2y ≤ z ≤ y2, and

u =
log(z)

log(y)
− 1 .

we have
γnuδ

(
log 2

u

)−3/2 ≤ |H(n, (y, z))| ≤ γ−1nuδ
(
log 2

u

)−3/2
. (1.11)

Before we prove Theorem 1.5, we shall need the following claim on the growth of f
stated in (1.3) above.

Claim 1.9. For α ∈ (0, 2−7) we have f(α) ≤ 1/4 and

α1/δ
(
log
(
2α−1/δ

))−3/(2δ)

≤ f(α) ≤ α1/δ
(
log
(
2α−1/δ

))3/(2δ)
. (1.12)

Proof. As the function g : R>0 → R given by g(z) = z−z attains its maximum at z = e−1

and as δ > 1/20, we have that for all z ∈ R>0,(
1

2z3/(2δ)

)z

=
1

2z
· 1

z3z/(2δ)
≤ e3/(2eδ) ≤ e12 .

Moreover, for all z ∈ R>0,

z log

(
1

2z3/(2δ)

)
≤ 12 . (1.13)

By setting y = z3/(2δ), it follows from (1.13) that y2δ/3 log((2y)−1) ≤ 12, and hence

yδ
(
log

(
1

2y

))3/2

≤ 123/2 ≤ 26 (1.14)

10Chebyshev’s inequality states that if X is a random variable and t > 0, then P [|X − E [X] | ≥ t] ≤
VarX/t2.



product schur triples in randomly perturbed sets 26

for all y ∈ R>0. In particular, it follows from (1.14) that, for all y ∈ R>0,

h(y) := yδ
(
log

(
1

2y

))−3/2

≥ 2−6y2δ . (1.15)

By using that α = 22δh(f(α)) (by definition of f , see (1.2)) and replacing y = f(α)

in (1.15), we obtain (
26−2δα

)1/(2δ)
=
(
26h(f(α))

)1/(2δ) ≥ f(α) . (1.16)

Thus, it follows from (1.16) that f(α) ≤ 1/4 for all α ∈ (0, 2−6−2δ).
As log(2/α1/δ) ≥ 4 for all 0 < α < (2e−4)δ and we are in the range where α <

2−6−2δ < (2e−4)δ , we obtain(
log

(
2

α1/δ

))−3/2

α ≤
(
log

(
2

α1/δ

))−δ

α ≤ 2−2δα = h(f(α)) ≤ (f(α))δ . (1.17)

The lower bound on f(α) follows raising each term in the inequalities above to the power of
1/δ. For the upper bound, as 2−2α1/δ ≤ f(α) (by the last inequality in (1.17)), we have

α = 4δf(α)δ
(
log

(
1

2f(α)

))−3/2

≥ 4δf(α)δ
(
log

(
2

α1/δ

))−3/2

. (1.18)

The upper bound on f then easily follows from (1.18).

Proof of Theorem 1.5. Let γ > 0 be given by Theorem 1.8 and let α be such that

(log(n))−δ(log log(n))3/2+δ ≤ α ≤ 2−7 ,

Set y = n
1
2−β(α) and z = n

1
2+β(α). First, let us show that γαn ≤ |H(n, (y, z))| ≤ γ−1αn.

Note that 2y ≤ z ≤ y2 if and only if
√
2 ≤ nβ(α) ≤ n1/6, which are satisfied by our choice

of α. Moreover, we have 100 ≤ y ≤ z−1 and y ≤
√
n, and hence we can apply Theorem 1.8.

Set
u =

log(z)

log(y)
− 1 =

log(z/y)

log(y)
=

4β(α)

1− 2β(α)
= 4f(α) .

The upper and lower bounds on |H(n, (y, z))| then follow from Theorem 1.8 and the definition
of f(α).

We start by proving item (B1). Set

Cn :=
[
n1−2β(α), n

]
\H(n, (y, z)) .

We now claim that n−2β(α) ≤ γ−1α. In fact, as f(α) < 1, we have β(α) ≥ f(α)/2.
Moreover, as α ≥ (log n)−δ(log log n)

3
2+δ , it follows from the lower bound on f(α) in

Claim 1.9 that

β(α) ≥ α
1
δ

2(log(2α− 1
δ ))

3
2δ

≥ (log(n))−1(log log(n))
3
2δ+1

2(log(2α− 1
δ ))

3
2δ

≥ log log(n)

4 log(n)
.

In the last inequality, we actually only used that α ≥ (logn)−δ and that log(2 log(n)) ≤
2 log log(n). Therefore,

n−2β(α) ≤ (logn)−1/2 ≪ (logn)−δ(log logn)
3
2+δ ≤ α .

This proves our claim. Since n1−2β(α) ≤ γ−1αn, it follows that |Cn| ≥ (1 − 2γ−1α)n,
which is void unless α < 1

2γ.
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Now, let 2 ≤ a ≤ b ≤ c ≤ n be such that ab = c and suppose that {a, b, c} ∩ Cn ̸= ∅.
We claim that we must have a ≤ n

1
2−β(α). Indeed, if {a, b} ∩ Cn ̸= ∅, then this implies

that b ≥ n1−2β(α), and hence a ≤ n2β(α) ≤ n
1
2−β(α) (as β(α) ≤ 1/6 by our choice of

α). If c ∈ Cn, then c /∈ H(n, (y, z)), and hence both a and b do not belong to the interval
(n

1
2−β(α), n

1
2+β(α)). This implies that a ≤ n 1

2−β(α), otherwise we would have ab > n.
As p is much smaller than the threshold for [2, n]p to contain a product Schur triple, if

Cn ∪ [2, n]p contains a product Schur triple, then [2, n]p contains an element in [n
1
2−β(α)].

Thus, if p≪ n−
1
2+β(α), then

P [Cn ∪ [2, n]p contains a product Schur triple] ≤ P
[∣∣[n 1

2−β(α)]p
∣∣ ≥ 1

]
→ 0 .

For item (B2), let (Cn)n∈N be any sequence such that |Cn| ≥ (1 − 1
2γα)n. By mono-

tonicity, we may assume that p ≪ 1. Then, we have that the set C ′
n := Cn ∩H(n, (y, z))

has size at least

|C ′
n| ≥ |Cn|+ |H(n, (y, z))| − n ≥ (1− 1

2γα)n+ γαn− n ≥ 1
2γαn .

Let now G be a graph with vertex set [2, n 1
2+β(α)] and edge set E(G) = {{a, b} : ab ∈ C ′

n}.
Let d be the average degree ofG, that is, d = 2e(G)/v(G) and setX = {v ∈ V (G) : d(v) >

d/2}. Note that

|X|v(G) + v(G)d/2 ≥ |X|v(G) + (v(G)− |X|)d/2 ≥ dv(G) .

This implies that |X| ≥ d/2. As e(G) ≥ |C ′
n|, it follows that |X| ≥ γαn 1

2−β(α)/2.
As containing a product Schur triple is a monotone property, we can assume that p =

f(n)α−1n−
1
2+β(α), where f(n) → ∞, but f(n) ≤ log(n). Let q ∈ [0, 1] be such that

(1 − q)2 = 1 − p; note that, as p ≪ 1, we have that q is asymptotically equal to p/2. Let
A := [2, n]q and B := [2, n]q to be two independent random sets; observe that A ∪B has
the same distribution as [2, n]p. Note that as p≫ α−1n−

1
2+β(α), we have

P [A ∩X = ∅] = e−Ω(|X|p) = o(1) . (1.19)

Therefore, with high probability, we have at least one vertex v ∈ A∩X . Now, in order to have
an edge captured by A ∩B, it suffices to have B ∩N(v) ̸= ∅. As |N(v)| ≥ γαn

1
2−β(α)/2

for all v ∈ X , it follows that

P [B ∩N(v) = ∅] = e−Ω(|N(v)|p) = o(1) . (1.20)

Therefore, with high probability there exists {a, b} ⊆ [2, n]p such that ab ∈ C ′
n. This

concludes our proof.

1.4 Concluding remarks

In the deterministic setting, we introduced some new definitions to bridge known results
of the sum-free case in our setting. In particular, following Abbot and Hanson [AH72]
definition of strongly sum-free sets, we re-introduce double-sum Schur numbers S′(k),
which we showed to be related to the construction of large product-free sets. However,
we did not focus on determining bounds for S′(k), as the problem seems reminiscent of
finding bounds for S(k), which proved to be difficult. Still, the following question might be
approachable.

Problem 1.10. Is there an ε > 0 such that for k large enough we have S′(k) < (1− ε)S(k)?
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We show in Theorem 1.2 that any 2-colouring of [2, n] contains at least n 1
3−ε monochro-

matic products. In a work submitted at the same time as with ours, Aragão, Chapman, Ortega,
and Souza [Ara+24] went one step further and proved for k = 2, 3, 4 exactly what is the
minimum number of monochromatic products in any k-colouring of [2, n], for k = 2, 3, 4.
However, the following question originally asked by Prendiville [Pre22], which partially
inspired both of our works, still remains open in general.

Problem 1.11. For k a positive integer, what is the minimal number of monochromatic products
in a k-colouring of [2, n] and how does this colouring look?

In the probabilistic setting, we analysed the probability threshold of the property of
containing a product Schur triple. However, this question can be extended to multiple
colours. In particular, we propose the following problem, which is already interesting in the
case k = 2.

Problem 1.12. For k a fixed positive integer, what is the threshold in [2, n]p for the property
that any k-colouring contains a monochromatic product?

For any of the problems studied in the sum-free case, we can consider an equivalent
question in the product-free setting. We hope this line of questioning can bring a new
perspective to the study of Schur triples and other equations.



I saw myself sitting in the crotch of this fig-tree,
starving to death, just because I couldn’t make up my
mind which of the figs I would choose.

S. Plath

2
The Ramsey Numbers of Squares of Paths and Cycles

Given a graph G and a positive integer k, the k-th power of G, denoted Gk , is the graph on
V (G) in which vertices u and v are adjacent whenever they are at distance at most k in G.
We focus on the case k = 2, and refer to G2 as the square of G. Given graphs G and H , the
Ramsey number R(G,H) is the smallest integer N such that any red-blue edge colouring of
the complete graph KN contains either a red copy of G or a blue copy of H . When G = H ,
we write R(G) for simplicity.

Ramsey theory in graphs, the study of Ramsey numbers, arguably initiated in 1930 with
a classic theorem of Ramsey [Ram30] which investigated the existence of monochromatic
infinite structures in finitely-coloured infinite sets. From the author of this result, the area as
a whole derives its name; an area that saw to the development of many important techniques
with broader applicability. For a broad overview, we suggest the reader to refer to the
excellent survey of Conlon, Fox, and Sudakov [CFS15].

The classical Ramsey problem, determining the Ramsey number for complete graphs,
has received extraordinary attention over the years. In their seminal work, Erdős and
Szekeres [ES35] obtained the first estimate on Ramsey numbers, proving

R(Ks,Kt) ≤
(
s+ t− 2

s− 1

)
.

Considerable effort has since been devoted to improving or tightening these bounds, with
only limited success. Nevertheless, these problems have had a profound influence on combi-
natorics, driving developments in random graph theory, the probabilistic method, and the
theory of quasirandomness. A notable example is Conlon’s celebrated result [Con09], which
shows that there exists a constant C such that

R(Kk) ≤ k
−C

log k
log log k

(
2k

k

)
.

More recently, a proof by Campos, Griffiths, Morris, and Sahasrabudhe [Cam+23] sparked
widespread interest in the community. They showed that there exists ε > 0 such that

R(Kk) ≤ (4− ε)k .

A significant gap still remains between the best known lower and upper bounds. The lower
bound R(Kk) ≥ (1 − o(1)) k√

2e

√
2
k established by Erdős in 1947 [Erd47], was one of the

first applications of the probabilistic method. Remarkably, this bound has proven extremely
resilient to advancements. In fact, since 1947, only one noteworthy improvement has been

29
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made. Spencer [Spe75] achieved this by applying the Lovász Local Lemma, obtaining an
additional multiplicative factor of 2.

In the search for lower-bound constructions, Chvátal and Harary [CH72] showed that
if G is connected, then R(G,H) ≥ (v(G)− 1)(χ(H)− 1) + 1. Via a modification of this
construction, Burr [Bur81] later improved this bound, proving that

R(G,H) ≥
(
v(G)− 1

)(
χ(H)− 1

)
+ σ(H) , (2.1)

provided that G is connected and v(G) ≥ σ(H). Here, v(G) is the number of vertices of
G; χ(H) is the chromatic number of H ; and σ(H), the chromatic surplus, is the size of the
smallest colour class in any proper χ(H)-colouring of H . Burr’s construction consists of
χ(H)− 1 vertex-disjoint red cliques, each on v(G)− 1 vertices, plus one further red clique
on σ(H)− 1 vertices, with all other edges coloured blue. If this construction is optimal (i.e.,
if equality holds in (2.1)) we say that G is H-good.

Research on Ramsey goodness has seen considerably more success. For a graph H , we
say that a family G of graphs is H-good if any large enough element of G is H-good. A
classical result of Chvátal [Chv77] shows that, for any complete graph Ks, the family of
trees is Ks-good. In an effort to characterise which properties guarantee goodness, Burr
and Erdős [BE83] proved that connected graphs with bounded bandwidth are Ks-good.
Burr [Bur87] further conjectured that the same should hold for graphs with maximum degree
at most ∆. While this is known to hold for paths [GG67] and cycles [BE73; Ros73b], the
general conjecture was disproven by Graham, Rödl, and Ruciński [GRR00], who showed
that good expander graphs cannot be K3-good. The result of Burr and Erdős [BE83] was
extended by Allen, Brightwell, and Skokan [ABS13], who showed that for any graph H , the
family of connected non-expanding graphs with bounded degree and bandwidth are H-good.
Their result allows the bandwidth to grow at a controlled rate with the order of the graph.

Note that these results apply to fixed graphs H , and give guarantees on large elements
of a family G of graphs. Much less is known when H grows with v(G), or when H = G.
A result in this direction, again in [ABS13], improves the lower bounds on R(P k

n ) for each
k ≥ 2, exceeding the bound given in (2.1). However, the same paper shows that in the case
G = H , Burr’s conjecture remains approximately correct (i.e. off by at most a multiplicative
factor of about 2) when H has bounded maximum degree and sublinear bandwidth. Finally,
in [ABS13], a specific conjecture is made for the Ramsey numbers of the squares of paths
and cycles whose number of vertices is divisible by 3. We observe that the conjectured value
is off by one, and prove a corrected version of the statement.

Theorem 2.1. There exists n0 such that for all n ≥ n0 we have:

R(P 2
3n) = R(P 2

3n+1) = R(C2
3n) = 9n− 3 and R(P 2

3n+2) = 9n+ 1 .

The lower bound in this theorem is established via the following construction, already
present in [ABS13], which is illustrated in Figure 2.1. We consider disjoint vertex sets
X1, X2, Y1, Y2 each with 2n−1 vertices, plus Z with n−1 vertices. We colour edges within
each Xi blue and within each Yi red. We colour edges in the bipartite graphs (X1, X2) and
(Xi, Z) red, and in (Y1, Y2) and (Yi, Z) blue. We colour (X1, Y1) and (X2, Y2) blue, and
(X1, Y2) and (X2, Y1) red. Finally, we introduce a vertex z that connects via blue edges to
all vertices in X1 ∪X2 and via red edges to all vertices in Y1 ∪Y2. The edges within Z ∪{z}
may be coloured arbitrarily. A short case analysis —part of our proof of Theorem 2.1— shows
that this construction does not contain a monochromatic copy of P 2

3n. Moreover, adding one
vertex to each of X1, X2, Y1, Y2 still avoids the appearance of a P 2

3n+2.
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2n − 1

X1

2n − 1

X2

2n − 1

Y1

2n − 1

Y2

n − 1

Z

z

Figure 2.1: Lower bound construction

It is natural to ask whether our result can be extended to the Ramsey numbers R(C2
3n+1)

and R(C2
3n+2). In this regard we observe that, for large n, both graphs have chromatic

number 4, and chromatic surplus 1 and 2, respectively. Therefore, Burr’s construction gives
the lower boundsR(C2

3n+1) ≥ 3(3n)+1 andR(C2
3n+2) ≥ 3(3n+1)+2 respectively. These

bounds are exactly matched by our construction with the sets X1, X2, Y1, Y2 having sizes
2n and 2n+ 1, respectively. While this suggests that these are indeed the correct Ramsey
numbers, we do not prove this, as our method requires the graph to be 3-colourable.

Our analysis provides in addition a general upper bound on the Ramsey numbers of
3-colourable graphs with bounded maximum degree and sublinear bandwidth. This upper
bound is asymptotically tight as shown by P 2

3n.

Theorem 2.2. Given γ > 0 and ∆, there exist β > 0 and n0 such that for all n ≥ n0

the following holds. Assume that H is a graph with ∆(H) ≤ ∆, with bandwidth at most
βn, and with a proper 3-colouring in which each colour class has at most n vertices. Then
R(H) ≤ (9 + γ)n.

As noted in [ABS13], the bandwidth condition in this theorem is necessary. Moreover,
Graham, Rödl and Ruciński [GRR00] constructed n-vertex graphs with maximum degree
∆ and Ramsey number at least 2c∆n; from this, it follows that for any fixed β > 0, and for
sufficiently large ∆, there exist n-vertex graphsH with bandwidth at most βn and maximum
degree at most ∆ for which the theorem statement is false.

Our proof proceeds as follows. Using the Szemerédi Regularity Lemma and the Blow-up
Lemma, we reduce the problem of embedding a monochromatic square of a path, cycle, or
3-colourable sparse graph (as in Theorem 2.2) to finding a monochromatic triangle-connected
triangle factor (TCTF) in an associated cluster graph. On this cluster graph we apply our
main lemma, i.e. Lemma 2.3, which states that any 2-edge-coloured near-complete graph
either contains a monochromatic TCTF on slightly more than one third of the vertices, or
else the graph is structurally close to an extremal example. To prove Lemma 2.3, we employ
a second partitioning argument, inspired by [ABS13]: by iteratively applying Ramsey’s
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theorem, we partition most of the vertices of the cluster graph into a large but bounded
number of monochromatic cliques. This simplifies our analysis. Indeed, for example, it is
straightforward to find a large red triangle factor within a collection of red cliques. Moreover,
any two triangles in the same red clique are triangle connected in red. Furthermore, if two
red cliques are not red triangle connected, then almost all edges between them must be blue.
These structural observations were already made in [ABS13]. Our improvement over [ABS13]
lies in handling the interaction between cliques of different colours, whereas in that paper,
cliques in the minority colour were discarded.

2.1 Notation, main lemmas and organisation

Our graph notation is mainly standard. From now on, we write |G| for the number of vertices
in a graph G, and similarly |M | for the number of vertices covered by a matching M (i.e.
twice the number of edges of M ); we also write G \M for the graph G[V (G) \ V (M)] and
analogously for sets. We often want to refer to edges (of a given colour) between two or
three vertex sets. We write (A,B) or (A,B,C) for respectively {ab : a ∈ A, b ∈ B} and
(A,B) ∪ (A,C) ∪ (B,C), the graph we refer to is always clear from the context. We work
with 2-edge-coloured graphs, and refer to the two colours as ‘red’ and ‘blue’.

Given a graph G, we say that edges uv and uw of G are triangle connected if vw is an
edge of G; we extend this to an equivalence relation on the edges of G by transitive closure.
We refer to the equivalence classes of this relation as triangle components. We generally want
to talk about monochromatic triangle connection. Thus, if the edges of G are 2-coloured,
we say that two red edges are red triangle connected if they are triangle connected in the
subgraph of G consisting only of red edges, we define red triangle component similarly.
Slightly abusing notation, we also say that two red cliques (each with at least two vertices)
are red triangle connected if an edge (and so all edges) in one is red triangle connected to
an edge (so all edges) of the other. When the colour is clear from the context (as with red
cliques) we often just say that the two cliques are triangle connected.

A triangle factor in a graph G is a collection of vertex-disjoint triangles of G. A triangle-
connected triangle factor (TCTF) is a triangle factor for which all the edges lie in a single
triangle component. Analogously, when referring to a red TCTF in a 2-edge-coloured graph
G, we mean a TCTF in the subgraph of red edges of G.

We proceed now with the case analysis proving the lower bound of Theorem 2.1.

Proof of Theorem 2.1, lower bounds. We begin by describing the red triangle components of
the lower bound construction for P 2

3n, P 2
3n+1 andC2

3n. The edges in Y1 and in (Y1, X2∪{z}),
form a red triangle component. Similarly, the edges in Y2 and (Y2, X1 ∪ {z}) form a red
triangle component. The edges (X1, X2, Z), together with all red edges in Z and all red
edges from z to Z which lie in a red triangle, form a red triangle component. Finally, each
red edge from z to Z which is not in a red triangle forms a triangle component. The blue
components are analogous.

If the lower bound construction contains a red P 2
3n, then in particular it has a red triangle

component which contains a red triangle factor with n triangles. Checking each entry in
the list above, observe that removing Y1 from the first leaves an independent set: X2 ∪ {z}
contains no red edges. But Y1 contains only 2n− 1 vertices, so there cannot be a 3n-vertex
triangle factor in this component. The symmetric argument deals with the symmetric second
red triangle component. For the third case, removing Z leaves a bipartite graph: the only
red edges are those in (X1, X2). But Z contains only n − 1 vertices, so this component
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too contains no 3n-vertex red triangle factor. Finally, trivially the single-edge components
contain no red triangle factor. The argument to exclude a blue P 2

3n is symmetric.
For the modification for P 2

3n+2, adding one vertex to each of X1, X2, Y1, Y2, the descrip-
tion of triangle components above, and the explanation that the red triangle component
containing (X1, X2, Z) does not contain P 2

3n continues to work. Observe that P 2
3n+2 has

independence number n + 1, so removing any 2n vertices leaves at least one edge. This
observation shows that the red component consisting of edges in Y1 and (Y1, X2∪{z}) does
not contain a red P 2

3n+2, and the other cases are symmetric. A similar argument also shows
that this construction does not contain a monochromatic copy of C2

3n.

The main work of this chapter is to prove the stability lemma 2.3, which states that a 2-
edge-coloured nearly complete graph on almost 9t vertices either contains a monochromatic
TCTF on a little more than 3t vertices, or is close to an extremal example. To state the result
formally, we need one further definition.

Given an edge-coloured graph G, let A ⊆ V (G) and v a vertex of G not in A. For r ∈ R,
we say that v is r-blue to A if va is a blue edge of G for all but at most r vertices a of A.
Similarly, given A,B ⊆ V (G) disjoint, we say that (A,B) is r-blue if all but at most r
vertices in A are r-blue to B and vice versa. We define similarly r-red.

We use this notation with r much smaller than the sizes of the sets A and B, so the
reader can think of r-blue as meaning ‘almost all blue’. We are ready for our main lemma.

Lemma 2.3. There exists δ0 > 0 such that for every 0 < h, λ < δ0 there exist ε0, t0 > 0 such
that for every t ≥ t0 and 0 < ε < ε0 the following holds. Let G be a 2-edge-coloured graph on
(9−ε)t vertices with minimum degree at least (9−2ε)t. Then eitherG contains a monochromatic
TCTF on at least 3(1 + ε)t vertices or V (G) can be partitioned in sets B1, B2, R1, R2, Z, T

such that the following conditions hold.

(C1) (2− h)t ≤ |B1| , |B2| , |R1| , |R2| ≤ (2 + h)t,

(C2) (1− h)t ≤ |Z| ≤ (1 + h)t,

(C3) all the edges in G[B1] and G[B2] are blue, and all the edges in G[R1] and G[R2] are red,

(C4) all the edges between the pairs (B1, R1), (B2, R2), (R1, Z) and (R2, Z) are blue, and
those between the pairs (B1, R2), (B2, R1), (B1, Z) and (B2, Z) are red,

(C5) the pair (B1, B2) is λt-red, and the pair (R1, R2) is λt-blue, and

(C6) |T | ≤ ht.

We prove this lemma in Sections 2.3–2.6.
By applying the regularity method, we are able to obtain from Lemma 2.3 the following

(superficially similar) statement, in which we replace TCTF with the square of a path and
cycle. We could generalise the following lemma to nearly-complete graphs (as in Lemma 2.3),
but it is not needed for our proof.

Lemma 2.4. For every α > 0 there exists δ > 0 and n0 ∈ N such that for every n > n0 the
following holds. Let N ≥ (9 − δ)n, and let G be a 2-edge-colouring of KN . Then either G
contains both a monochromatic copy of P 2

3n+2 and of C2
3n, or we can partition V (G) into sets

X1, X2, Y1, Y2, Z and R such that the following hold.

(D1) (2− α)n ≤ |X1| , |X2| , |Y1| , |Y2| ≤ (2 + α)n,

(D2) (1− α)n ≤ |Z| ≤ (1 + α)n,
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(D3) |R| ≤ αn,

(D4) Vertices in the following pairs have at most αn red neighbours in the opposite part:
(X1, Y1), (X2, Y2), (Y1, Y2), (Y1, Z) and (Y2, Z),

(D5) Vertices in the following pairs have at most αn blue neighbours in the opposite part:
(X1, X2), (X2, Y1), (X1, Y2), (X1, Z) and (X2, Z),

(D6) Vertices in X1 and X2 have at most αn red neighbours in their own part,

(D7) Vertices in Y1 and Y2 have at most αn blue neighbours in their own part.

We deduce Lemma 2.4 from Lemma 2.3 in Section 2.7.
To complete the proof of Theorem 2.1, we need to show that a complete graph over

9n − 3 vertices which can be partitioned as in the above Lemma 2.4 necessarily contains
both a monochromatic P 2

3n+1 and C2
3n; and 9n+1 vertices suffices for P 2

3n+2. We do this in
Section 2.8.

Finally, to prove Theorem 2.2 it suffices to observe that if G satisfies the conditions of
Lemma 2.3 and can be partitioned as in that lemma, then it contains a monochromatic TCTF
on nearly 3t vertices. Together with an application of the regularity method, which we
sketch in Section 2.7, this completes the proof of Theorem 2.2.

2.2 Preliminary lemmas

In this section we prove some preliminary Ramsey-theoretic results which we need to prove
Lemma 2.3, but for which we do not need the setting of Lemma 2.3.

Lemma 2.5. There exist ε0, t0 > 0 such that the following holds for every 0 < ε < ε0 and
t > t0. Let G be a graph on at least 2(1 + 3ε)t vertices with minimum degree at least |G| − εt.
Any 2-edge-colouring of G contains a red matching on 2(1 + ε)t vertices or a blue connected
matching on min {|G| − (1 + 2ε)t, 2 |G| − 4(1 + 2ε)t} vertices.

Proof. Let M be the largest red matching in G and let Y = V (G) \ V (M). We may assume
that M spans less than 2(1 + ε)t vertices. Since M is maximal, every edge in M has one
endpoint with at most one red neighbour in Y . Indeed, if xy ∈ M and both x and y have
at least two red neighbours in Y we can take x′ in Y adjacent to x and y′ distinct from x′

adjacent to y in Y , and obtain a red matching which is larger than M by substituting xy
with x′x and y′y.

Let S be the set of vertices in M with at most one red neighbour in Y . We can now form
a blue matching P (which we then show is connected) by greedily matching vertices in S
with blue neighbours in Y . We claim that P has at least min {|S| , |G| − |M | − 2εt} edges.
Indeed, since the process is greedy we stop only by finishing all the vertices of S or when
S \ P is not empty, but no vertex in S \ P has a blue neighbour in Y \ P , and this means
that there are fewer than 2εt vertices not yet covered by P in Y .

If we stopped for the first reason (i.e. if |S| < |G| − |M | − 2εt), we can extend P to a
larger blue matching P ′: the induced graph over Y contains only blue edges by maximality
of M and there are some edges left in Y \ P . This extension of P can continue at least
until all but εt vertices in Y are covered: we stop only when all edges in Y have one vertex
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covered by P ′. Therefore, we have

|V (P ′)| ≥
in P︷︸︸︷
2 |S|+

in Y︷ ︸︸ ︷
|Y | − |S| − εt

2|S|≥|M |︷︸︸︷
≥ |G| − |M |

2
− εt

≥ |G| − (1 + 2ε)t .

If on the other hand we stopped because no vertex in S \ P has a blue neighbour in
Y \ P (but S \ P is not empty), by definition of S this means that every vertex in S \ P has
at most one neighbour in Y \ P . This can only happen if |Y \ P | < 2εt and hence all but at
most 2εt vertices of Y are covered by P . This means that the size of P is at least

|P | ≥ 2(|Y | − 2εt)

≥ 2(|G| − |M | − 2εt)

≥ 2(|G| − 2(1 + ε)t− 2εt)

= 2 |G| − 4(1 + 2ε)t .

In order to conclude, we now argue that the matching P (or P ′) we obtained is blue
connected. This is because every edge of P (or P ′) has at least one vertex in Y and all edges
in Y are blue (by maximality of M ), and are blue connected among themselves. To see
this, notice that |Y | = |G| − |M | ≥ 4εt and by the minimum degree of G, each vertex of
Y is non-adjacent to at most εt vertices of Y , so any pair of vertices of Y has a common
neighbour in Y , and therefore Y is blue connected.

Lemma 2.6. Let G be a graph with minimum degree larger than 2
3 |G|. Then all the edges of

G are triangle connected. Moreover, there exists a TCTF on all but at most 2 vertices of G.

Proof. We may notice that every three vertices of G share a common neighbour by the
minimum degree condition and the pigeonhole principle. As any pair of adjacent edges
spans three vertices, and these three vertices would have a neighbour in common outside of
themselves by our previous claim, we get that any pair of adjacent edges is triangle connected.
This observation implies that connected components and triangle components coincide in
G. Moreover, because of the minimum degree condition, we have that G is connected and
therefore every pair of edges is triangle connected. Finally, the existence of a triangle factor
of the necessary size given the minimum degree condition is given by a classical theorem
of Corradi and Hajnal [CH63]. This classical theorem states that for any positive integer
k, any graph on at least 3k vertices and with minimum degree at least 2k contains at least
k vertex-disjoint cycles. In our case, we can set k = ⌊|G| /3⌋ and find a subgraph of G on
3k vertices with minimum degree at least 2k. Corradi and Hajnal’s theorem provide us the
required triangle factor in this case.

Lemma 2.7. There exist ε0, t0 > 0 such that the following holds for every 0 < ε < ε0, and
every t > t0. Let G be a graph on at least (5 + 100ε)t vertices with minimum degree at least
|G| − εt. Any 2-edge-colouring of G contains a red connected matching over 2(1 + ε)t vertices
or a blue TCTF on 3(1 + ε)t vertices.

Proof. We may assume G has exactly (5 + 100ε)t vertices. We separate cases.
Case 1: G has a red connected component A that spans at least (4 + 5ε)t vertices.



preliminary lemmas 36

Let M be the largest red matching in A. Since A is a red connected component, we may
assume |M | < 2(1 + ε)t (recall that we use |M | for the number of vertices in M ). Since M
is a maximal red matching in A, we know that every edge in A \M is blue.

Because of our assumption on the size of A, we have that |A \M | > (2 + 3ε)t. We
construct a matching P of size 2(1+ε)t inA\M greedily, which is possible by the minimum
degree condition ofG. By Lemma 2.6, every pair of edges inA\M is blue triangle connected.
In particular, P is blue triangle connected.

We now greedily extend the edges of P to blue triangles by taking vertices in X =

V (G)\ (P ∪M). Notice that |X| ≥ (1+96ε)t. Given a vertex x inX , we have no red edges
from x to vertices of P . Indeed, if x is not in A, this follows from the fact that A is a red
connected component, while if x is in A, then this is by maximality of M . By the minimum
degree condition of G, any edge of P forms a triangle with all but at most 2εt vertices of X ,
so we can successfully complete the the greedy extension.

Case 2: G has a red connected component A that spans at least 3(1 + 2ε)t vertices.
We can assume that A spans less than (4 + 5ε)t vertices, as otherwise we are in Case 1.
If there is a red connected matching in G spanning more than 2(1 + ε)t vertices we are

done, so we can assume there is none. By Lemma 2.5 applied to G[A], in A there is a blue
connected matching P of size at least 2(1 + ε)t. We can greedily extend all the edges of P
to a blue triangle factor using vertices of V (G) \A (of which there are enough of, given the
upper bound on the size of A). Observe that every two adjacent blue edges in A share a blue
neighbour in V (G) \A, therefore every blue connected component in A is also blue triangle
connected. Thus, P is blue triangle connected (and so is the triangle factor we build from it).

Case 3: G has two red connected componentsA1 andA2 covering at least (5+12ε)t vertices
in total, and we are not in Cases 1 or 2.

Because A1 and A2 are connected components, they are vertex disjoint.
Because we are not in Cases 1 or 2, both A1 and A2 span less than 3(1 + 2ε)t vertices

and hence they both span at least (2 + 6ε)t vertices. In addition, we can assume that neither
component contains a red matching on 2(1+ε)t vertices. Since for the possible values of |Ai|
we have 2 |Ai| − 4(1+ 2ε)t < |Ai| − (1+ 2ε)t, by Lemma 2.5, we can find in each Ai a blue
connected matching Pi on precisely min (2 |Ai| − 4(1 + 2ε)t, 2t) vertices (we cap the size
to 2t). Since every edge between A1 and A2 is blue, P1 ∪ P2 is a blue connected matching.
We have |P1| , |P2| ≥ 4εt (by the lower bound on |Ai|) and hence if |P1| = 2t (or if the same
happens for P2) we see that P1 ∪ P2 has at least (1 + 2ε)t edges. Even if |P1| , |P2| < 2t,
summing the lower bounds |Pi| ≥ 2 |Ai|−4(1+2ε)twe can still guarantee that P1∪P2 has
at least (1+2ε)t edges. Let Yi = Ai\Pi. We greedily extend the edges of P1 to a blue triangle
factor T1 using vertices of Y2, and in the same way we greedily extend the edges of P2 to a
blue triangle factor T2 using vertices of Y1. Note that |Yi| = 4(1 + 2ε)t− |Ai| > (1 + 2ε)t,
and therefore we are able to extend the edges of P1 ∪P2 to obtain a blue triangle factor with
at least (1 + ε)t triangles.

It now suffices to show that the triangle factor T1∪T2 is blue triangle connected. Because
every two blue incident edges in A1 share a neighbour in A2 and vice versa, we have that
both T1 and T2 are TCTFs. Without loss of generality we assume that 4ε < |P1| ≤ |P2|. Let
xy be an edge in P2. Because every edge between A1 and A2 is blue, and because of the
minimum degree condition, we have that x and y share at least |P1| − 2εt blue neighbours
in P1. Because P1 has a blue matching, every set in P1 of size strictly larger than |P1|

2 has an
edge from P1. Therefore, we have that there exists zw in P1 such that G[{x, y, z, w}] is a
blue clique with xy in P2 and zw in P1. Because both P1 and P2 are triangle connected, we
are done.
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Case 4: G is not in any of cases 1–3, i.e. there is no single red component covering 3(1+2ε)t

vertices, and no two red components cover (5 + 12ε)t vertices.
Let A1, A2, . . . be the red connected components, ordered by decreasing cardinality. We

have |A1| < 3(1 + 2ε)t and |A1|+ |A2| < (5 + 12ε)t, and we can assume that G does not
have a red connected matching over 2(1 + ε)t vertices since otherwise we are done.

Claim 2.8. The set of blue edges of G is triangle connected.

Proof. We can assume that A3 is not trivial. Indeed, all the edges between any Ai and their
complement are blue, and |G| − |A1 ∪A2| > 88εt.

Every blue edge in a component Ai is in a blue triangle with some vertex in a different
component Aj , so it suffices to prove that the edges between distinct components all lie
in the same triangle component. In particular, it is enough to show that for any j, k ≥ 2

distinct, any a1aj an edge between A1 and Aj , and any bjbk an edge between Aj and Ak,
then a1aj and bjbk are triangle connected.

Given a1, aj , bj , bk as above, let c be a common blue neighbour of a1, aj , bj not in
A1 ∪Aj . This exists by minimum degree condition and by considering that a1, aj , bj are all
in A1 ∪Aj and there are at least 88εt vertices not in A1 ∪Aj . Let us now take d a common
blue neighbour of c, aj , bj , bk in A1: this exists since c, aj , bj , bk are not in A1, and using
the minimum degree condition. We can now conclude since (a1ajc, ajcd, cdbj , dbjbk) is a
sequence of blue triangles that proves that a1aj and bjbk are triangle connected. □

By Claim 2.8, it suffices to find a blue triangle factor spanning 3(1 + ε)t vertices.
Case A: A2 (and thus A1) spans more than 2(1 + 20ε)t vertices.
By Lemma 2.5, we can find blue matchings Mi ⊆ Ai on 2 |Ai| − 4(1 + 2ε)t vertices for

i = 1, 2 (because |Ai| < 3(1 + 2ε)t, we have 2 |Ai| − 4(1 + 2ε)t ≤ |Ai| − (1 + 2ε)t).
We now show that |A2 \M2| ≥ |M1|

2 + 2εt, which gives us that we can greedily extend
the full matching M1 to a blue triangle factor using vertices in A2 \M2: consider

|A2 \M2| = (4 + 8ε)t− |A2| > |A1| − (2 + 6ε)t = |M1| /2 + 2εt .

Where the inequality holds because of the upper bound on |A1|+ |A2|. Similar calculations
show that we can greedily extend the full M2 to a blue triangle factor using vertices in
A1 \M1. These two triangle factors are disjoint and thus together form a triangle factor T
that spans exactly 3

2 (|M1|+ |M2|) = 3(|A1|+ |A2|)− 12(1 + 2ε)t vertices.
Let us now denote Ui = Ai \ T , and W = V (G) \ (A1 ∪A2). We have

|U1| = |A1| − |M1| −
|M2|
2

= |A1| − 2 |A1|+ 4(1 + 2ε)t+ 2(1 + 2ε)t− |A2|

= 6(1 + 2ε)t− (|A1|+ |A2|) ≥ t .

Similarly, we have |U2| ≥ t. By considering

|Ui| ≥ 6(1 + 2ε)t− (|A1|+ |A2|) > (5 + 104ε)t− (|A1|+ |A2|) = |W |+ 4εt ,

we get that we can find a blue triangle factor on (U1, U2,W ) covering 3 |W | vertices. Adding
this triangle factor to T , we get a TCTF covering a sufficient number of vertices:

3(5 + 100ε)t− 3(|A1|+ |A2|) + 3(|A1|+ |A2|)− 12(1 + 2ε)t = (3 + 276ε)t .

Case B: |A1| > 2(1 + 3ε)t but |A2| < 2(1 + 3ε)t.
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Let M1 be a blue matching in A1 on 2 |A1| − 4(1+ 2ε)t vertices. Let U1 = A1 \M1 and
notice |U1| ≥ 4(1+2ε)t−|A1|. Because all the other red components have much fewer than
2(1 + 3ε)t vertices, we claim there exists j such that (1 + 3ε)t <

∣∣∣⋃j
i=2Ai

∣∣∣ ≤ 2(1 + 3ε)t,
and write U2 =

⋃j
i=2Ai. Indeed, if |A2| > (1 + 3ε)t we can take j = 2, while if not

then we can increase j sequentially until the lower bound is satisfied. Since in the latter
situation we have |Aj | ≤ |A2| ≤ (1 + 3ε)t the upper bound is not exceeded. Finally, let
W = V (G) \ (A1 ∪ U2) and note that |W | ≥ (3 + 94ε)t− |A1|.

Notice that we can extend each edge of M1 to obtain a triangle factor T using vertices of
U2, this is because |U2| ≥ |M1| /2. Moreover, sice we know the size of T and a lower bound
for U2, we can state |U2 \ T | ≥ 3(1 + 2ε)t− |A1|. Notice that |W | , |U1| , |U2 \ T | have all
size at least 3(1 + 2ε)t − |A1| (and two of them 2εt more), and there are only blue edges
amongst them. Therefore, we can build a blue triangle factor on (U1, U2 \ T,W ) covering at
least 3(3(1 + 2ε)t− |A1|) vertices. Combining this triangle factor with T , we obtain a blue
TCTF over at least 3 |A1| − 6(1 + 2ε)t+ 3(3(1 + 2ε)t− |A1|) = 3(1 + 2ε)t vertices.

Case C: No red connected component spans 2(1 + 2ε)t vertices.
Following the construction of the previous case, we can find in V (G) two sets U1 and U2

that are unions of red components and such that (1 + 3ε)t < |U1| , |U2| ≤ 2(1 + 3ε)t. Let
W = V (G) \ (U1 ∪ U2). Notice that there are no red edges between any two of U1, U2 and
W . Because |W | = 5(1 + 100ε)t − |U1| + |U2| we have that all three sets U1, U2 and W
have size at least (1+3ε)t and that the largest of the three has at least (1+6ε)t vertices. We
can greedily find a blue matching of size (1 + 2ε)t between the smallest two of U1, U2,W ,
and extend this to a blue TCTF of size 3(1 + 2ε)t vertices greedily.

Lemma 2.9. For n ∈ N sufficiently large, let G be a tripartite graph over 3n vertices with
partition sets of the same size. Assume that every vertex has at least 3n

4 neighbours in each of
the two partition sets of which it is not part of. There exists a TCTF that covers every vertex of G.

Also, every pair of edges in G is triangle connected.

Proof. Let m = 3n
4 and X,Y and Z denote the sets which partition G. We first use Hall’s

theorem to prove that there exists a perfect matching M between X and Y . Indeed, let S be
a subset of X . If |S| ≤ m, since every vertex in S has at least m neighbours in Y , we have
that the neighbourhood of S in Y has size not smaller than the size of S itself. If |S| > m,
observe that by the two-sets inclusion-exclusion principle we have that every vertex in Y
has a neighbour in S. We shall now define a bipartite support graph H over the sets M,Z .
We add an edge between xy and z if the vertices xyz form a triangle in G. We can observe
that the existence of a perfect matching in H gives us a triangle factor that covers all vertices
of G. Let xy be in M , we can notice that since both x and y have at least m neighbours in
Z we have that at least n

2 of the vertices of Z are neighbours of both x and y. Therefore,
every edge of M has minimum degree at least n

2 in H . Also, every vertex in Z has minimum
degree at least n

2 in H , since in G it has minimum degree at least m in both X and Y . We
can then repeat the above argument and use Hall’s theorem to prove that we can find a
perfect matching in H and therefore a perfect triangle factor in G.

Let us now show that every pair of edges in G is triangle connected. Let us first observe
that if xy and xy′ are both edges with x ∈ X and y, y′ ∈ Y then we have that x, y, y′ share
a neighbour in Z and therefore they are triangle connected. This implies that the set of edges
between X and Y is in the same triangle component. We can easily conclude noticing that
every triangle has one edge in each of the components (X,Y ), (Y,Z) and (Z,X) which are
therefore all the same triangle component.
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Corollary 2.10. For n ∈ N sufficiently large, let k, r ∈ N such that 6r + 4k < n. Let G be
a tripartite graph over 3n vertices with partition sets X,Y and Z of the same size n. Assume
that every vertex in G is adjacent to all but at most k of the vertices in each of the two partition
sets it is not a part of. Let us fix a 2-edge-colouring of G such that (X,Y ), (Y, Z) and (X,Z)

are r-red. We can find a red TCTF formed by at least n− 2r red triangles.
Also, all but at most 3r2 red edges of G are in the same red triangle component.

Proof. Take X ′ ⊆ X,Y ′ ⊆ Y and Z ′ ⊆ Z of size exactly n′ = n− 2r such that every vertex
in X ′ ∪ Y ′ ∪ Z ′ has at most r blue vertices in each of the other two parts. We can apply
Lemma 2.9 to G′ = GRed[X ′ ∪ Y ′ ∪ Z ′] considering that each vertex in G′ is adjacent to all
but at most r + k < 1

4n
′ vertices in each of the two partitioning sets.

Lemma 2.11. There exists ε0 ∈ R such that for all 0 < ε < ε0 there exists t0 such that for
every t > t0 we have the following. Let G be a graph of minimum degree at least |G| − εt
whose edges are 2-coloured. If there are in G two disjoint sets X and Y of size respectively
(1 + 5ε)t and (5 + 200ε)t such that (X,Y ) is εt-red, then G contains a monochromatic TCTF
on at least 3(1 + ε)t vertices.

Proof. Let Y ′ be the set of vertices in Y that have at least |X| − εt red neighbours in X ,
we have |Y ′| ≥ (5 + 100ε)t. Moreover, G[Y ′] has minimum degree at least |Y ′| − εt. By
Lemma 2.7, Y ′ contains either a blue TCTF of size 3(1 + ε)t or a red connected matching on
2(1+ε)t vertices. In the first case we are done, so we can assume Y ′ contains a red connected
matchingM on 2(1+ε)t vertices. We can greedily extendM to a triangle factor T spanning
3(1+ ε)t vertices. This triangle factor is triangle connected as M is red connected and every
adjacent pair of red edges in Y ′ is triangle connected (any three vertices in Y ′ share a red
neighbour in X).

2.3 General setting

To prove Lemma 2.3, we use a decomposition of V (G) into red and blue cliques, and some
associated notation. In this section, we describe the decomposition, introduce the notation,
and prove that the decomposition exists under the assumptions of Lemma 2.3. In particular,
we introduce here the main setting, which accompanies us for the rest of the chapter.

Setting 2.12. Given ε, t > 0, let m = 1
4 |log ε|. For G a graph with (9 − ε)t vertices and

minimum degree at least (9 − 2ε)t, suppose that E(G) is 2-coloured and that there is no
monochromatic TCTF with at least 3(1 + ε)t vertices.

Fix a partition of V (G) into a set Vbin of size at most ε1/2t + 40t√
m

and a collection of at
most 9t

m monochromatic cliques, each of size between 2 and m, such that the following holds.
For each vertex u which is in a blue clique C of the partition, at most 20t√

m
blue edges go

from u to vertices in blue cliques of the partition which are not blue triangle connected to C . We
assume a similar statement replacing red with blue. Moreover, for every positive integer k, the
number of cliques of size less than (1− 1

k )m is at most 400k
| log ε|3/2 t.

We writeB1 for a blue triangle-connected component of blue cliques of the partition covering
the largest number of vertices, B2 for the next largest, and so on. We break ties arbitrarily, and
define similarly R1 for a largest red triangle component of red cliques of the partition and so on.
We write B≥3 := B3 ∪B4 ∪ . . . , and R≥3 := R3 ∪R4 ∪ . . . .

It is important to note that while we care about which sets of vertices contain the triangles
of a TCTF, we do not care which vertices are used for the triangle connections between these
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triangles: when we ask whether two (say red) edges are red triangle connected, we always
mean red triangle connected in the entire graph G. Thus, ‘there is a red TCTF in X of size
3s’ means that there is a set of s vertex-disjoint red triangles contained in the set X , which
are all in the same red triangle component of G. In particular, the set B1 is a collection of
blue cliques which are blue triangle connected inG (the triangles who testimony the triangle
connectedness might use vertices outside B1).

In the following sections, we often state lemmas referring to a ‘decomposition as in
Setting 2.12’. When we do this, we intend to fix a specific decomposition which remains
unchanged throughout the proof, and statements we make refer only to this decomposition.
Thus, ‘there is no red TCTF of size 3s contained in the red cliques’ should be understood as
meaning that the union of the red cliques of the fixed partition do not contain such a TCTF.
It might be that there is a different partition which does contain such a TCTF.

Our proof of Lemma 2.3 is now roughly as follows. We assume that G contains no
large monochromatic TCTF and use this to show that each of B1, B2, R1, R2 has roughly
2t vertices, while B3 ∪ R3 has roughly t vertices. This gives us the five large sets of the
partition of Lemma 2.3. Once the size bounds are obtained, we show that the edge colours
are as prescribed by Lemma 2.3. Our proof for the claimed size bounds goes over several
steps of finding increasingly strong upper and lower bounds on these sizes.

We obtain Setting 2.12 by iterative application of Ramsey’s theorem followed by removing
a few vertices to Vbin. The following Lemma 2.14 states that this is always possible, provided
ε is small enough and t large enough.

Claim 2.13. For n sufficiently large, let G be a graph over 2n vertices, and let A, B be disjoint
cliques of size n in G. If there are more than 2(n − 1) edges between A and B, the graph is
triangle connected.

Proof. Equivalently, we can show that if H is subgraph of Kn,n without a path of length
three, then H has at most 2(n− 1) edges. Assume H is a subgraph of Kn,n without paths of
length three. In particular, this means that every edge has one endpoint with degree exactly
one. Therefore, the number of edges in H is at most equal to the number of vertices in H
with degree one. If we have less than 2n− 2 vertices of degree one we are done. If we have
2n vertices with degree exactly one we know that H is a perfect matching. It cannot be the
case that 2n− 1 vertices have degree exactly one. Therefore, we covered all cases and we
can conclude that the number of edges in H is at most 2(n− 1).

Lemma 2.14. There exists ε0 ∈ R such that for all 0 < ε < ε0 there exists t0 such that
for every t > t0 the following holds. Given a graph G over at least (9 − ε)t vertices and
with minimum degree at least |G| − εt whose edges are 2-coloured, there exist sets R1, . . .

and B1, . . . of monochromatic red and blue cliques respectively satisfying the properties of
Setting 2.12.

Proof. Let us start by proving that we can find disjoint monochromatic copies ofKm covering
all but at most ε 1

2 t vertices of G.
First, notice that we do not want all cliques to be of the same colour, we just want

monochromatic cliques. Let us start by selecting greedily as many monochromatic copies of
Km as possible in G, this means that we start by selecting an arbitrary monochromatic Km,
then we remove its vertices and we repeat the process over the remaining vertices of G.

Let us assume by contradiction that when this process stops, more than ε 1
2 t vertices

of G remain. Let W be a set of size ε 1
2 t not containing any monochromatic clique of
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size m. Because of the minimum degree condition over G, we have that each vertex of
G[W ] has degree at least (ε 1

2 − ε)t and therefore G[W ] contains at least ε 1
2 (ε

1
2 − ε)t2 =(

1− 1

ε−
1
2

)
(ε

1
2 t)2 edges. By Turán’s theorem, we have thatG[W ] contains a (not necessarily

monochromatic) clique K of size ε− 1
2 . By the upper bound on diagonal Ramsey numbers

from [ES35], we have that R(Km) ≤ 4m, this value is smaller than ε− 1
2 for ε small enough.

Indeed, for ε < 1 we have ε = e−4m and hence we can rewrite the inequality as R(Km) ≤
4m ≤ e2m = ε−

1
2 which holds for ε small enough. Therefore, we can find a monochromatic

clique K ′ of size m in W . This contradicts the stopping of our greedy algorithm.
We can now focus on the number of vertices in blue cliques that witness more than 20t√

m

blue edges that have endpoints in distinct triangle components of blue Km.

We start by considering that there are at most 9t
m disjoint copies of Km in G. This,

combined with Claim 2.13, gives us that at most (10t)2

m blue edges have endpoints in distinct
triangle components of blue Km. Hence, at most (20t)2

m vertices in blue cliques of G witness
a blue edge with its two extremities in two distinct triangle components of blue Km. We can
conclude that at most 20t√

m
vertices in blue cliques witness more than 20t√

m
such edges.

We can repeat the same argument for red and obtain again at most 20t√
m

vertices in red
cliques that witness more than 20t√

m
edges with their two extremities in two distinct triangle

components of red cliques.

We denote with Vbin the set of vertices that were not in the original partition of cliques,
together with the at most 40t√

m
vertices that we selected in the previous point. For each

positive integer k, we want to count how many monochromatic cliques in V (G) \ Vbin can
have less than (1− 1

k )m vertices. In other words, we want to bound the number of cliques of
Gwith more than m

k vertices in Vbin. We can upper bound this number by 40t√
m
· km ≤

400k

|log ε|
3
2
t.

This gives us that at most 100k

|log ε|
1
2
t vertices are in cliques of size at most (1− 1

k )m.

2.4 First upper bounds on the component size

In this section, we initiate a long line of results providing upper bounds on the sizes of the
components. We start by proving that |Bi|, |Ri| cannot be much larger than 7

3 t (Lemma 2.15)
and that we cannot have both B1 and B2 (or R1 and R2) much larger than 2t (Lemma 2.16).

Lemma 2.15. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t.
Fix a collection of red and blue cliques as in Setting 2.12 with parameters ε and t. If G has a
set of blue triangle-connected cliques covering more than ( 73 + h)t vertices, then G contains a
monochromatic TCTF with (1 + ε)t triangles. The same holds replacing blue with red.

Proof. The symmetry with the red case follows by replacing colours along the proof.
Let A be a triangle-connected set of blue cliques that covers more than ( 73 + h)t vertices.

If |A| ≥ 3(1 + 50
|log ε| )t then we greedily construct a blue TCTF within A that leaves out

at most two vertices from each clique and obtain a blue TCTF covering at least 3(1 + ε)t

vertices as desired. So we may assume |A| < 3(1 + 50
|log ε| )t.

Since by conditions of Setting 2.12 there are at most 40000

|log ε|
3
2
t cliques with less than 99

100m

vertices in the whole G, and because of our upper bound on the size of A, we have that A



first upper bounds on the component size 42

contains at most
3(1 + 10ε)t

99
100m

+
40000

|log ε|
3
2

t ≤ 16t

|log ε|

blue cliques. Moreover, there are at least |V (G)| − 3(1 + 50
|log ε| )t vertices in V (G) \A. In

succession for each blue clique in A, we greedily construct a blue triangle factor T using
one edge in the selected clique and one vertex outside of A. There are two possible cases.

Case A: The greedy construction provides us with a set T of 2
3 (1 + ε)t triangles.

We can extend T to a triangle factor T ′ by adding triangles from within the cliques in A.
When we stop, at most two vertices for each cliques are being unused and hence we obtained
a blue TCTF covering at least

3 · 2
3
(1 + ε)t+

((
7
3 + h

)
− 2 · 2

3
(1 + ε)− 2 · 16

|log ε|

)
t

vertices. Note that this means that T ′ covers at least 3(1 + ε)t vertices.
Case B: The greedy construction stops before we get 2

3 (1 + ε)t triangles.
Let Y = V (G) \ (A ∪ T ). We have that

|Y | ≥ (9− ε)t− 3
(
1 + 50

|log ε|

)
t− 2

3 (1 + ε)t ≥ (5 + h)t ≥
(
5 + 20000√

|log ε|

)
t .

Let us denote by X the set of all the vertices in A \ T which are in cliques that have at
least three vertices in A \ T . At most 4

3 (1 + ε)t+ 2 · 16
|log ε| t vertices are in A but not in X .

Therefore, we have that

|X| ≥

(
1 +

100√
|log ε|

)
t .

Because we stopped the greedy procedure, we cannot extend T using an edge in a clique
of X and a vertex in Y , therefore each vertex in Y has at most one blue neighbour in each
clique of X . This means that there are at most 16t

|log ε| · |Y | <
16t

|log ε| ·
(
9− 7

3

)
t ≤ 202t2

|log ε| blue
edges between X and Y . We have therefore that (X,Y ) is 20√

|log ε|
t-red. We can now apply

Lemma 2.11 with input 20√
|log ε|

. We conclude that G contains a monochromatic TCTF on at
least

3
(
1 +

20√
|log ε|

)
t > 3(1 + ε)t

vertices.

Lemma 2.16. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let G
be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t. Fix
a collection of red and blue cliques as in Setting 2.12 with parameters ε and t. If G contains
two disjoint sets of blue triangle-connected cliques, with each set of cliques covering more than
(2 + h)t vertices, then G contains a monochromatic TCTF with (1 + ε)t triangles. The same
holds replacing blue with red.

Proof. Let A and B be disjoint sets of triangle-connected blue cliques, each covering at least
(2 + h)t vertices. We may assume h0 ≤ 1

30 . Let C denote the collection of all the remaining
vertices of G that are assigned to blue cliques, if any exist. By Lemma 2.15, either we can
find the desired monochromatic TCTF, or both A and B span less than

(
7
3 + h

)
t vertices.

Therefore, by Setting 2.12 with k = 100, they both contain at most the following number of
blue cliques:

71
30 t

99
100 ·

1
4 |log ε|

+
40000t

|log ε|
3
2

≤ 10t

|log ε|
.
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Moreover, by Claim 2.13, there are less than 2m blue edges between any clique in A and any
clique in B. Summing over the number of possible blue cliques in A and B, we obtain that
between A and B there are less than 2m · 10t

|log ε| ·
10t

|log ε| ≤
50

|log ε| t
2 blue edges. Hence, (A,B)

is 8√
|log ε|

t-red. Let us set λ = 8√
|log ε|

.
Let us greedily build a blue triangle factor TA by extending blue edges in blue cliques of

A to blue triangles using vertices outside of A. Let YA be the set of vertices in V (G) \ A
used in this way and A′ the set of remaining vertices in A . We can independently do the
same construction with B and obtain a triangle factor TB and some similar sets YB and B′.
Finally, let us denote Z = V (G) \ (A ∪ YA ∪B ∪ YB).

Because we can extend TA to a blue TCTF that covers all but at most two vertices for
each clique of A (and similarly for B), we have that |A ∪ YA| , |B ∪ YB | ≤ (3 + 3ε+ 8

m )t

(because otherwise we are done). This implies

|Z| ≥ |V | − (|A ∪ YA|+ |B ∪ YB |) ≥ (9− h)t− 2(3 + h)t = 3(1− h)t .

We also have that |YA| , |YB | ≤ (1 + ε)t, which implies that |A′| , |B′| ≥ (h− 2ε)t.
since we cannot further extend TA or TB , each vertex ofZ has at most one blue neighbour

per clique in each of A′ and B′. Since |Z| ≤ 5t and there are at most 10t
|log ε| cliques in each

of A′ and B′, we have that both (A′, Z) and (B′, Z) have at most 50
|log ε| t

2 blue edges and
hence they are both λt-red.

Claim 2.17. We claim that all red edges in Z are triangle connected. Moreover, if |C ∩Z| ≥ 1
3 t

then we can find a red TCTF in (A,B,C ∩ Z) on |C ∩ Z| − ht triangles that is triangle
connected to the red triangle component of Z .

Proof. Let xy and uv be two red edges in Z , letNA be the set of vertices inA′ red adjacent to
all vertices x, y, u and v, and letNB be defined similarly. To prove that xy and uv are triangle
connected it suffices to show that there exists a red edge between NA and NB . Because of
the lower bound on the size of A′ and B′, because of the minimum degree condition and
because every vertex in Z is adjacent in red to all but at most 10t

|log ε| of its neighbours in A′

and B′, we have that |NA| , |NB | ≥ (h − 2ε)t − 4 · εt − 4 · 10t
|log ε| ≥

3h
4 t. Since (A,B) is

λt-red, there is a red edge between NA and NB . Therefore, all the red edges in Z are in the
same triangle component.

Let us now create a red TCTF (which we denote ∆) in (A,B,C ∩Z) as follows. We first
find a largest TCTF, denoted ∆′, in (A′, B′, C ∩ Z). By Corollary 2.10, we have that ∆′ has
at least h

2 t vertices, since we have a lower bound on both |A′| and |B′|.
We can now use Corollary 2.10 to find a red TCTF in (A \ ∆′, B \ ∆′, (C ∩ Z) \ ∆′)

that covers almost all (C ∩ Z) \∆′. Let us call ∆ the union of the two triangle factors. By
Lemma 2.9, ∆ is triangle connected.

It now suffices to show that ∆′ is triangle connected to the red triangle component of
Z . Let xy be a red edge in Z , let NA be the set of vertices in A′ ∩∆′ red adjacent to both
x and y, and let NB be defined similarly in B′ ∩∆′. To prove that xy and ∆′ are triangle
connected it suffices to show that there exists an edge of ∆′ between NA and NB . Because
every vertex in Z is adjacent in red to all but at most 10t

|log ε| of its neighbours in A′ and B′,
we have that |NA| , |NB | ≥ 99h

100 t. Since ∆′ is a matching in (A′, B′) of large size, some of
its edges are between NA and NB . □

Therefore, Z \C can be extended to a set of triangle-connected red cliques of G, possibly
adding vertices from YA and YB . Therefore, we have |Z \ C| ≤

(
7
3 + h

)
t and this in

particular implies that |C ∩ Z| ≥ ( 23 − 4h)t. We form a red TCTF as follows. We start
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by using our last claim to construct a TCTF, denoted TC , over at least |C ∩ Z| − ht ≥
( 23 −5h)t triangles betweenA,B andC∩Z that is also triangle connected to the red triangle
component of Z . We then extend TC by taking triangles in cliques of Z \ C . This is enough
to conclude.

2.5 Colours and connection, and the sharp upper bound

In this section we begin by proving two lemmas which show that certain patterns of edges
between triangle components imply triangle connections, which we need in both this sec-
tion and the next. We then establish several inequalities about sizes of the components
(Lemma 2.22), most of which imply that various components cannot be too small. In particu-
lar, we establish the useful inequality |B2| ≥ |B≥3|, and similarly for red. Building on this,
we finally prove the sharp upper bound we want: none of the components can contain much
more than 2t vertices (Lemma 2.23). These are the two statements we need to complete the
proof of Lemma 2.3 in the next section.

Colours and connection

Claim 2.18. For every h > 0 there exists ε > 0 such that, if we use ε for Setting 2.12, we have
the following. Let A,B be two disjoint sets of vertices in blue cliques such that there are no blue
triangle components with some vertices in A and some vertices in B. Then the pair (A,B) is
ht-red. The same works for red.

Proof. By Setting 2.12, in G there are at most 9t
m ≤

40t
|log ε| cliques. Therefore, by Claim 2.13

we can have at most 2m · 20t
|log ε| ·

20t
|log ε| ≤

200t2

|log ε| blue edges between A and B. In particular,

this means that the pair (A,B) is
√

200
|log ε| t-red. For ε small enough we have the result we

wanted.

Lemma 2.19. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let G
be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t. Fix
a collection of red and blue cliques as in Setting 2.12 with parameters ε and t. Let Y1, Y2, Y3 be
subsets of the red cliques of size at least 10ht in distinct red triangle components, and let X be a
set of size at least ht of vertices in blue cliques which all have more than 2ht blue neighbours in
each of two of the Yis. Then at least one of the blue edges in a clique of X is triangle connected
to the large blue TCTF in (Y1, Y2, Y3). Everything still works if we invert red and blue.

Proof. First, note that for ε small enough and by Claim 2.18 we have that each pair in
Y1, Y2, Y3 is h3

2 t-blue. Let Ri be the set of vertices in Yi with more than h3t-red edges in
one of the other Yj . Without loss of generality, let us assume that the set S of vertices in
X with more than 2ht blue neighbours in both Y1 and Y2 has size at least ht

3 . Then each
vertex in S has at least (2h− h3)t blue neighbours in both Y1 \R1 and Y2 \R2. Then we
have a vertex y1 in Y1 \R1 which is incident in blue to at least (2h− h3)t · ht3 ·

1
9t ≥

1
15h

2t

vertices in S. So for t large enough y1 is incident in blue to at least two vertices of S
that lie in the same clique, let us call two such vertices x1 and x2. Since y1 has at least
|Y2| − (ε+ h+ h3)t ≥ |Y2| − (2h+ h3)t blue neighbours in Y2 \R2, we have that y1 and
x1 have a common blue neighbour y2. This implies that x1x2 is blue-triangle connected to
y1y2 and this by minimum degree condition means that x1x2 is triangle connected to the
large blue TCTF over (Y1, Y2, Y3) given by Lemma 2.9.
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Lemma 2.20. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let G
be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t. Fix
a collection of red and blue cliques as in Setting 2.12 with parameters ε and t. Let Y1, Y2 be
subsets of size at least 10ht of vertices in red cliques in distinct red triangle components, and
let X1, X2 be subsets of size at least 10ht of vertices in blue cliques in distinct blue triangle
components. Finally, assume that X1 is ht-red to each of Y1 and Y2. Then at most 2ht vertices
in X2 have more than 2ht red neighbours in both Y1 and Y2. Everything still works if we invert
red and blue.

Proof. First, note that for ε small enough and by Claim 2.18 we have that (X1, X2) is ht-red.
Let S be the set of vertices in X2 which have more than 2ht red neighbours in both Y1 and
Y2. Assume by contradiction |S| ≥ 2ht. Note that there is a vertex x1 in X1 which has
at most ht blue neighbours in each of X2, Y1 and Y2, so x1 is red-adjacent to some vertex
x2 ∈ S. Now, x1 and x2 have at least h

4 t common red neighbours in each Yi and therefore
they have at least two common red neighbours from the same clique in each of the Yi. But
this leads to a contradiction because it implies that a clique in Y1 is triangle connected to a
clique in Y2.

Some lower bounds

Claim 2.21. Let k be a positive integer and let b1 ≥ . . . ≥ bk > 0 be positive reals such that∑
i>1 bi > b1. We can partition {1, . . . , k} into two sets A, B such that if α :=

∑
i∈A bi and

β :=
∑

i∈B bi we have 2α ≥ β ≥ α.

Proof. We can construct such a partition greedily in two steps.
If b1 + b3 ≤ 2(b2 + b4) we set 1, 3 ∈ B and 2, 4 ∈ A. Otherwise we set 1 ∈ B and

2, 3, . . . , ℓ ∈ A with an ℓ such that b1 >
∑ℓ

i=2 bi >
b1
2 (such an ℓ exists because of the

hypotheses and because b1 > b2 + b3).
We now proceed by induction. Assume we already partitioned 1, . . . , i − 1 in such a

way that the requests of the lemma are satisfied, and let α and β be as in the statement of
the lemma. If 2α ≥ β + bi, we can add i ∈ B. Otherwise, we have β > 2α− bi ≥ α+ bi,
where the last inequality is given by the fact that the bi are ordered in decreasing order and
|A| ≥ 2. In this second case we can add i to the set A.

Lemma 2.22. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t.
Fix a collection of red and blue cliques as in Setting 2.12 with parameters ε and t, and define
B1, B2, . . . and R1, R2, . . . as in Setting 2.12.

(E1) If |B1| ≤ 7
6 t, then |

⋃
iBi| ≤

(
7
2 + h

)
t.

(E2) If |B1| ≥ 7
6 t and |B2| ≤ 7

6 t, then
∣∣⋃

i̸=1Bi

∣∣ ≤ ( 73 + h
)
t.

(E3) If |B1| , |B2| ≥ 7
6 t, then |∪iBi| ≤ ( 163 + h)t.

(E4) We have 43
12 t ≤ |∪iBi| , |∪iRi| ≤ ( 163 + h)t. We also have |B1| > 7

6 t.

(E5) If |B2| < |∪i≥3Bi|, then there is a red TCTF in ∪iBi over 3
2 |∪i≥2Bi| − ht vertices.

(E6) If |B2| ≤ 8
7 t, then |∪iBi| < ( 92 − h)t.

(E7) We have |B2| ≥ |∪i≥3Bi|.
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The corresponding results also hold for red and R1, R2, R3, . . . . Moreover, by (E6) we have that
at most one of B2 or R2 can have less than 8

7 t vertices.

Proof. We prove these results in order.
Proof of 2.22(E1): Assume for a contradiction that |B1| ≤ 7

6 t and |
⋃

iBi| >
(
7
2 + h

)
t.

Observe that by Setting 2.12 with k = 100, all but at most 40000

|log ε|
1
2
t vertices ofG are in cliques

fixed in Setting 2.12 with at least 99
100m vertices. We let for each i the set B′

i consist of all
vertices in blue cliques of Bi with at least 99

100m vertices.
We want to study how many blue edges have endpoints in two distinct B′

i. For each fixed
i, by Claim 2.13, the number of blue edges that have one endpoint in B′

i and the other in
some B′

j with j ̸= i, is less than

2m · |B
′
i|

99
100m

·

∣∣∣⋃j ̸=iB
′
j

∣∣∣
99
100m

≤ 3
|B′

i| ·
∣∣∣⋃j ̸=iB

′
j

∣∣∣
m

≤ 27

m
t |B′

i| .

Let us now observe that the number of vertices inB′
i that have more than h

100 t blue neighbours
in some B′

j with j ̸= i is at most 27
m t |B

′
i| · 100ht ≤

104

mh |B
′
i|.

Let us remove from each B′
i all the vertices with more than h

100 t blue neighbours in⋃
j ̸=iB

′
j , let us call the result B′′

i . By our last observation, we have∣∣∣⋃
i

B′′
i

∣∣∣ ≥ (1− 104

mh

)∣∣∣⋃
i

B′
i

∣∣∣
≥
(
1− 104

mh

)(∣∣∣⋃
i

Bi

∣∣∣− 40000

|log ε|
1
2

t
)

≥
(
1− 104

mh

)
·
(
7
2 + 3h

4

)
t

≥
(
7
2 + 3h

4 −
4·104
mh −

104

m

)
t

≥
(
7
2 + h

2

)
t .

In GRed
[⋃

iB
′′
i

]
, every vertex has red degree at least |

⋃
iB

′
i| − ( 76 + ε + h

100 )t which is
more than 2

3 |
⋃

iB
′′
i |. So by Lemma 2.6, GRed[∪iB′′

i ] contains a red TCTF of size 7
2 t.

Proof of 2.22(E2): Let B∗
1 be a set of the fixed blue cliques in B1 covering between

7
6 t−m and 7

6 t vertices. We may assume |B2| ≤ |B∗
1 |, by swapping these two sets of cliques

if necessary. Repeating what we did in Lemma 2.22(E1) to the setsB∗
1 , B2, B3, . . . , we obtain∣∣B∗

1 ∪
⋃

i≥2Bi

∣∣ ≤ ( 72 + h
)
t. Since |B∗

1 | ≤ 7
6 t, we have

∣∣⋃
i≥2Bi

∣∣ ≤ ( 73 + h
)
t as desired.

Proof of 2.22(E3): By Corollary 2.10, we have that |∪i≥3Bi| ≤ (1+ h
3 )t because otherwise

we can find a red TCTF over more than 3(1 + ε)t vertices. By Lemmas 2.15 and 2.16, we
have that |B1| ≤ ( 7+h

3 )t and |B2| ≤ ( 6+h
3 )t. Summing these bounds completes the proof.

Proof of 2.22(E4): By Lemmas 2.22(E1), (E2), (E3) we have that for any possible size of B1

andR1 we always have |∪iBi| , |∪iRi| ≤ ( 163 +h)t. Because |∪iBi|+ |∪iRi| ≥ (9−h)t we
therefore must have 43

12 t ≤ |∪iBi| , |∪iRi|. By Lemma 2.22(E1), this gives |B1| , |R1| > 7
6 t.

Proof of 2.22(E5): Let us take a set of vertices B′
1 ⊆ B1 such that |B′

1| = 1
2 |∪i≥2Bi| −

1
100ht (we know thatB1 is large enough, indeed we know |B1| ≥ 7

6 t and it cannot be the case
that |B2| ≥ 7

6 t because otherwise we would find a large red TCTF over (B1, B2,∪i≥3Bi)).
By Claim 2.18, all but at most 1

100ht vertices of B′
1 have red degree in G[B′

1 ∪
⋃

i≥2Bi] at
least |∪i≥2Bi|− 1

100ht. LetB′′
1 be a subset of size 1

2 |∪i≥2Bi|− 2
100ht such that every vertex

in B′′
1 has red degree in G[B′′

1 ∪
⋃

i≥2Bi] at least |∪i≥2Bi| − 1
100ht ≥

2
3

∣∣∣B′′
1 ∪

⋃
i≥2Bi

∣∣∣.
Because every vertex in ∪i≥2Bi is in a triangle component of size significantly smaller
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than 2
3

∣∣∣B′′
1 ∪

⋃
i≥2Bi

∣∣∣ we can conclude by Lemma 2.6 that we can find a red TCTF over all
but at most two vertices of B′′

1 ∪
⋃

i≥2Bi. Which is, we can find a red TCTF over at least
3
2 |∪i≥2Bi| − ht vertices.

Proof of 2.22(E6): Fix some h > 0 arbitrarily small, depending on which we can choose
our ε. By Lemma 2.22(E1), we can assume |B1| ≥ 7

6 t. Also recall that by Lemma 2.15 we
have ( 73 + h)t ≥ |B1|. Assume by contradiction |B2| ≤ 8

7 t and |∪iBi| ≥ ( 92 − h)t. Then
we would have |∪i≥3Bi| ≥ ( 92 − h)t − ( 73 + h)t − 8

7 t = (4342 − 2h)t. By Corollary 2.10
and Claim 2.18, it cannot be the case that |B2| ≥ ( 4342 − 2h)t as otherwise we would find
a large red TCTF over (B1, B2,∪i≥3Bi). Therefore, we must have |B2| < |∪i≥3Bi|, and
therefore by Lemma 2.22(E5) we must have that 3

2 |∪i≥2Bi| − ht < (3 + h)t which is to say
that |∪i≥2Bi| < 25

12 t. We can conclude that |∪iBi| < (73 + h)t+ 25
12 t < (92 − h)t.

Proof of 2.22(E7): First, let us note that we cannot have both |B2| < |∪i≥3Bi| and
|R2| < |∪i≥3Ri|. Indeed, by 2.22(E6) at least one between B2 and R2 has cardinality
at least 8

7 t. Let us assume without loss of generality that |R2| ≥ 8
7 t, then it cannot be

|∪i≥3Ri| > |R2| because of Corollary 2.10.
Let us now assume by contradiction that |∪i≥3Bi| > |B2|. By Lemmas 2.15 and 2.16,

we have that |R1| ≤ ( 73 + h)t and |R2| ≤ (2 + h)t. Moreover, by Corollary 2.10 we have
|R3| ≤ (1 + h)t. Therefore, we have |B2

⋃
∪i≥3Bi| ≥ (43 − 5h)t.

By Claim 2.21, since both B3 and B4 are non-trivial (by our contradiction hypothesis),
we can partition the sets Bi into collections B′

1, B′
2 and B′

3 such that B′
1 = B1 and 2 |B′

3| ≥
|B′

2| ≥ |B′
3|. In particular, paired with the bounds we obtained just above, this gives

|B′
2| ≥ (23 − 5h)t and |B′

3| ≥ ( 49 − 5h)t as B′
2 covers at least half the edges of ∪i≥2Bi and

as B′
3 covers at least one third of the same edges.

Notice that by Lemma 2.22(E5) we have |∪i≥2Bi| ≤ (2 − 2h)t. We claim that no
blue clique in B′

1 is blue triangle connected to the blue TCTF in (R1, R2, R3). Indeed,
we have that this would create a blue TCTF of size at least 3 |R3| + |B1| and we have
|R3| ≥ 9t− |B1| − |B2

⋃
∪i≥3Bi| − |R1| − |R2| ≥ (13 − 5h)t and |R3|+ |B1| ≥ ( 83 − 4h)t.

Which implies that 3 |R3|+ |B1| > (3 + h)t.
In particular, by Lemma 2.19, this implies that all but at most ht vertices in B′

1 have less
than 2ht blue neighbours in two of theR1, R2 orR≥3. This means that there is a set T ⊆ B′

1

of size at least 1
3

(
|B′

1| − ht
)

such that (T,Ri), (T,Rj) are ht-red and i, j ∈ {1, 2,≥ 3}. Let
us assume that (T,R2) is ht-red (if not, then we have (T,R1) is ht-red and this is strictly
better in the following computations). We claim that (R2, B

′
2) and (R2, B

′
3) are ht-blue.

Indeed, by Lemma 2.22(E5) and by the lower bound |B2

⋃
∪i≥3Bi| ≥ ( 43 − 5h)t we got

earlier, we have a red TCTF in B′
1 ∪B′

2 ∪B′
3 of size at least (2− 10h)t. Since |R2| ≥ 8

7 t, we
must have that each clique in R2 is not triangle connected to the large TCTF between the Bi

components. By Lemma 2.19, and since (T,R2) is red, we get that (R2, B
′
2) and (R2, B

′
3)

are ht-blue.
We now claim that there is a Bi in B′

2 such that (Bi, R≥3) is ht-red. In particular, this
means that each red clique in R≥3 is in the same triangle component of (B′

1, B
′
2, B

′
3). There

exists such a Bi because B′
2 is formed by at least two distinct blue triangle components,

which cannot therefore be triangle connected among themselves. But we also know that
(B′

2, R2) is ht-blue, so if we had that more than one blue component in B′
2 has many blue

neighbours in R3, we would get that these blue components are triangle connected.
We now claim that we must have |R≥3| ≥ (1− 20h)t. As observed above, there is a red

TCTF in B′
1 ∪B′

2 ∪B′
3 of size at least 3

2 |B
′
2 ∪B′

3|, and its triangles are triangle connected
in red to R≥3. We also have a red TCTF of size 3

2 |B
′
2 ∪B′

3|+ |R3| − ht. Moreover, we have
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|R3 ∪B′
3 ∪B′

2| ≥ 9− |B′
1 ∪R1 ∪R2| ≥ (73 − 10h)t which gives us a red TCTF over more

than (3 + h)t vertices, unless |R3| ≥ (1− 20h)t.
In particular, we can say that we can find a blue TCTF in (R1, R2, R≥3) of size at least

3(1− 20h)t. Since we have already that (R2, B
′
2) and (R2, B

′
3) are ht-blue, and since we

cannot extend the blue TCTF in (R1, R2, R≥3) at all, this means that (R1, B
′
2) and (R1, B

′
3)

must be ht-red, but this is absurd since it would create a red TCTF in (B′
1, B

′
2, B

′
3) ∪R1 of

size at least 3
2 |B

′
3 ∪B′

2|+ |R1| − ht > 3(1 + h)t.

The sharp upper bound

Lemma 2.23. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t.
Fix a collection of red and blue cliques as in Setting 2.12 with parameters ε and t, and define
B1, B2, . . . as in Setting 2.12. We have that |B1| , |R1| ≤ (2 + h)t.

Proof. Let us denote with B≥3 the set ∪i≥3Bi and similarly for red. By Lemmas 2.15
and 2.16, we can assume |B1| , |R1| ≤ ( 73 + h)t and |B2| , |R2| ≤ (2 + h)t. Let us assume
by contradiction that |B1| ≥ (2 + h)t. We construct greedily a blue TCTF, denoted TB , as
follows. Select an edge in a blue clique of B1, and extend it (if possible) to a blue triangle
using a vertex outside of B1 not used yet in the process. We can repeat greedily until there
are no blue edges in cliques of B1 that can be extended outside of TB . Let us denote with
YB the set of vertices TB \B1 used to extend the edges in B1, and let us denote with B′

1 the
set B1 \ TB of remaining vertices.

Because TB is triangle connected, we have that the size of TB is smaller than 3(1 + ε)t

and therefore in particular |B′
1| = |B1| − |B1 ∩ TB | > h

2 t. Let h′ := min
{ |B′

1|
200t , h

}
≥ h

3
2 .

Because we stopped the greedy construction of TB only when we could not extend TB
further, we have that every vertex in V \ (B1 ∪ YB) has at most as many blue neighbours in
B′

1 as the number of cliques with at least two vertices that are in B′
1. This means that the

number of blue edges in (B′
1, V \ (B1 ∪ YB)) is at most 7t ·

(
7
3

1
99
100m

+ k

|log ε|
3
2

)
t ≤ ( 5√

m
t)2.

Therefore, we have that the pair (B′
1, V \ (B1 ∪ YB)) is λt-red for λ = 5√

m
.

We now separate four cases. In all of them it is important to recall that we already have
|B1| ≥ (2 + h)t, and |B1| , |R1| ≤ ( 73 + h)t, and |B2| , |R2| ≤ (2 + h)t.

Case A: Assume we have |R≥3| ≤ ht.
We thus have |∪iRi| ≤ (133 + 3h)t, which gives us |∪Bi| ≥ (143 − 4h)t and together

|B2 ∪B≥3| ≥ ( 73 − 5h)t. Since |B2| ≥ |B≥3| by 2.22(E7), we have that |B2| > (1 + h)t and
therefore by 2.9 we have |B≥3| < (1 + h)t. All the above inequalities can be combined to
give us the following:

|B≥3| ≥


( 83 − 5h)t− |R1|
( 73 − 5h)t− |R2| ≥ ( 13 − 6h)t

( 143 − 4h)t− |B1| − |R2|

.

Since |B≥3| < (1 + h)t, we must have |R2| > ( 43 − 6h)t. Let us call CB the red triangle
connected component in (B1, B2, B≥3) that by Corollary 2.9 contains almost all red edges
of (B1, B≥3) and (B2, B≥3).

Claim 2.24. No red edge in a clique of R1 or R2 is red triangle connected to CB .
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Proof. IfR1 was red triangle connected toCB , we could extend a red TCTF of size 3 |B≥3|−ht
over (B1, B2, B≥3) (which is given us by Corollary 2.9) using vertices of R1 and obtain a
TCTF over

3 |B≥3|+ |R1| − 2ht ≥ 3(( 83 − 5h)t− |R1|) + |R1| − 2ht

= (8− 17h)t− 2 |R1| > 3(1 + ε)t

vertices. Similarly, we cannot have that R2 is red triangle connected to CB . Indeed:
Case 1: If |R2| ≤ 17

9 t, then we have a red TCTF over 3 |B≥3|+ |R2|−2ht ≥ (7−16h)t−
2 |R2| > 3(1 + ε)t vertices.

Case 2: If |R2| ≥ 17
9 t, we can greedily construct a red TCTF, which we denote T , as

follows. We select edges in red cliques of R2 \ YB and we extend them to disjoint triangles
using vertices of B′

1. Because (R2 \ YB , B′
1) is λt-red, we have that we can continue this

process until T almost completely covers the red cliques of R2 \ YB (we can have at most
ht vertices remaining in R2 \ YB) or because there aren’t enough vertices in B′

1 with
sufficiently many red neighbours in R2 \ YB . If we stopped because of this second reason
while more than ht vertices are remaining in R2 \ YB , we have that at most h′t vertices in
B′

1 are not used (as (R2 \ YB , B′
1) is λt-red). We can extend T with triangles from cliques

of R2 and obtain a TCTF over at least min
{

3
2 |R2 \ YB |+ |R2 ∩ YB | , |R2|+ |B′

1|
}
− 3ht

vertices, where the first case represents the situation when the process to build T stopped
due to constraints on the size of R2 \ YB , and the second where it stopped because of
constraints on B′

1. We have that T intersects B1 in at most t vertices, therefore we can
again extend T using the tripartition (B1 \ T,B2, B≥3). In this way we are adding at least
3 |B≥3| − ht vertices since |B3| ≤ (1 + h)t, |B2| > 7

6 and |B1| ≥ (2 + h)t. Therefore, we
end up with a red TCTF over min

{
|R2|+ |B′

1| , 12 |R2 \ YB |+ |R2|
}
+ 3 |B≥3| − 4ht =

3 |B≥3|+ |R2|+min
{
|B′

1| , 12 |R2 \ YB |
}
− 4ht vertices. We can notice at this point that

|B′
1|+ |B≥3| ≥ |B1|+ |B≥3| − (2 + h)t

≥ 14
3 t− 4ht− |B2| − (2 + h)t ≥ ( 23 − 6h)t .

Since |B≥3| ≥ ( 136h)t and |R2 \ YB | ≥ 5
6 t, we are done. Indeed, we have 3 |B≥3|+ |R2|+

min
{
|B′

1| , 12 |R2 \ YB |
}
− 4ht ≥ 3( 136h)t+

17
9 t+

1
3 t > 3(1 + h)t. □

We now know that neither R1 nor R2 are triangle connected to the large triangle
component of the tripartition (B1, B2, B≥3). In order to use Lemma 2.19 efficiently, we first
need to remember that B′

1, R1 \ YB and R2 \ YB are all non-trivial and that (B′
1, R1 \ YB)

and (B′
1, R2 \ YB) are both λt-red. We can now use Lemma 2.19 to conclude that at most

2λt vertices in (R1 ∪R2) \ YB can have more than 2λt red neighbours in each of B2 and
B≥3. But this is absurd because of Lemma 2.20.

Case B: Assume we have |B≥3| ≤ ht.
We can also assume that |R1| ≤ (2 + h)t, because otherwise we would be in the same

situation as case A under switching colours. By Corollary 2.22(E4), we have |∪iBi| ≥ 43
12 t

and this implies |B2| ≥ 6
5 t. We can consider that |R2 ∪R≥3| ≥ (9− h)t− |R1| − |∪iBi| ≥

( 83 −5h)t, which gives us |R≥3| ≥ (23 −6h)t. By Lemma 2.22(E7), we have |R2| ≥ ( 43 −3h)t.
By Corollary 2.10, this also implies that there is a red TCTF on (R1, R2, R≥3) covering at
least 3 |R≥3| − ht ≥ (2− 19h)t vertices. This gives us the upper bound |R≥3| ≤ 1+h

t . This
also implies that |R2| ≥ ( 53 − 6h)t.

Since both B1 and B2 are larger than 8
7 t we have that neither B1 nor B2 can be blue

triangle connected to the large TCTF over (R1, R2, R≥3).



colours and connection, and the sharp upper bound 50

By Lemma 2.19, this means that at most ht vertices from each of B1 and B2 can be blue
adjacent to more than 2ht vertices in any two of R1, R2 or R≥3. But we know also that
B′

1, R1 \ YB and R2 \ YB are non-trivial, and therefore (B′
1, R1 \ YB) and (B′

1, R2 \ YB)
are λt-red. Hence, by Lemma 2.20, it can not not be the case that there are more than 2ht

vertices ofB2 with more than 2ht red neighbours in bothR1 \YB andR2 \YB . Therefore, by
Lemma 2.19, there are at most 3ht vertices in B2 which have more than 2ht blue neighbours
in R≥3.

This means that we can find a set S1 of at least 1
2 |B2| − 10ht vertices in B2 such that

every vertex in S1 has at most 2ht blue neighbours both in R≥3 and one of R1 \ YB or
R2 \YB (say R2, it is the same if it was R1). Therefore, by applying Lemma 2.20 with S1 and
B′

1 on one side and R2 and R≥3 on the other side, we get that there are at most 6h′t vertices
in B′

1 which have more than 3h′t red neighbours in R≥3, and this means that (B′
1, R≥3)

is 6h′t-blue. By Lemma 2.19 we know that (B′
1, R1) and (B′

1, R2) are 9h′t-red, and in the
same way we know that almost all the vertices of B2 are 2h′t-red to one of R1 or R2. As
an example, we assume that we have a subset S2 of B2 of size at least |B2|−20h′t

2 such that
every vertex in S2 has at most 2h′t blue neighbours to R2.

Therefore, (S2, R≥3) and (S2, R2) are 2h′t-red. Because (B′
1, R1) and (B′

1, R2) are both
9h′t-red, by Lemma 2.20 we have that (B1, R1) is 9h′t-red. By Lemma 2.19 as above, at most
6h′t vertices in B1 can have more than 2h′t blue neighbours in any two of R1, R2 and R≥3.
We can find S′ ⊆ B1 of size at least |B1|−20h′t

2 that is either 10h′t-red to R≥3 or to R2. In
the first case, we find a large red TCTF using triangles in (S′, S2, R≥3) and then triangles in
B1. In the latter case, we can find a red TCTF on (S2, S

′, R2) over at least

2 ·min {|S2| , |S′| , |R2|}+ |R2| − 20h′t

vertices. We claim that this is enough, indeed we have |R≥3| ≤ (1 + h′)t, and therefore we
get the lower bound ( 53 − 10h′)t for |R2| and t− 10h′t for |S′|.

Case C: Assume we have |R1| ≤ (2 + h)t and |B≥3| , |R≥3| ≥ ht.
We have two cases.
Case C.1: Let us assume |R2| ≤ 8

7 t.

Claim 2.25. Neither B1 nor B2 is blue connected to the TCTF over (R1, R2, R≥3). Also, R1 is
not triangle connected to (B1, B2, B≥3).

Proof. By Corollary 2.22(E4), we have that |R1 ∪R2 ∪R≥3| ≥ 43
12 t and hence |R2 ∪R≥3| ≥

( 1912 − h)t. By Lemma 2.22(E7), we have |R2| ≥ |R≥3| and by Lemma 2.22(E6) we have
|B2| ≥ 8

7 t and since R1, . . . , B≥3 form a partition of G, we have |R≥3| ≥ (9 − 7
3 − 1 −

2 − 8
7 − 3h)t − |B2| > ( 52 + h)t − |B2|. By Corollary 2.9, we can find a blue TCTF over

(R1, R2, R≥3) of size at least 3 |R≥3| ≥ 15
2 t− 3 |B2|. In particular, this implies that both B1

and B2 are not triangle connected to the blue TCTF over (R1, R2, R≥3).
We now prove that R1 is not triangle connected to (B1, B2, B≥3).
If |R2 ∪R≥3| > ( 87 + 1 + h)t, then by Lemma 2.22(E7) we have |R2| > |R≥3|, since

|R2| ≤ 8
7 t we have |R≥3| ≥ (1 + h)t and by Corollary 2.10 we again obtain a blue TCTF of

size (3 + h)t.
If on the other hand we have |R2 ∪R≥3| ≤ ( 87 + 1 + h)t, it follows that |B≥3| ≥

(9− 7
3 − 2− 8

7 − 1− 4h)t− |R1| which means 3 |B≥3|+ |R1| ≥ 24
7 t. Therefore, it cannot

be that R1 is red triangle connected to the large TCTF over (B1, B2, B≥3). □

Since R1 is not connected to (B1, B2, B≥3), we have by Lemma 2.19 that at most h5t
vertices in R1 have more than 2h5t red neighbours in two of the Bi. Since R1 \ YB is
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non-trivial we have that (B′
1, R1 \ YB) is λt-red. Therefore, we must have that (R1 \

YB , B2), (R1 \ YB , B≥3) are h2t-blue. We can now apply Lemma 2.19 again knowing that
B2 is not blue triangle connected to the blue triangle component over (R1, R2, R≥3) and
therefore at most h5t vertices of B2 have more than 2h5t blue neighbours in two of the Ri.
Hence, (B2, R2) and (B2, R≥3) are h2t-red.

Since they are not red triangle connected among themselves, we have that either R2 or
R≥3 is not red triangle connected to the red triangle component over (B1, B2, B≥3). Let R2

the one not red triangle connected, and R≥3 the other one (if the situation is reversed we get
better bounds). Then by Lemma 2.19 we have thatR2 is h2t-blue toB1 andB≥3, and therefore
by the same Lemma we have that (B1, R≥3) is h2t-red. Then (B1, B2, B≥3∪R≥3) is a dense
red tripartition with |B1| , |B2| ≥ 8

7 t. We have |B≥3 ∪R≥3| ≥ (9− 7
3−2−2−

8
7−3h)t ≥

3
2 t

which is enough to conclude by Corollary 2.9.
Case C.2: Let us now assume |R2| ≥ 8

7 t.
Then both R1 \ YB and R2 \ YB are non-trivial and λt-red to B′

1. We cannot have that
both R1 and R2 are red triangle connected to (B1, B2, B≥3) (because otherwise they would
be red triangle connected among themselves). By Lemma 2.19, this means that one between
R1 \ YB and R2 \ YB must be h2t-blue to both B2 and B≥3, we work with the example in
which R1 \ YB is h2t-blue to both B2 and B≥3 (it would be the same if we had R2).

We cannot have both B2 and B≥3 to be blue triangle connected to (R1, R2, R≥3) (oth-
erwise they would be in the same connected component) and therefore we split our case
depending on whether or not B2 is blue triangle connected to (R1, R2, R≥3).

Let us assume that it is so. Then B≥3 is not blue triangle connected to (R1, R2, R≥3)

and so (B≥3, R2) and (B≥3, R≥3) are h2t-red. By Lemma 2.19, this implies that R2 is red
triangle connected to (B1, B2, B≥3) and therefore R≥3 is not. Therefore, (R≥3, B1) and
(R≥3, B2) are h2t-blue. Therefore, (B1, R1) and (B1, R2) must be h2t-red. Therefore, we
can find a blue TCTF over 3 |R≥3|+ |B2| vertices by taking triangles from (R1, R2, R≥3)

and B2. We can also find a red TCTF over 3 |B≥3|+ 3
2 |R2| vertices by taking triangles from

(B1, B2, B≥3) and by taking edges from R2 and extending them with vertices from B1. We
conclude by taking the average of the size of these two TCTFs.

Let us now assume thatB2 is not blue triangle connected to (R1, R2, R≥3). Then (B2, R2)

and (B2, R≥3) are h2t-red, since (R1 \ YB , B2) is ht -blue, and this implies that R2 is red
triangle connected to (B1, B2, B≥3). Therefore, R≥3 is h2t-blue to B1 and B≥3 and so B≥3

is blue triangle connected to (R1, R2, R≥3). This also means that B1 must be h2t-red to
both R1 and R2 in order not to be blue triangle connected to (R1, R2, R≥3) but this leaves
us with a dense red (B1, B2, B≥3 ∪R2).

Case D: Assume we have |R1| ≥ (2 + h)t and both B≥3 and R≥3 contain more than ht
vertices (otherwise without loss of generality we are in case B).

We can also assume without loss of generality that |B2| ≥ |R2| and therefore by
Lemma 2.22(E6) we also have |B2| ≥ 8

7 t.
We can greedily extend blue edges in cliques of B1 to a blue TCTF, which we denote

TB , by using vertices outside of B1. Since |B1| ≥ (2 + h)t we can either create a TCTF
over more than 3(1 + ε)t vertices or we have to stop at some point. Since |B1| ≥ (2 + h)t,
this means that B1 \ TB is non-trivial. We can do the same with a red TCTF, similarly
denoted TR, extending red edges in R1 (since we are assuming |R1| ≥ (2 + h)t). Let us call
B′

1 := B1 \ TB and R′
1 := R1 \ TR. Since the TCTFs TR and TB are maximal, we have that

(B′
1, V (G) \ TB) is ht-red, while (R1, V (G) \ TR) has to be ht-blue. In particular, there are

non-trivial subsets SB1
⊆ B1 of size at least (1 + h

2 )t, SB2
⊆ B2 of size at least ( 17 + h

2 )t

and SR1 ⊆ R1 of size at least (1 + h
2 )t such that (SB1 , R

′
1) and (SB2 , R

′
1) are ht-blue and
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(SR1
, B′

1) is ht-red.
There are two cases:
Case D.1: B1 is blue triangle connected to the large TCTF in (R1, R2, R≥3). Then we

know that B2 and B≥3 are not triangle connected to the same TCTF. In particular, since
(SB2 , R

′
1) is ht-blue, we must have that both (SB2 , R2) and (SB2 , R≥3) are ht-red. Now,

either R1 is red triangle connected to the large TCTF in (B1, B2, B≥3) or not.
In the first case, we have that both R2 and R≥3 are not triangle connected to the large

TCTF in (B1, B2, B≥3). Because (SB2
, R2) and (SB2

, R≥3) are ht-red, this means that
(R≥3, B≥3), (R≥3, B1) and (R2, B≥3), (R2, B1) are ht-blue, which is absurd because it
would mean that B1 and B≥3 are in the same blue-connected component.

If R1 is not red triangle connected to the large TCTF in (B1, B2, B≥3), then (SR1
, B≥3)

and (SR1 , B2) have to be ht-blue. But now we get a contradiction since (B≥3, R≥3) and
(B≥3, R2) need to be ht-red or otherwise B≥3 is triangle connected to the blue TCTF in
(R1, R2, R≥3), and also (B2, R≥3) and (B2, R2) need to be ht-red or otherwiseB2 is triangle
connected to the blue TCTF in (R1, R2, R≥3). This is enough to say that R2 and R≥3 are in
the same red-connected component.

Case D.2: B1 is not blue triangle connected to the large TCTF in (R1, R2, R≥3) but R1

is red triangle connected to the large TCTF in (B1, B2, B≥3). Since B1 is not blue triangle
connected to the large TCTF in (R1, R2, R≥3) and because (SB1 , R

′
1) is ht-blue, we have

that (SB1
, R2) and (SB1

, R≥3) are ht-red. Now, since R1 is red triangle connected to the
large TCTF in (B1, B2, B≥3) we have that R2 and R≥3 are not, because (SB1

, R2) and
(SB1 , R≥3) are ht-red this implies that (B2, R2), (B≥3, R2) and (B2, R≥3), (B≥3, R≥3) are
ht-blue, which is absurd because it implies that both B2 and B≥3 are connected to the large
TCTF in (R1, R2, R≥3).

Case D.3: B1 is not blue triangle connected to the large TCTF in (R1, R2, R≥3) and
R1 is not blue triangle connected to the large TCTF in (B1, B2, B≥3). In which case we
notice that the blue cliques in B1 are not triangle connected to the large blue TCTF in
(R1, R2, R≥3) and similarly the red cliques in R1 are not triangle connected to the large red
TCTF in (B1, B2, B≥3). In particular, this implies that (SB1 , R≥3) and (SB1 , R2) are ht-red,
because we have that (SB1

, R′
1) is ht-blue and (R′

1,∪i≥2Ri) is ht-blue. Likewise, we have
that (SR1

, B≥3) and (SR1
, B2) are ht-blue. But this leaves us in a contradiction, indeed,

neither B2 nor B≥3 can be triangle connected to (R1, R2, R3). Since (SR1 , B≥3) is ht-blue
this means that (R2, B≥3) and (R≥3, B≥3) are ht-red. This is enough to get a contradiction,
since we have (R2, B≥3) and (R≥3, B≥3) are ht-red but also (SB1

, R≥3) and (SB1
, R2) are

ht-red.

2.6 The colours of edges

In this section we complete the proof of Lemma 2.3. We first deduce an approximate version,
proving thatB≥3∪R≥3 cannot have much more than t vertices (which implies all components
have roughly the correct size) and that most edges in various pairs have the ‘correct’ colour.
We then prove Lemma 2.3 by arguing that any edges with the ‘wrong’ colour lead to triangle
components which are much larger than they should be. The following is our approximate
version.

Lemma 2.26. There exists h0 > 0 such that for every 0 < h < h0 there exists ε0 > 0 such
that for all 0 < ε < ε0 there exists t0 such that for every t > t0 we have the following. Let
G be a 2-edge-coloured graph with (9− ε)t vertices and minimum degree at least (9− 2ε)t.
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Fix a collection of red and blue cliques as in Setting 2.12 with parameters ε and t, and define
B1, B2, . . . and R1, R2, . . . as in Setting 2.12. Then it holds:

• (2− h)t ≤ |B1| , |B2| , |R1| , |R2| ≤ (2 + h)t,

• (1− h)t ≤ |B≥3 ∪R≥3| ≤ (1 + h)t,

• |G \ ∪i(Bi ∪Ri)| ≤ ht,

• The following pairs are h2t-blue: (B1, R1), (B2, R2), (R1, R2), (R1, B≥3 ∪R≥3) and
(R2, B≥3 ∪R≥3),

• The following pairs are h2t-red: (B1, B2), (B1, B≥3∪R≥3), (B2, B≥3∪R≥3), (B1, R2)

and (B2, R1).

Proof. By Lemma 2.23, we know that for ε > 0 small enough we have the upper bounds
|B1| , |B2| , |R1| , |R2| ≤ (2 + h

3
2 )t and therefore we have |B≥3 ∪R≥3| ≥ (1 − 5h

3
2 )t.

Without loss of generality, let us assume |B≥3| ≥ |R≥3|.

Claim 2.27. We have that R1 and R2 are not red triangle connected to (B1, B2, B≥3). More-
over, without loss of generality, we have (R1, B1), (R1, B≥3) and (R2, B2), (R2, B≥3) are
h2t-blue.

Proof. Notice that |B1| ≥ (1−5h
3
2 )t

2 . Let us consider first that R1 and R2 are not red
triangle connected to (B1, B2, B≥3). Indeed, assume this is not the case and we have
3 |B≥3| + |Ri| < (3 + h)t for some i ∈ {1, 2}. Then we have |R1| + |R2| + |B≥3| <
(3 + h + 2 + h

3
2 )t − 2 |B≥3| < (4 − 3h)t which is clearly absurd because it implies

|B1|+ |B2|+ |R≥3| ≥ (5 + 2h)t.
We now claim that there is an ordering (i, j, k) of {1, 2,≥ 3} such that (R1, Bi), (R1, Bj)

and (R2, Bk), (R2, Bj) are h2t-blue. Indeed, by Lemma 2.19 we know that up to removing
at most h5t vertices from each of R1 and R2, every vertex in R1 ∪R2 has many blue edges
in at least two among {B1, B2, B≥3}. This means that we can partition (not in a unique
way) almost all the vertices of R1 among the sets SR1

Bh
, where the vertices in SR1

Bh
have their

red neighbour in ∪ℓBℓ contained in Bh. We define similarly SR2

Bh
. We claim that just one of

the SR1

Bh
is not trivial.

Assume by contradiction that SR1

Bi
and SR1

Bj
have size at least ht. We cannot have that

SR2

Bi
or SR2

Bj
have size at least ht, because otherwise we would have that Bj and Bk or Bi

and Bk are connected respectively. Therefore, we must have that SR2

Bk
contains almost all

the vertices of R2 and in particular is not trivial. Therefore, we have that SR1

Bi
, SR1

Bj
and SR2

Bk

are not trivial, which gives us that both Bi and Bj are in the same triangle component. This
implies that just one of the SR1

Bh
is non-trivial, and by symmetry the same is true for R2.

Moreover, we have that SRi

B≥3
is trivial, because otherwise we would find a large blue TCTF

in (B1, B2, Ri ∪B≥3).
Finally, since by Lemma 2.20 we cannot have that R1 and R2 are h2t-blue to the same

pair, we know that each of R1 and R2 is h2t-blue to B≥3 and one between B1 and B2.
We assume without loss of generality that (R1, B1) and (R1, B≥3) are h2t-blue, and that
(R2, B2) and (R2, B≥3) are h2t-blue, as we wanted.

□

By the claim, we have that (R1, B1), (R1, B≥3), (R2, B2), and (R2, B≥3) are h2t-blue.
In particular, this means that we can find a blue TCTF in (R1, R2, B≥3 ∪R≥3). This gives
us immediately that |B≥3 ∪R≥3| ≤ (1 + h

3
2 )t and in particular |B1| , |B2| , |R1| , |R2| ≥

(2− h)t.
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Also, we get that (B1, R2) and (B2, R1) are h2t-red. This holds because otherwise we
would have that both B≥3 and B2 are in the same connected component, indeed, (B≥3, R1),
(B≥3, R2) and (B2, R2) are h2t blue.

Assume now |R≥3| ≥ h
3
2 t. We have that (R1, B1), (R1, B≥3) and (R2, B2), (R2, B≥3)

are h2t-blue, this gives us that B≥3 is blue triangle connected to (R1, R2, R≥3) (which is a
non-trivial TCTF) which in turn gives us that B1 and B2 are not. From this last fact we can
conclude that (B1, R≥3) and (B2, R≥3) are all h2t-red.

So we have the construction that we wanted up to change the indices between B1, B2

and R1, R2 respectively.

Let us now prove Lemma 2.3, which we restate for convenience.

Lemma 2.3. There exists δ0 > 0 such that for every 0 < h, λ < δ0 there exist ε0, t0 > 0 such
that for every t ≥ t0 and 0 < ε < ε0 the following holds. Let G be a 2-edge-coloured graph on
(9−ε)t vertices with minimum degree at least (9−2ε)t. Then eitherG contains a monochromatic
TCTF on at least 3(1 + ε)t vertices or V (G) can be partitioned in sets B1, B2, R1, R2, Z, T

such that the following conditions hold.

(F1) (2− h)t ≤ |B1| , |B2| , |R1| , |R2| ≤ (2 + h)t,

(F2) (1− h)t ≤ |Z| ≤ (1 + h)t,

(F3) all the edges in G[B1] and G[B2] are blue, and all the edges in G[R1] and G[R2] are red,

(F4) all the edges between the pairs (B1, R1), (B2, R2), (R1, Z) and (R2, Z) are blue, and
those between the pairs (B1, R2), (B2, R1), (B1, Z) and (B2, Z) are red,

(F5) the pair (B1, B2) is λt-red, and the pair (R1, R2) is λt-blue, and

(F6) |T | ≤ ht.

Proof of Lemma 2.3. We refine Lemma 2.26 to obtain a more precise control of colours.
By Lemma 2.26, we have that there exists δ0 > 0 such that for δ0 > h, λ > 0 there exist

ε0, t0 > 0 such that for every t > t0 and ε0 > ε > 0 if G is a 2-edge-coloured graph over
(9− ε)t vertices with minimum degree at least (9− 2ε) and without a monochromatic TCTF
on at least 3(1 + ε)t vertices, then we can partition V (G) in the sets B1, B2, R1, R2, Z, T

(where the Bi and Ri are as in Setting 2.12 and where where Z = B≥3 ∪R≥3 and T is the
set of vertices which are not already counted) such that the following holds:

• (2− h)t ≤ |B1| , |B2| , |R1| , |R2| ≤ (2 + h)t,

• (1− h)t ≤ |Z| ≤ (1 + h)t,

• |T | ≤ ht,

• The following pairs are λt-blue: (B1, R1), (B2, R2), (R1, R2), (R1, Z) and (R2, Z),

• The following pairs are λt-red: (B1, B2), (B1, Z), (B2, Z), (B1, R2) and (B2, R1).

We first need to slightly prune our sets. We start by removing from B1 (and putting in
T ) the vertices with more than 1

8λ red neighbours to R1 and the vertices with more than λ
blue neighbours to either B2, R2 or Z . We do the same to B2, R1 and R2 accordingly to the
colour of the pairs we are considering.

Up to reducing ε0, we are still respecting all the bounds on the sizes that we need for
Lemma 2.3, but we have a slightly better result on the state of the problematic edges. Indeed,
we know that there are no vertices outside T that witness more than λ problematic edges.
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We now just need to prove that G[B1], G[B2], G[R1], G[R2] and (B1, R1), (B2, R2),
(R1, Z), (R2, Z), (B1, Z), (B2, Z), (B1, R2), (B2, R1) are entirely monochromatic.

The proofs to show that G[B1], G[B2], G[R1], G[R2] are monochromatic have the same
structure. Therefore, as an example of the methods we use, we show that G[B1] is entirely
blue. Assume by contradiction that we can find u, v in B1 such that uv is red. By our earlier
pruning, we know that both u and v have at most 1

8λ blue neighbours inR2. Therefore, uv is
triangle connected to one of the red cliques of R2 (and therefore to all red cliques of R2). Let
us now prove that uv is also triangle connected to the large red TCTF in (B1, B2, Z) (which
is enough to conclude since we would then be able to find a large triangle-connected triangle
component). Almost all the red edges in ({u} , B2) are triangle connected to uv, indeed, all
but at most 1

8λ of them are in a red triangle with uv, the same holds for the red edges in
({u} , Z). This means that there are at most λ vertices in either B2 or Z that witness a red
edge in (B2, Z) which is not triangle connected to uv. But this is absurd, as we mentioned
before, since it implies that a large red TCTF in (B1, B2, Z) is triangle connected to uv.

Let us now prove that (B1, R1), (B2, R2), (R1, Z), (R2, Z), (B1, Z), (B2, Z), (B1, R2),
(B2, R1) are entirely monochromatic. The structure of these proofs is always the same, so
as an example of the method, we explain how to prove that (B1, R1) is monochromatic.
Assume it is not, and let uv be a red edge between B1 and R1 (with u ∈ B1). We prove that
uv is triangle connected both to one clique of R1 (and therefore all cliques of R1) and to the
large red triangle component in (B1, B2, Z), which is absurd since this would give a large
red TCTF.

We first show that uv is triangle connected to R2, let w1 ∈ R2 such that vw1 is an edge
(which has to be red by our previous proof that G[R1] is entirely red). Then by our pruning
we know that u, v and w1 share a red neighbour in B2. We now observe that if w2w3 is a
red edge between B2 and Z (with w2 ∈ B2) such that w2 is a red neighbour of both u and
v and w3 is a red neighbour of w2 and u, then w2w3 is triangle connected to uv. By the
pruning we did earlier, we can say that most of the red edges between B2 and Z are triangle
connected to uv, which is what we wanted.

Up to changing the roles of the clusters, the other proofs have the same structure.

2.7 Regularity Method: proofs of Lemma 2.4 and Theorem 2.2

In this section we state the Regularity Lemma and Blow-up Lemma, and use them to deduce
Lemma 2.4 and Theorem 2.2 from Lemma 2.3.

Definition 2.28 (density, ε-regular). Let G be a graph and let X,Y be disjoint subsets in
V (G). We define the density d(X,Y ) between X and Y to be:

d(X,Y ) :=
e(X,Y )

|X| |Y |
.

Given ε > 0, we say that (X,Y ) is ε-regular if for every X ′ ⊆ X, Y ′ ⊆ Y such that
|X ′| > ε |X| and |Y ′| > ε |Y |, we have |d(X ′, Y ′)− d(X,Y )| < ε.

We use the following version of the Regularity Lemma. We apply this to the graph of red
edges within Kn, and observe that if (X,Y ) is ε-regular in red edges then, since the blue
edges are the complement of the red edges, it is also ε-regular in blue.

Lemma 2.29 (Regularity Lemma). For every ε ∈ (0, 1) there are M,N0 ∈ N such that the
following holds. Let G be a graph on n ≥ N0 vertices, then there is a partition {V0, . . . , Vm} of
V (G) with |V0| ≤ ε−1, and ε−1 ≤ m ≤ M , and |V1| = . . . = |Vm| such that the following
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holds. For any given i ∈ [m], for all but at most εm choices of j ∈ [m], the pair (Vi, Vj) is
ε-regular in G.

This version follows from the original version of Szemerédi [Sze78] (which is similar but
bounds the total number of irregular pairs by εm2 rather than the number of irregular pairs
meeting a part) applied with parameter 1

8ε
2, followed by removing parts incident to more

than 1
2εm irregular pairs (of which there are at most 1

2εm) to V0; we leave the details to the
reader.

Given ε, d > 0, a 2-edge-coloured complete graphG, and a partition obtained by applying
Lemma 2.29 with parameter ε to the subgraph of red edges, we define the (ε, d)-reduced
graph of G (with respect to the partition) to be the graph H on vertex set [m] (the indices
of the partition), in which an edge ij is present if the pair (Vi, Vj) is ε-regular, and gets
assigned the colour red if its density in red is at least 1− d, the colour blue if its density in
blue is at least 1− d, and otherwise it gets assigned the colour purple.

We see that for the purposes of embedding a graph into G, we can treat purple edges
as being either red or blue as we desire, so that a large TCTF in (red ∪ purple) edges, or in
(blue ∪ purple) edges in the reduced graph implies the existence of the square paths and
cycles in G we need. In order to apply Lemma 2.3 in this setting, we deduce the following
consequence, which roughly says that either we are done or we get essentially the same
partition as in Lemma 2.3. In particular, there are very few purple edges.

Lemma 2.30. For every δ > 0 there exists ε > 0 such that for all t ≥ 1
ε , if G is a

{red, blue, purple}-edge-coloured graph on (9 − ε)t vertices with minimum degree at least
(9− 2ε)t, then either there is a choice of a colour between blue and red such that if we colour all
the purple edges of that colour we can find a monochromatic TCTF on at least 3(1 + ε)t vertices
in G or V (G) can be partitioned in sets {B1, B2, R1, R2, Z, T} such that the following hold.

(G1) (2− δ)t ≤ |B1| , |B2| , |R1| , |R2| ≤ (2 + δ)t,

(G2) (1− δ)t ≤ |Z| ≤ (1 + δ)t,

(G3) all the edges in G[B1] and G[B2] are blue, and all the edges in G[R1] and G[R2] are red,

(G4) the pairs (B1, R1), (B2, R2), (R1, Z) and (R2, Z) are entirely blue. Moreover, the pairs
(B1, R2), (B2, R1), (B1, Z) and (B2, Z) are entirely red,

(G5) the pair (B1, B2) is δt-red, while the pair (R1, R2) is δt-blue, and

(G6) |T | ≤ δt.

Proof. Let ε be given by Lemma 2.3 for input h = λ = 1
1000δ; without loss of generality we

may assume δ is sufficiently small for this application.
Let G be a coloured graph satisfying the conditions of the lemma, and assume there is

neither a red-purple TCTF over 3(1 + ε)t vertices nor a blue-purple TCTF over 3(1 + ε)t

vertices.
LetGr be the graph obtained fromG by recolouring the purple edges red, and similarlyGb

by recolouring them blue. Let Rr
1, R

r
2, B

r
1 , B

r
2 , X

r, T r be the partition obtained by applying
Lemma 2.3 to Gr , and define similarly the partition for Gb replacing r with b. Observe that if
we swap Rr

1 and Rr
2, and also Br

1 and Br
2 , we still have a partition satisfying the conclusion

of Lemma 2.3. If
∣∣Rr

2 ∩Rb
1

∣∣ > ∣∣Rr
1 ∩Rb

1

∣∣, we perform this swap (and in an abuse of notation
continue to use the same letters for the swapped classes).

We define Ri := Rr
i ∩Rb

i and Bi := Br
i ∩Bb

i for each i = 1, 2, and Z := Zr ∩ Zb and
finally T := V (G) \ (B1 ∪ B2 ∪ R1 ∪ R2 ∪ Z). We now prove this partition satisfies the
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conclusions of the lemma. Observe that the statements in (G3), (G4) and (G5) about sets or
pairs being entirely red, or δt-red, follow directly from the same statements for the partition
of Gb, and the corresponding ones about being blue from the partition of Gr ; what remains
is to prove these sets have the correct sizes.

To begin with, observe that all edges in Rb
1 are red in Gb and therefore also in G. It

follows that Rb
1 intersects Br

i in at most one vertex for each i = 1, 2, since otherwise Br
i

would contain a red edge. Thus, Rb
1 has at least (2− 1

100δ)t− 2 vertices which are not in
Br

1 ∩Br
2 . These vertices cannot all be in T r ∪ Zr , which is too small, so Rb

1 has a vertex in
at least one of Rr

1 and Rr
2. Now, Rb

1 cannot have vertices in Zr , since all edges from Zr to
Rr

1 ∪Rr
2 are not red. It follows that all but at most 1

1000δt+ 2 vertices of Rb
1 are in Rr

1 ∪Rr
2,

and by the observation above there are at least as many vertices in Rr
1 as in Rr

2. Since
(Rr

1, R
r
2) is 1

1000δt-blue, and all edges in Rb
1 are red, we see Rb

1 has at most 1
1000δt vertices

in Rr
2. Finally, we conclude |R1| ≥ (2− 1

100δ)t. We also have |R1| ≤ |Rr
1| ≤ (2 + 1

1000δ)t.
By a similar argument (noting that Rb

1 and Rb
2 are disjoint), we obtain

(2− 1
100δ)t ≤ |Ri| ≤ (2 + 1

1000δ)t

for each i = 1, 2.
We make a similar argument for Br

1 . As above, we can conclude that all but at most
1

1000δ + 2 vertices of Br
1 are in Bb

1 ∪Bb
2. However, we can now observe that all edges from

Br
1 to R1 ⊆ Rr

1 are blue, while the edges from Bb
2 to R1 ⊆ Rb

1 are red. It follows that Br
1 is

disjoint from Bb
2, and we obtain

(2− 1
100δ)t ≤ |Bi| ≤ (2 + 1

1000δ)t

for i = 1, and, by a similar argument, for i = 2.
Now, Zr and Zb are two sets of size at least (1− 1

1000δ)t in V (G)\ (R1∪R2∪B1∪B2),
which has size at most (9 − ε)t − 4(2 − 1

100δ)t ≤ t + 2
50δt. It follows their intersection

Z has size at least (1− 1
10δ)t, and at most |Zr| ≤ (1 + 1

1000δ)t. Finally, putting these size
bounds together we have (G1), (G2) and an upper bound on |T | giving (G6).

To go with the above lemma, we state the following two embedding lemmas. The first
one is a corollary of [All+19, Lemma 7.1], though one could use the original Blow-up Lemma
of Komlós, Sárközy and Szemerédi [KSS97] with some extra technical work in the proof of
Theorem 2.2. To deduce the following statement from [All+19, Lemma 7.1], we take R′ to be
the graph with zero edges and ∆R′ = 1, we take κ = 2, and we add to H for each i ∈ R a
set of |Vi| − |ϕ−1(i)| isolated vertices which (extending ϕ) we map to i and let be the buffer
vertices X̃i.

Theorem 2.31. Given d, γ > 0 and ∆ ∈ N, there exists ε > 0 such that for any given T , the
following holds for all m ≥ m0. Let R be any graph on [t], where t ≤ T . Let V1, . . . , Vt be
disjoint vertex sets with m ≤ |Vi| ≤ 2|Vj | for each i, j ∈ [t], and assume that G is a graph on
V1 ∪ . . . ∪ Vt such that (Vi, Vj) is an ε-regular pair of density at least d for each ij ∈ E(R).
Assume that H is any graph with ∆(H) ≤ ∆ such that there exists a graph homomorphism
ϕ : H → R satisfying

∣∣ϕ−1(i)
∣∣ ≤ (1− γ)|Vi|. Then H is a subgraph of G.

The second one is a consequence of the (original) Blow-up Lemma derived in [ABH11].

Lemma 2.32 (Embedding Lemma, Allen, Böttcher, Hladký [ABH11]). For all d > 0 there
exists εEL > 0 with the following property. Given 0 < ε < εEL, for every mEL ∈ N there
exists nEL ∈ N such that the following holds for each graph G on n > nEL vertices with
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(ε, d)-reduced graph R on m ≤ mEL vertices. Let ξ(R) be the size of the largest TCTF in R,
then for every ℓ ∈ N with 3ℓ ≤ (1− d)ξ(R) n

m we have C2
3ℓ ⊆ G.

We are now in a position to prove Lemma 2.4, which we restate for convenience.

Lemma 2.4. For every α > 0 there exists δ > 0 and n0 ∈ N such that for every n > n0 the
following holds. Let N ≥ (9 − δ)n, and let G be a 2-edge-colouring of KN . Then either G
contains both a monochromatic copy of P 2

3n+2 and of C2
3n, or we can partition V (G) into sets

X1, X2, Y1, Y2, Z and R such that the following hold.

(H1) (2− α)n ≤ |X1| , |X2| , |Y1| , |Y2| ≤ (2 + α)n,

(H2) (1− α)n ≤ |Z| ≤ (1 + α)n,

(H3) |R| ≤ αn,

(H4) Vertices in the following pairs have at most αn red neighbours in the opposite part:
(X1, Y1), (X2, Y2), (Y1, Y2), (Y1, Z) and (Y2, Z),

(H5) Vertices in the following pairs have at most αn blue neighbours in the opposite part:
(X1, X2), (X2, Y1), (X1, Y2), (X1, Z) and (X2, Z),

(H6) Vertices in X1 and X2 have at most αn red neighbours in their own part,

(H7) Vertices in Y1 and Y2 have at most αn blue neighbours in their own part.

Proof. Given α > 0, let d be such that 10000α−2d is returned by Lemma 2.30 when
we use as input α2

10000 . Let εEL be returned by Lemma 2.32 for input d, and let ε =

min( 1
10d, εEL,

1
10000α

2). Let now N0 and M be returned by Lemma 2.29 with input ε.
We let nEL be returned by Lemma 2.32 for input d, ε and mEL =M . Finally, let δ = d and
n0 = max(100ε−1, N0, N1) be the constants returned by the lemma.

Let us now fix some n > n0 and, for N > (9− δ)n, a 2-edge-colouring G of KN .
We apply Lemma 2.29 with parameter as above to the red subgraph ofG to get a partition

V0, . . . , Vm of V (G), with ε−1 ≤ m ≤ M , as in Lemma 2.29. Let H be the (ε, d)-reduced
graph ofG. Since each clusterVi is in at most εm irregular pairs, we have δ(H) ≥ (1−ε)m−1.
Let t = m

9−10α−1d , so thatH has (9−10α−1d)t vertices and, by choice of ε, minimum degree
at least (9− 20α−1d)t. By Lemma 2.30, with constants as above, one of the following occurs.

It could be that H contains a red-purple TCTF over 3(1 + 10d)t = 3(1+10d)
9−10α−1dm ≥

1
3 (1 + 10d)m vertices. Applying Lemma 2.32 with constants as above, we conclude that G
contains a red C2

3s for each s ≤ (1− d) · 13 (1 + 10d) · (9− d)n ≥ 3(1 + d)n. But then in
particular G contains a red copy of C2

3n and P 2
3n+2 and we are done. Similarly, if H contains

a blue-purple TCTF over 3(1+10d)t vertices then G contains a blue copy of C2
3n and P 2

3n+2

and we are done.
Alternatively, by Lemma 2.30 we get a partition of V (H) in sets B1, B2, R1, R2, Z ′′ and

T . We obtain from this a partition of V (G), setting X ′
j =

⋃
i∈Bj

Vi and Y ′
j =

⋃
i∈Rj

Vi

for j = 1, 2, setting Z ′ :=
⋃

i∈Z′′ Vi, and letting R′ be the remaining vertices. Since we
applied Lemma 2.30 with input α2

10000 and by choice of ε, we have properties (D1) and (D2)
of Lemma 2.26 with 1

1000α
2 instead of α.

Since (B1, B2) is 1
10000α

2t-red, the number of blue edges in G between X ′
1 and X ′

2 is at
most

d|X ′
1||X ′

2|+ 1
1000α

2n|X ′
2|+ 1

1000α
2n|X ′

1| ≤ 1
200α

2n2 ,

where the inequality uses d ≤ 1
10000α

2. In particular, there are less than 1
200αn vertices in

X ′
1 which have more than αn blue neighbours in X ′

2, and similarly swapping X ′
1 and X ′

2.
By a similar calculation, an analogous statement holds for Y ′

1 and Y ′
2 in red.
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We now claim that at most ε|X ′
1| vertices inX ′

1 send αn or more red edges to Y ′
1 . Assume

for a contradiction this statement is false. By averaging, there is a cluster Vi with i ∈ B1

such that a set S of ε|Vi| vertices of Vi all send αn or more red edges to Y ′
1 . Since Vi is in

irregular pairs with at most εm other clusters, at most 2εn red edges from each s ∈ S go
to clusters of R1 that make irregular pairs with Vi. The remaining at least 1

2αn|S| edges
from S therefore go to the remaining less than 3m clusters Vj with j ∈ R1, which all form
ε-regular pairs with Vi that have density at most d in red. Again by averaging, there is a
cluster Vj with j ∈ R1 such that (Vi, Vj) is ε-regular and has red density at most d, but also
receives at least αn|S|

6m > 2d|Vj ||S| red edges from S. But this, since ε < d and |S| ≥ ε|Vi|,
is a contradiction to regularity of (Vi, Vj).

By a similar argument, at most ε|X ′
i| vertices in X ′

i send edges of the ‘wrong’ colour to
each Y ′

j or to Z ′ or vice versa. We can modify the argument slightly to show that at most
ε|X ′

1| vertices of X ′
1 have more than αn red neighbours in X ′

1: again we can find a set S in
a cluster Vi with i ∈ B′

1 whose vertices all have more than αn red neighbours in X ′
1, but

we need to discard both red edges in irregular pairs at Vi and also edges within Vi. Since
|Vi| ≤ m

n ≤ εn, there are in total at most 2εn such edges, which is the same bound we used
above and from this point the proof above works as written.

We now let X1 be obtained from X ′
1 by discarding all vertices which have more than αn

edges of the ‘wrong’ colour to any of X ′
i or Y ′

i or Z ′. By the above calculations, in total we
discard at most 4ε|X ′

1|+ 1
200αn ≤

1
100αn vertices of X ′

1. We define similarly X2, Y1, Y2, Z ,
and similarly remove at most 1

100αn vertices in each case. Finally, we let R denote the set
of all vertices not in X1 ∪X2 ∪ Y1 ∪ Y2 ∪ Z . By construction, each Xi, Yi and Z has the
claimed size; and |R| ≤ αn follows since each vertex of R was either in V0, or Vi for some
i ∈ T , or removed from X ′

i or Y ′
i or Z ′. There are at most εn+ α2

10000n+ 5 · 1
100αn such.

Finally, by definition each vertex ofX1 has at most αn edges of the ‘wrong’ colour to any
of X ′

i, Y
′
i or Z ′, which are supersets of Xi, Yi, Z respectively, giving the required bounds on

‘wrong’ coloured edges at X1. By a similar argument, the same holds for X2, Y1, Y2, Z .

Finally, we prove Theorem 2.2. First, we deduce from Lemma 2.3 that if G satisfies the
conditions of Theorem 2.2, then the reduced graph R of G is an m-vertex graph which
contains a monochromatic TCTF on nearly 1

3m vertices. Assume this is red. We then
show how to construct a homomorphism from any given H satisfying the conditions of
Theorem 2.2 to the red subgraph of R which does not overload any vertex i of R, i.e. map
too many vertices to i, and finally apply Theorem 2.31 to find the desired monochromatic
copy of H in G.

The only tricky step of this sketch is to construct the required homomorphism. We split
V (H) into chunks and fragments, which are intervals in the bandwidth ordering, alternating
between chunks and fragments. Each fragment is of equal length and their total size is
tiny compared to the size of a cluster, and the chunks are of equal length and much larger
than the fragments (but still much smaller than the size of a cluster). Given our TCTF in
R, we put an order T1, . . . , Tk (arbitrarily) on the triangles of the TCTF, and fix for each
1 ≤ i ≤ k − 1 a walk of minimal length from Ti to Ti+1. We assign each chunk of H to
some Ti where i is chosen uniformly and independently from [k]. We claim that it is possible
to now construct a homomorphism where each chunk is mapped entirely to its assigned
triangle, using the fragments to connect up along the fixed minimal walks, and that this
homomorphism does not with positive probability overload any vertex of R: the point here
is to analyse the assignment of chunks, since the total size of all fragments is tiny.
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Proof of Theorem 2.2. Given γ > 0 and ∆, we fix h ≤ γ
1000 and λ > 0 (which plays no further

role in this proof) sufficiently small for Lemma 2.3, and let 2ε′ and t0 be the returned constants.
We let ε > 0 be returned by Theorem 2.31 for input d = 1

2 , γ
100 and ∆. Without loss of

generality, we may presume ε < 1
10 min(t−1

0 , ε′, γ). We input ε and d = 1
2 to Theorem 2.29

and let M,N0 be the returned constants. We input T =M to Theorem 2.31, with the other
parameters as above, and choose N1 such that the returned constant m0 ≤ N1/M . We set
ϱ = 1

60000M
−3γ2 and β = 1

100M
−4γ. Assume now n ≥ max(N0, N1).

LetN = (9+γ)n. Given a 2-edge-colouredKN , we apply Lemma 2.29 with constants as
above, to the graph of red edges in KN , to obtain a partition V (KN ) = V0 ∪ V1 ∪ . . . ∪ Vm,
where ε−1 ≤ m ≤ M . By construction, the number of vertices in each part Vi with
1 ≤ i ≤ m is at least (9+γ/2)n

m .
Let R be the corresponding coloured reduced graph on [m], in which we colour a pair

ij red if (Vi, Vj) is ε-regular and has density in red at least 1
2 , blue if it is ε-regular and has

density in blue strictly larger than 1
2 , and otherwise (i.e. if the pair is irregular) we do not

put an edge ij. By construction, we have δ(R) ≥ (1− ε)m.
Let t = m/(9−ε′), so thatR has (9−ε′)t vertices and minimum degree at least (9−2ε′)t.

By Lemma 2.3, either R contains a monochromatic 3(1 + ε′)t-vertex TCTF, or we obtain
a partition of V (R) as described in that lemma. In particular, there is a set B1 of at least
(2 − h)t vertices and a disjoint set R1 of at least (2 − h)t vertices, such that any triangle
with two vertices in B1 and one in R1 is monochromatic blue (and so all such triangles
are in a blue triangle component). It follows that choosing (1− h)t disjoint such triangles
greedily we obtain a monochromatic TCTF with 3(1− h)t vertices. We see that in all cases
R contains a monochromatic TCTF on at least 3(1− h)t ≥ 1

3 (1− h)m =: 3k vertices.
Fix such a TCTF, let its triangles be T1, . . . , Tk and assume without loss of generality

that it is red. By definition of red triangle connectedness, for each 1 ≤ i ≤ k − 1 there is
a red triangle walk in R from Ti to Ti+1, and we fix for each i one such Wi chosen to be
of minimum length. Thus, Wi is a sequence of triangles, starting with Ti and ending with
Ti+1, in which each pair of consecutive triangles shares two vertices. Finally, we assign
labels 1, 2, 3 to the vertices of all these triangles as follows: we label the vertices of T1 in an
arbitrary order, then assign labels to the successive triangles of W1,W2, . . . ,Wk−1 in order
as follows: when we assign labels to the next triangle, we keep the labels of the two vertices
it shares with the previous triangle, and give the missing label to the third vertex. Note that
a given vertex, or a given edge, might receive different labellings for different triangles, and
indeed if a triangle appears in two different walks it might receive different labellings in the
different walks.

Let H be a graph with maximum degree at most ∆, bandwidth at most βn, and a fixed
3-vertex colouring in which no colour class has more than n vertices. Consider the vertices
of H according to an order which witnesses the bound on its bandwidth. We split V (H)

into consecutive intervals C1, F1, C2, F2, . . . , Fs−1, Cs as follows: we let each Ci (except
perhaps the last two, which can be of any size) consist of ϱn vertices, and each Fi be of size
M2βn. For each 1 ≤ i ≤ s, we pick π(i) ∈ [k] uniformly and independently at random. We
now define a homomorphism ψ : H → R as follows. If x is a vertex of the chunk Ci for
some i, and its colour in the fixed 3-colouring of H is j ∈ [3], then we set ψ(x) equal to the
vertex of Tπ(i) with label j. We now describe how to construct ψ on the fragment F1; the
same procedure is used for each subsequent fragment with the obvious updates. We separate
F1 into intervals of length βn. If x is in the ith interval, and has colour j in the 3-colouring,
then we set ψ(x) equal to the vertex of the ith triangle after T1 in W1 with label j. If there is
no such triangle (i.e. the walk has already reached T2) then we set ψ(x) equal to the vertex
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labelled j in T2. We claim that this last event occurs for the final interval. Indeed, if two
triangles of W1 both contain a given edge e of R, then by minimality they are consecutive
triangles in the walk, so W1 has less than M2 triangles.

We claim that this construction gives a homomorphism from H to the red subgraph of R.
Indeed, assume xy is an edge of H . Then x and y have different colours in the 3-colouring,
and they are separated by at most βn in the bandwidth ordering. By construction, x is
assigned to a vertex of some triangle T according to its colour. The vertex y is assigned to a
triangle T ′ according to its colour; and either T = T ′ or T and T ′ are consecutive triangles
on one of the fixed walks, in particular they share two vertices and their labels are consistent
on those two vertices. Either way, x and y are mapped to a red edge of R (the only non-edge
is if T ̸= T ′ and it goes between the two vertices of the symmetric difference of T and T ′,
which both have the same label: but x and y have different colours).

We still need to justify that with high probability ψ does not overload any vertex of
R. To begin with, observe that the total number of vertices in the fragments is at most
M ·M2βn = M3βn ≤ γn

100m , which is much smaller than the size of any cluster Vi. In
particular, if i is not in any triangle of the TCTF, then |ψ−1(i)| < 1

2 |Vi| as desired. Consider
now the vertex u of Ti with label j. Apart from the at most M3βn vertices of the fragments,
the vertices of ψ−1(u) are vertices of chunks with colour j. There are at most n vertices in
chunks of colour j in total, and each such chunk has probability 1/k of being assigned to Ti.
We see that the expected number of chunk vertices in ψ−1(u) is at most n/k. The probability
that the actual number of such vertices exceeds n/k by s is by Hoeffding’s inequality1 at
most

exp
(
− s2

2·3ϱ−1·(ϱn)2
)
= exp

(
− s2

6ϱn2

)
,

where we used that there are at most 3ϱ−1 chunks, and the maximum contribution of a given
chunk to |ψ−1(u)| is at most ϱn. Choosing s = 1

100γM
−1n, by choice of ϱ the probability

that |ψ−1(u)| ≥ n/k + s +M3βn (the last term accounts for vertices in fragments) is at
most exp(−M). In particular, with positive probability we have

|ψ−1(u)| ≤ n
k + 1

100γ
n
M +M3βn

for every u ∈ V (R). Assume this event occurs. Substituting our values for β, k and finally
h, we get

|ψ−1(u)| ≤ 9n
(1−h)m + 1

100γ
n
m + 1

100γ
n
m ≤

9n
m (1 + 2h) + 1

10γ
n
m ≤

(9 + γ
5 )n

m
.

Since |Vu| ≥ (9+γ/2)n
m , as observed at the start of this proof, we have |ψ−1(u)| ≤ (1 −

γ
100 )|Vu| for every u ∈ V (R). This is the required condition to apply Theorem 2.31.

Finally, by Theorem 2.31 we conclude that there is a red copy of H in the 2-coloured
KN .

2.8 Proof of Theorem 2.1

We are now ready to prove the main result of this chapter, which we restate for convenience.
Recall that we established the lower bound in Section 2.1, and what remains is to prove the
corresponding upper bound. We give the full details for the square of a path, the square of a
cycle case is similar.

1Hoeffding’s inequality states that if (X1)i∈[n] are independent random variables with Xi ∈ [ai, bi] and if
Sn =

∑n
i=1 Xi, then for every t ≥ 0, we have P

[
|Sn − E [Sn]| ≥ t

]
≤ 2 exp

(
− 2t2∑n

i=1(bi−ai)2

)
.
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Theorem 2.1. There exists n0 such that for all n ≥ n0 we have:

R(P 2
3n) = R(P 2

3n+1) = R(C2
3n) = 9n− 3 and R(P 2

3n+2) = 9n+ 1 .

Proof of Theorem 2.1, upper bound for P 2
3n+1. Let n0 and δ be given by Lemma 2.4 when we

set α = 1
1000 (we are not trying to optimise this value) and then let us fix n > max(n0,

3
δ )

and N ≥ 9n − 3. Let now G be any 2-edge-colouring of KN . We assume for a contra-
diction that G does not contain a monochromatic P 2

3n+1. By Lemma 2.4, since G does not
contain a monochromatic P 2

3n+1, we have a partition X1, X2, Y1, Y2, Z,R of V (G) with the
conditions (D1)-(D7), which we fix.

We now want to refine these conditions by adapting repeatedly a greedy procedure.
Since we apply multiple times the same method, we explain the greedy procedure and the
arguments for existence only in the first instance.

Claim 2.33. We have that X1 and X2 are entirely blue, while Y1 and Y2 are entirely red.

Proof. Assume by contradiction that there is a red edge x1x′1 in X1. Since x1 and x′1 have at
most αn blue neighbours in Z and (1− α)n ≤ |Z|, we have that x1 and x′1 have a common
red neighbour z ∈ Z . Similarly, by considering the common red neighbour of x1 and x′1 in
Y2, we can find y2, y′2 ∈ Y2 such that y2y′2, x1y2, x′1y′2, x′1y2, x1y′2 are all red.

We are now ready to extend the red path P0 = y2, y
′
2, x1, x

′
1, z (whose square is also

monochromatic red) to a path P of length larger than 3n+2 such that P 2 is also monochro-
matic red. The idea is to greedily add to P0 at least 3

2n vertices from Y2 (using the fact that
almost all the edges in Y2 are red) and 2n vertices from (X1, X2, Z).

In order to do that, it suffices to show that we can find a path PY2
of length at least 3

2n

in Y2 that starts with y2y′2 and such that P 2
Y2

is monochromatic red. Assume we have built
already a path PY2 = y2, y

′
2, . . . , pℓ with the aforementioned conditions, provided ℓ < 3

2n,
we can extend PY2

simply by appending a vertex pℓ+1 that is in the common red neighbour
of pℓ and pℓ−1 in Y2 \ PY2

. But this is possible, indeed all but at most 2
1000n vertices in Y2

have red edges to both pℓ and pℓ−1.
By a similar procedure, we greedily extend P(X1,X2,Z). Given a red path P(X1,X2,Z) =

x′1, z, . . . , pℓ of length smaller than 2n, we can extend it by taking a vertex in the common
red neighbour of pℓ and pℓ−1 and in the right component.

Since P 2
0 is monochromatic red, and since we showed how to extend the endpoints to

form a long path whose square is also monochromatic, we are done.
The arguments for X2, Y1 and Y2 are symmetric. □

Claim 2.34. The pairs (X1, Z) and (X2, Z) are entirely red, while the pairs (Y1, Z) and
(Y2, Z) are entirely blue.

Proof. Assume by contradiction that there is a blue edge x1z betweenX1 and Z . Let y1 ∈ Y1
be in the common blue neighbourhood of x1 and z (which exists by arguments similar to
the ones above).

Take x′1 ∈ X1 \ {x1} in the common blue neighbourhood of y1 and x1 and let P0 =

z, y1, x1, x
′
1. We have that P 2

0 is blue monochromatic. Also, we can greedily extend P0 to a
path P such that P 2 is also blue monochromatic and |P | > 3n by extending x1, x′1 to a path
of length at least 3

2n in X1 and extending the zy1 end in (Y1, Y2, Z) by at least 2n vertices.
The argument for the other pairs is symmetric. □

Claim 2.35. The pairs (X1, Y1) and (X2, Y2) are entirely blue, while the pairs (X1, Y2) and
(X2, Y1) are entirely red.
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Proof. Assume by contradiction that there is a red edge x1y1 in (X1, Y1). The vertices x1 and
y1 share a red neighbour x2 in X2. We can also find in Y1 \ {y1} a common red neighbour
y′1 of y1 and x2.

We can start with the path P0 = x1, x2, y1, y
′
1, and then extend it using vertices in Y1

on one side and vertices of (X1, X2, Z) on the other, until we get a path P such that P 2 is
monochromatic red and covers at least 3n+ 2 vertices.

The argument for the other pairs is symmetric. □

Claim 2.36. The pair (X1, X2) has no blue P4, while the pair (Y1, Y2) has no red P4.

Proof. Assume x1x2x′1x′2 formed a blue P4 in (X1, X2). Since X1 and X2 are entirely blue,
the edges x1x′1 and x2x′2 are blue. Each of these edges is the beginning of a square of a path
covering the respective part. These join together to form a square of a path that is longer
than allowed.

The argument for the other pair is symmetric. □

From the claims above we can see that in the situation depicted by Lemma 2.4 we have
|X1| , |X2| , |Y1| , |Y2| ≤ 2n− 1. We can now partition the vertices of the remainder set R
depending on their neighbourhoods as follows.

1) Let us denote with RZ the set of vertices in R with more than n
4 red neighbours both

in X1 and X2,

2) for i = 1, 2 let Ri be the vertices in R with more than n
4 blue neighbours in both Xi

and Yi,

3) let R12 denote the vertices in R with more than n
4 red neighbours in both X1 and Y2,

4) let R21 denote the vertices in R with more than n
4 red neighbours in both X2 and Y1,

5) let R∗ denote any vertices in R that are not in any of the above sets.

Claim 2.37. Vertices in R∗ have at least 3
2n blue neighbours in each Xi and at least 3

2n red
neighbours in each Yi. Moreover, |R∗| ≤ 1.

Proof. The first part of the claim is true by construction. Let us now assume that there are
two vertices u and v in R∗. Then u and v have more than n

2 common blue neighbours in
eachXi and at least n

2 common red neighbours in each Yi. Therefore, if uv is blue it creates a
blue square of a path with vertices from X1 and X2, while if it is red it joins long red squares
of paths in Y1 and Y2. □

Claim 2.38. We have the following bounds: |X1 ∪R1| , |X2 ∪R2| , |Y1 ∪R21| , |Y2 ∪R12| ≤
2n− 1.

Proof. Assume by contradiction that |X1 ∪R1| ≥ 2n. Recall that in previous claims we
proved that all the edges in X1 and (X1, Y1) are blue. Let us label the vertices in R1 by
r1, . . . , rℓ. Recall that ℓ = |R1| ≤ |R| ≤ αn.

Since every vertex in R1 has at least n
4 blue neighbours in both X1 and Y1 we can

find disjoint blue triangles T1, . . . , Tℓ where triangle Ti contains the vertices ri, xi, yi with
xi ∈ X1 and yi ∈ Y1. We next find for each i ∈ [ℓ] vertices ai, bi, ci, a′i, b′i, c′i as follows. We
let ci be a blue neighbour of ri in Y1, and ai, bi ∈ X1, we let a′1 be a neighbour in X1 of r1,
b′1 be in X1, and c′1 be in Y1. Observe that since ℓ ≤ αn, we can ensure that all these vertices
are different.
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By construction, the vertex ordering P0 = (a1, b1, c1, x1, r1, y1, a
′
1, b

′
1, c

′
1, . . . ), where

we repeat the same letter ordering for i = 2 and so on afterwards, is a blue square path.
We extend P0 further by choosing distinct vertices from X1, X1 and then Y1 in this order,
until no unused vertices remain in X1. As |X1 ∪R1| ≥ 2n, what we obtain is a blue square
path with at least 3n vertices, if |X1 ∪R1| ≥ 2n + 1 we obtain at least 3n + 1 vertices.
We can extend P0 by one more vertex by adding a so far unused vertex of Y1 at the start
of the ordering. This gives the required 3n+ 1-vertex square path (and 3n+ 2 vertices if
|X1 ∪R1| ≥ 2n+ 1). The arguments for the other pairs of sets are the same. □

Claim 2.39. We have that |Z ∪RZ | ≤ n− 1.

Proof. Let as assume that |Z ∪RZ | ≥ n and let us label the vertices in RZ by r1, . . . , rℓ.
Since (X1, X2) has no blue path on 4 vertices, there are at most 40 vertices in X1 ∪ X2

with more than n
20 blue neighbours in the opposite part. Call the set of these vertices Xbad.

Since each vertex in RZ has more than n
4 red neighbours in each Xi, we can find disjoint

red triangles T1, . . . , Tℓ such that each Ti uses ri, a vertex x1i ∈ X1 \ Xbad and a vertex
x2i ∈ X2 \Xbad.

The idea is now to find for each i ∈ [ℓ] vertices ai, a′i ∈ X1, bi, b′i ∈ Z , ci, c′i ∈ X2 such
that for every i ∈ [ℓ − 1] we have that (x1i , ri, x2i , ai, bi, ci, a′i, b′i, c′i, x1i+1, ri+1, x

2
i+1) is a

red square of a path. But this can be done greedily since ℓ ≤ αn. We now build the path
P0 = (x11, r1, x

2
1, a1, b1, c1, a

′
1, b

′
1, c

′
1, x

1
2, . . . , x

2
ℓ) which by construction has the property

that P 2
0 is red.

We can extend P0 by choosing distinct vertices from X1, Z and then X2 in this order,
until no unused vertices remain in Z . As |Z ∪RZ | ≥ n, what we obtain is a red square path
with at least 3n vertices. □

Putting the bounds from the last three claims together, we see |G| ≤ 1+4(2n−1)+n−1 =

9n− 4, which contradiction completes the proof.

The proof for P 2
3n+2 is almost verbatim as above (we actually worked with P 2

3n+2 in
most of the claims), with the exception that in Claim 2.38 we obtain the upper bound
|X1 ∪ R1| ≤ 2n, as explained in the proof of that claim, and consequently a final upper
bound |G| ≤ 1 + 4(2n) + n− 1 = 9n for a contradiction.

Sketch proof of cycle case of Theorem 2.1. In order to prove that for n large enough we have
R(C2

3n) = 9n − 3, is suffices to modify our previous proof. We start by constructing
the same partition we built at the beginning of the proof of Theorem 2.1 to get the sets
X1, X2, Y1, Y2, Z,R. Now, by using the same technique introduced in Claim 2.33 we can
prove some weakened for of Claims 2.33, 2.34, 2.35, 2.36. Which is, we can prove that in X1

we cannot find two disjoint red edges (the same holds for X2), in Y1 we cannot find two
disjoint blue edges (the same holds for Y2). Similarly, we cannot find two disjoint edges of the
wrong colours in any of the following pairs: (X1, Z), (X2, Z), (Y1, Z), (Y2, Z), (X1, Y1),
(X2, Y2), (X1, Y2), (X2, Y1). Moreover, we cannot find two vertex-disjoint P4 of the wrong
colour in (X1, X2) nor in (Y1, Y2).

From these results and the previously proved Lemma 2.4, we can see that also in this case
we have |X1| , |X2| , |Y1| , |Y2| ≤ 2n− 1. We can now define the same partition of R in sets
RZ , R1, R2, R12, R21 and R∗. Let us point out that from this modified version of Claim 2.33
we have that there are two vertices a, b ∈ X1 such that all edges in G[X1 \ {a, b}] are blue.
In particular, from Claims 2.33, 2.34, 2.35, 2.36 we get that up to moving at most 10 vertices
from X1 to R1 (and similarly from X2 to R2, from Y1 to R21, from Y2 to R12 and from Z to
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RZ ) all the vertices in X1 (and similarly in X2, Y1, Y2, Z) are incident only to edges of the
right colour in G[X1 ∪X2 ∪ Y1 ∪ Y2 ∪ Z], with the possible exception of edges in (X1, X2)

and (Y1, Y2).
We now aim to explain how to modify Claim 2.37 to hold for cycles and how to modify

the proof of Claims 2.38, 2.39. The first part of Claim 2.37 holds by construction without any
modifications. The second part of Claim 2.37 needs to be modified to state that we cannot
find two parallel edges of the same colour in R∗. Indeed, otherwise we could find a long
monochromatic blue cycle C such that C2 is also blue by using vertices from X1, X2 and
the two blue edges in R∗. In particular, this implies that |R∗| ≤ 4. As a guide to show how
to modify the proofs of Claim 2.38 and 2.39, we give a sketch of the modifications needed
for Claim 2.38. If we assume by contradiction that |X1 ∪R1| ≥ 2n we can almost verbatim
repeat the same proof, having care of extending our path P0 in both directions and making
sure that the two endpoints of P0 and their neighbours are adjacent in blue to each other.
This is possible because G[X1] is entirely blue as claimed above.

Claim 2.40. If R∗ contains a blue edge, then |X1 ∪R1| , |X2 ∪R2| ≤ 2n− 2 (same holds for
red, Y1 ∪R21 and Y2 ∪R12).

Proof. Assume R∗ contains a blue edge uv, then |X1 ∪R1| ≤ 2n − 2 (the arguments for
the other cases are the same). In order to prove this, it suffices to show that there exists a
maximal matching T in X1 such that we can build a blue cycle C that covers all the edges
of X1, the two vertices u, v ∈ R∗ and, for each edge in T , an extra vertex in Y1. This can
be done because by Claim 2.33 and Lemma 2.4 there is a vertex w ∈ X1 such that the red
neighbourhood of w in X1 has size at most αn, but G[X1 \w] has at most one red edge and
because u and v have both at least 3

2n blue neighbours in X1. Therefore, it is possible to
build a cycle by replicating the construction in Claim 2.38 and by carefully adding the edge
uv to the cycle. □

This suffices to conclude. Indeed, if |R∗| ≤ 3 then we still have

|X1 ∪R1 ∪R∗ ∪X2 ∪R2| ≤ 4n− 1 ,

while if |R∗| = 4 then we have both a red and a blue edge in R∗ (since we cannot have two
vertex-disjoint edges of the same colour). In this case we have the following inequalities:
|X1 ∪R1| , |X2 ∪R2| , |Y1 ∪R21| , |Y2 ∪R12| ≤ 2n − 2, which are enough to obtain the
wanted bound.
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For until we are ended, ‘never’ may not be truly said, and
love may yet be ours.

G. Saunders3
Graphs With Large Minimum Degree and No Short
Odd Cycles Are 3-Colourable

Determining the chromatic number of a graph is notoriously difficult. Consequently, much
of graph theory focuses instead on establishing upper and lower bounds for this parameter,
which can also be seen as bounds on the structural complexity of the graphs in question.

One natural question in this direction is whether the chromatic number of a graph can
be bounded solely from the fact that it is H-free, for finite, non-trivial H. A graph G is
said to be H-free if it contains no member of the set H as a subgraph; we write H-free
whenH = {H}. The familyH is called non-trivial if none of its members is a forest. This
question was answered in the negative by Erdős [Erd59] in one of the earliest applications of
the probabilistic method. He showed that for every finite non-trivialH and every positive
integer c, there existH-free graphs with chromatic number at least c.

In another influential paper, Erdős and Simonovits [ES73] asked what happens when a
minimum degree condition is also introduced. More precisely, they initiated the study of
what is called the chromatic profile ofH. To define it, we introduce the following notation.
We denote by G(H) the family of allH-free graphs, and by G(H, α) the subclass of G(H)

consisting of those graphs G with minimum degree at least αv(G). For any integer c ≥ 2,
the chromatic profile ofH is defined as the function

δχ(H, c) = inf{α ∈ [0, 1] : ∀G ∈ G(H, α), χ(G) ≤ c} .

This function measures the minimum degree required to ensure that everyH-free graph has
chromatic number at most c.

Erdős and Simonovits [ES73] remarked that, in full generality, this quantity appeared ‘too
complicated’ to study. Despite significant progress in recent decades, this largely remains
true. The aim of this chapter is to advance our understanding of the chromatic profile for the
family of odd cycles up to a given length.

We summarise what is known. Shortly after the work of Erdős and Simonovits [ES73],
it was shown by Andrásfai, Erdős, and Sós [AES74] that Kr-free graphs with minimum
degree strictly larger than 3r−7

3r−4v(G) are (r − 1)-colourable. Moreover, they constructed
examples showing that this is tight. That is, δχ({Kr}, r − 1) = 3r−7

3r−4 . Further results
include δχ({K3}, 3) = 10

29 , proved independently by Häggkvist [Häg82] and Jin [Jin95], and
δχ({K3}, c) = 1

3 for all c ≥ 4, due to Brandt and Thomassé [BT], with the lower bound
construction due to Hajnal (see [ES73]). Moving to cycles, Thomassen [Tho07] proved that
δχ({C5}, c) ≤ 6

c and, more generally, gave similar upper bounds for δχ({Ck}, c). Combined

67
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with a result of Ma [Ma16], this yields, for every fixed k, the estimate

Ω
(
(k + 1)−4(c+1)

)
= δχ

(
{Ck}, c

)
= O

(k
c

)
.

Subsequent developments introduced two parameters closely related to the chromatic
profile: the chromatic threshold and the homomorphism threshold. The chromatic threshold
ofH is defined as

δχ(H) = inf{α ∈ [0, 1] : ∃K s.t. ∀G ∈ G(H, α), χ(G) ≤ K} ,

which is the minimum degree needed to ensure that the chromatic number of all H-free
graphs is bounded.

With this notation, the result by Brandt and Thomassé [BT] shows that δχ(C3) = 1
3 .

The chromatic threshold is now significantly better understood than the chromatic profile.
Building on the work of Łuczak and Thomassé [ŁT10], and generalising earlier results, Allen,
Böttcher, Griffiths, Kohayakawa, and Morris [All+13] determined the chromatic threshold
for every finite familyH. For a detailed account of the history of the chromatic threshold,
see that paper and the references therein.

Before introducing the homomorphism threshold, recall that a graph G is said to be
homomorphic to a graph F if there exists a (not necessarily injective) map from V (G) to
V (F ) that preserves adjacency. We can now introduce the homomorphism threshold δhom(H)

of a familyH, in some sense a more restrictive notion than the chromatic threshold. Indeed,
δhom(H) measures the smallest minimum degree required to ensure that everyH-free graph
is homomorphic to some fixedH-free graph. Several equivalent definitions exist for δhom(H);
following Ebsen and Schacht [ES20], we use the following:

δhom(H) = inf{α ∈ [0, 1] : ∃F ∈ G(H) s.t. ∀G ∈ G(H, α), G is homomorphic to F} .

Note that δhom(H) ≥ δχ(H). Determining homomorphism thresholds is typically more dif-
ficult than determining chromatic thresholds. Łuczak [Łuc06] showed that for K3, the homo-
morphism and chromatic thresholds coincide: δhom({K3}) = δχ({K3}) = 1

3 . Goddard and
Lyle [GL11], and independently Nikiforov [Nik10], extended this to all cliques, proving that
δhom({Kk}) = δχ({Kk}) = 2k−5

2k−3 . Letzter and Snyder [LS19] considered longer odd cycles.
They proved that δhom({C5}) ≤ 1

5 and δhom(C5) = 1
5 , where C2k−1 = {C3, . . . , C2k−1} de-

notes the family of odd cycles up to length 2k− 1. Extending this, Ebsen and Schacht [ES20]
showed that δhom({C2k−1}) ≤ 1

2k−1 and δhom(C2k−1) = 1
2k−1 for all k ≥ 2. Comple-

menting the first of these results, Sankar [San22] recently proved that δhom({C2k−1}) > 0

for all k ≥ 2. This demonstrates that, unlike in the case of cliques, the homomorphism
threshold for odd cycles diverges from the chromatic threshold since δχ(C2k−1) = 0 for
k > 2 (see [Tho07]).

Let us return to the chromatic profile of families of odd cycles. The classical methods
of Andrásfai, Erdős and Sós [AES74] already yield δχ(C2k−1, 2) = 2

2k+1 , with the lower
bound attained by a blow-up of C2k+1. Turning to 3-colourability, Letzter and Snyder [LS19]
showed, while establishing the homomorphism threshold for C5, that graphs in G(C5, 15 + ε)

are homomorphic to graphs with chromatic number 3. This implies that δχ(C5, 3) ≤ 1
5 . The

best-known lower bound, by contrast, is δχ(C5, 3) ≥ 14
73 , obtained via an asymmetric blow-up

of a C5-free graph on 22 vertices (see Figure 3.1). On the other hand, the homomorphisms
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Figure 3.1: A C5-free graph H with χ(H) = 4 and 22 vertices, cf. Van Ngoc and Tuza [VT95].

constructed in Ebsen and Schacht’s [ES20] generalisation were not maps to 3-colourable
graphs. Hence, their result does not yield an upper bound on δχ(C2k−1, 3).

Providing such an upper bound is the main contribution of this chapter. We show
that for sufficiently large k, the homomorphism threshold 1

2k−1 is an upper bound for the
chromatic profile δχ(C2k−1, 3). This answers a question by Letzter and Snyder [LS19]. In
fact, we establish a slightly stronger result, showing that δχ(C2k−1, 3) is strictly smaller than
δhom(C2k−1) for sufficiently large k.

Theorem 3.1. For any t ∈ N and any integer k ≥ 20t + 1460, the following holds. Any
C2k−1-free graph G with minimum degree at least 1

2k+tv(G) is 3-colourable.

We denote by k(t) the value 20t + 1460. Since k(t) is linear in t, it follows that for
any 0 < ε < 1

45 , we have δχ(C2k−1, 3) ≤ 1
(2+ε)k for sufficiently large k. As for lower

bounds, the best known is δχ(C2k−1, 3) ≥ 3
2k2+k+1 . This is obtained by a balanced blow-

up of a generalised C2k−1-free Mycielski graph with chromatic number 4 and minimum
degree 3 (see Figure 3.1) and yields a 4-chromatic C2k−1-free graph G with minimum degree

3
2k2+k+1v(G). Since this lower bound and our upper bound differ by more than a constant
factor, we do not attempt to optimise the constants in either direction. It would be interesting
to determine whether the upper or the lower bound captures the correct order of magnitude
of δχ(C2k−1, 3). More generally, we ask.

Question 3.2. What is the order of magnitude of δχ(C2k−1, 3)?

Likewise, we did not attempt to optimise the value of k(t), since our method is unlikely to
bring it down to single digits when t = 0. Nevertheless, it would be interesting to understand
the behaviour for small k. In particular, our result raises the following question.

Question 3.3. Is it true that δχ(C5, 3) < 1
5 = δhom(C5)?

Finally, we note that our argument yields a more general upper bound: for all c ≥ 3 and
sufficiently large k, we have δχ(C2k−1, c) ≤ 1

2k⌊c/3⌋ . Since δχ(C2k−1, c) ≤ δχ({C2k−1}, c),
this upper bound complements the earlier bound δχ

(
{Ck}, c

)
= O(k/c): the former applies

to fixed c and large k, while the latter is meaningful for fixed k and large c. We briefly explain
how this general bound is obtained at the end of Section 3.2.

The remainder of this chapter is organised as follows. In Section 3.1, we introduce
some basic notation, outline the strategy for proving Theorem 3.1, present the setup and key
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lemmas, and explain what needs to be proved. Section 3.2 contains the proof of Theorem 3.1,
while Section 3.5 is devoted to proving our main technical lemma, Lemma 3.5. To support
this, we develop tools in Section 3.3 for finding bipartite subgraphs in weighted graphs, and
in Section 3.4 for bounding the neighbourhood sizes of certain cycles and paths.

3.1 Notation and overview of the proof

Before introducing the proof of our main theorem, we review some (mostly) standard notation
and translate it to edge-weighted graphs.

Notation

Let G be a graph and let B ⊆ V (G) be a set of vertices. We denote by G[B] the subgraph
of G induced by B. If G[B] is connected, then we also say as a shorthand that B is connected.
We writeG\B for the graphG[V (G)\B]. As usual,N(v) denotes the (open) neighbourhood
of a vertex v of G. For a set of vertices B, we denote with int(B) = {v ∈ B : N(v) ⊆ B}
the interior of B. We write Bc for the complement V (G) \ B of B in G. A path in G is
a sequence of vertices v1, . . . , vt without repetition, such that vivi+1 is an edge of G for
i = 1, . . . , t− 1, and its length is t− 1. Given two vertices x, y in G, the distance dG(x, y)
between x and y is the minimum length of a path in G with endpoints x and y. For two sets
of vertices A,B ⊆ V (G), the distance dG(A,B) is the minimum of dG(x, y) over all x ∈ A
and y ∈ B. For an integer i ≥ 0 the (closed) i-th neighbourhood of B in G is given by

N i
G[B] = {x ∈ V (D) : ∃v ∈ B s.t. dD(x, v) ≤ i} .

Often we also omit the subscript G when it is clear from the context in which graph we are
taking neighbourhoods.

We shall also work with graphs with weights on their edges. For a graph H , a weight
function is a function of the form ω : E(H)→ N. A graph endowed with such a function
is called a weighted graph. All concepts defined above for unweighted graphs also apply
to weighted graphs. The weight of a subgraph H ′ of H is ω(H ′) =

∑
e∈E(H′) ω(e). We

say that H is weighted bipartite if there is no cycle in H of odd weight. We also say that
B ⊆ V (H) is weighted bipartite when H[B] is.

The concept of distance also extends to weighted graphs. The weighted distance dω,H(x, y)

of two vertices x, y in a weighted graph H is the minimum weight of a path from x to y.
Moreover, for any vertex v and for an integer i ≥ 0, we define the (closed) weighted i-th
neighbourhood around v as

N i
ω[v] = {x ∈ V (H) : dω(x, v) ≤ i} .

Overview of the proof

The starting point of our proof of Theorem 3.1 is inspired by Thomassen’s approach [Tho07] to
establishing the chromatic threshold of C5. As in that approach, we start by fixing a maximal
set of non-adjacent vertices v1, . . . , vh with disjoint neighbourhoods N(v1), . . . , N(vh),
which leaves a set of remaining vertices X = V (G) \

⋃h
i=1N

1[vi]. We then analyse the
structure of our graph based on the resulting vertex partition. However, our analysis uses
different and new ideas and is substantially more complex as we work with a different setup.

It turns out that given any two of the vertices above, say vi, vj , the crucial information
we need for this analysis is the length of a shortest path between N(vi) and N(vj) whose
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internal vertices lie in X . Moreover, we only care about this path if it is of length at most 3.
Such a path of length at most 3 gives a vi, vj-path of length in {3, 4, 5}. Consequently,
one main idea in our proof is to represent the structure of our graph by introducing an
auxiliary weighted graph H on the vertex set [h]. In H , we have an edge ij whenever such a
vi, vj-path with length in {3, 4, 5} exists; moreover, we assign as a weight to the edge ij the
length of the path between vi and vj . Since our graph has no odd cycles of length smaller
than 2k + 1, we have that H has no cycles of odd weight smaller than 2k + 1. Moreover,
by assuming that G is connected and by choosing the vertices v1, . . . , vh carefully, we can
guarantee that H has a spanning tree of edges of weight 3. This is the motivation for the
definition of the following family of graphs.

Definition. For k ∈ N, we denote byH(k) the family of graphs H such that:

• There is a weight function ω : E(H) → {3, 4, 5} on the edges of H such that in H
there are no cycles C such that ω(C) is odd and smaller than 2k + 1.

• There is a tree T spanning H such that all edges of T have weight 3.

Furthermore, we denote byH(k, s) the graphs inH(k) on at most s vertices.

This auxiliary graph H encapsulates substantial structural information of G. This is an
essential idea in our proof of the 3-colourability of G.

Moreover, our proof requires the following lemma, which is a proof that a certain
condition is sufficient to guarantee that a graph is 3-colourable. While this is a known trick,
we report its proof for completeness.

Lemma 3.4. Let G be a graph on vertex set V . Assume there is a set of vertices A ⊆ V such
that G[A] is connected, G[V \A] is bipartite, and for all v ∈ V \A, the graph G[A ∪ {v}] is
bipartite. Then G is 3-colourable.

Proof. Choose a proper colouring of A using colours {1, 2}, and a proper colouring of V \A
using colours {3, 4}. Since A is connected, every neighbour of a vertex v ∈ V \A in A is of
the same colour. We can recolour vertices of colour 4 as follows. If a vertex v ∈ V \ A of
colour 4 is connected to a vertex of colour 1, recolour it with 2. If not, recolour it with 1.

This criterion motivates the following decomposition lemma of the auxiliary graph H ,
which is the heart of our proof of Theorem 3.1.

Lemma 3.5 (Main technical lemma). For any t ∈ N and any integer k ≥ k(t) = 20t+ 1460,
the following holds. For any H ∈ H(k, 2k + t) there exists a subset B of V (H) such that
H[B] is connected, H \B is weighted bipartite, and H[B ∪ {v}] is weighted bipartite for all
v ∈ V (H) \B.

Given this lemma the main task in proving Theorem 3.1 is to “translate” this partition of
the auxiliary graph H into a partition of G with essentially the same properties. The proof
of this lemma relies on a surgical analysis of the neighbourhood N1[C] of a cycle C of odd
weight and a careful combination of paths to build B. We now provide the key ideas of the
argument, before turning to the proof of the main theorem.
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A strategy to approach Lemma 3.5

We briefly discuss here the main ideas behind our proof of Lemma 3.5, which is detailed in
Sections 3.3, 3.4 and 3.5. First, we note that we prove a statement which is slightly stronger
than Lemma 3.5. Indeed, when constructing the connected set B, we ensure that both N [B]

and H \B are weighted bipartite.
In Section 3.3, we study how to guarantee that N [B] is weighted bipartite. In particular,

we are show that simple constructions like balls around a vertex and neighbourhoods of
lightest paths are weighted bipartite. Moreover, we prove that for certain sets the property
of being weighted bipartite passes to the union in a very precise way. This allows us to build
larger weighted bipartite sets.

However, these results alone are not sufficient to obtain our goal. Indeed, once we get
such a candidate setB, we need to prove that alsoH \B is weighted bipartite. The following
lemma shows that for this it is sufficient that the interior of B is large enough.

Lemma 3.6. Let k ≥ 8 and t be natural numbers, and H ∈ H(k, 2k+ t). For anyB ⊆ V (H)

with |int(B)| ≥ 4
3k + t, we have that H \B is weighted bipartite.

If the interior of B has size at least 4
3k + t, its complement is of size at most |V (H)| −

|int(B)| ≤ 2k
3 and we show that this is not enough space to contain a cycle of odd weight.

Similarly to how H \B could not contain a cycle of odd weight with only edges of weight
3 (because such a cycle would have at least 2k+1

3 vertices), an argument can be made for
general cycles of odd weight. Indeed, the spanning tree of weight 3 guarantees that we find
additional vertices in the neighbourhood of the cycle. It turns out that also in general we get
exactly the same bound as in the example above.

Lemma 3.7. Let k ≥ 8 and H ∈ H(k). If C is a non-spanning cycle of odd weight, then∣∣N1[C]
∣∣ ≥ 2k+1

3 .

We would like to emphasise that this is the reason why we require the spanning tree of
weight 3. We quickly give the details of how to obtain Lemma 3.6 from Lemma 3.7.

Proof of Lemma 3.6. By assumption on the interior, B is not empty. Assume H \ B is not
weighted bipartite, and let S ⊆ Bc = V (H) \ B be a cycle of odd weight in H \ B.
As B is not empty, this cycle is not spanning in H . Hence, we can apply Lemma 3.7 to
conclude that

∣∣N1[S]
∣∣ ≥ 2k+1

3 . Since no vertex of S ⊆ Bc can have a neighbour in int(B),
we have N1[S] ⊆ int(B)c and so |int(B)c| ≥

∣∣N1[S]
∣∣ ≥ 2k+1

3 . However, we also have
|V (H)| = 2k + t and |int(B)| ≥ 4

3k + t which gives |int(B)c| ≤ 2k − 4
3k < 2k+1

3 , a
contradiction.

In Section 3.4 we prove Lemma 3.7 and a useful corollary. Finally, in Section 3.5 we
combine the results presented in Sections 3.3 and 3.4 to show the existence of a weighted
bipartite set B with large interior to prove Lemma 3.5. As promised we now turn to the
proof of the main theorem.

3.2 Proof of the main result

Proof of Theorem 3.1. Let t ∈ N and let k ≥ k(t) = 20t+1460 be an integer. LetG = (V,E)

be an n-vertex graph with minimum degree δ(G) ≥ n/(2k + t) that does not contain an
odd cycle of length shorter than 2k + 1. Since we want to show that the chromatic number
of G is at most 3, we may assume that G is connected.
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We construct an auxiliary graph H on h ≤ 2k + t vertices with weight function w :

E(H)→ {3, 4, 5} as follows. Let v1 ∈ V be any vertex, set V1 = N1[v1], and set the index i
to i = 2. If possible, we pick a vertex vi ∈ V \ Vi−1 such that N1[vi] is disjoint from Vi−1

and such that there is an edge between N(vi) and N(vj) for some j, 1 ≤ j ≤ i − 1. We
let Vi = N1[vi] ∪ Vi−1, we increase the index i by one, and repeat the above. We stop this
process when there is no vertex vi with the above properties. We let h ≥ 1 be the index
of the last vertex we picked before the process stopped. Note that h ≤ 2k + t because
n ≥ |Vh| > hn/(2k + t) by the minimum degree condition of G. Let X = V \ Vh.

Let H be the graph with vertex set [h] and with edge set the set of edges ij ∈
(
[h]
2

)
such

that d(N(vi), N(vj)) ≤ 3. To every edge e = ij ∈ E(H), we assign the weight

ω(e) = d(N(vi), N(vj)) + 2 ∈ {3, 4, 5} ,

which is an upper bound on the distance between vi and vj in G. We thus obtain a graph H
on h ≤ 2k + t vertices and with weight function w : E(H)→ {3, 4, 5}.

Claim 3.8. We observe the following simple properties of H .

(I1) There is no cycle C in H whose weight is odd and less than 2k + 1.

(I2) Each vertex x ∈ X has a neighbour in N(vi) for some i ∈ [h].

(I3) For every i ∈ [h] the neighbourhood N(vi) is independent, if k ≥ 2.

(I4) For every i ∈ [h] the set {u ∈ V (H) : d(u, vi) = 2} is independent, if k ≥ 3.

(I5) If for some i, j ∈ [h] with i ̸= j there is a path of length 2 from N(vi) to N(vj) in G,
then ω(ij) = 4 in H , as long as k ≥ 4.

(I6) If for some i, j ∈ [h] i ̸= j there is a path of length 3 from N(vi) to N(vj) in G, then
ω(ij) ∈ {3, 5} in H , as long as k ≥ 5.

Proof. Property (I1) follows directly from our assumptions, as any cycle in H of odd weight
less than 2k + 1 would be associated with an odd cycle of length less than 2k + 1 in G.
Indeed, as d(vi, vj) ≤ ω(ij) for any i ̸= j, a cycle C in H with odd weight less than 2k + 1

corresponds, by our construction, to a closed odd walk with fewer than 2k + 1 edges in G,
which in turn contains an odd cycle of length at most 2k + 1.

To see (I2), observe that if this was not the case then N1[x] would be disjoint from Vh.
Hence, a shortest path from x to Vh, which exists asG is connected, has length at least 2. But
then the third last vertex on this path could be chosen as vh+1, contradicting our assumption
that the selection process stopped.

Since an edge pq in N(vi) gives a triangle vi, p, q in G, we obtain (I3). For (I4), assume
that k ≥ 3 and there is an edge pq in {u ∈ V (H) : d(u, vi) = 2}. Let p′ be a neighbour of p
in N(vi), and q′ be a neighbour of q in N(vi). Then p, p′, vi, q′, q is a closed walk of length
5, a contradiction.

Next we show (I5). Let p, x, q be a path of length 2 from N(vi) to N(vj). Assume that
ω(ij) ̸= 4. Then ω(ij) must be 3, so there is an edge p′q′ between N(vi) and N(vj). But
then p, x, q, vj , q′, p′, vi is a closed walk of length 7, a contradiction if k ≥ 4.

It remains to prove (I6). Let p, x, y, q be a path of length 3 from N(vi) to N(vj), and
assume that ω(ij) /∈ {3, 5}. Then ω(ij) must be 4, so there is a path p′, z, q′ of length 2

between N(vi) and N(vj). But then p, x, y, q, vj , q′, z, p′, vi is a closed walk of length 9, a
contradiction if k ≥ 5. □
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It follows from the construction of H that there is a spanning tree T in H with ω(e) = 3

for all e ∈ E(T ). As also Property (I1) holds, H ∈ H(k, 2k+ t). As k ≥ k(t), by Lemma 3.5,
there exists a set B ⊆ [h] such that H[B] is connected, H

[
[h] \ B

]
is weighted bipartite,

and H
[
B ∪ {u}

]
is weighted bipartite for all u ∈ [h].

Our goal is to use this set B to construct a set A ⊆ V such that G and A satisfy the
assumptions of Lemma 3.4, so that we can conclude that G is 3-colourable. This is the case
if A satisfies the following properties.

(J1) G[A] is connected,

(J2) G[V \A] is bipartite,

(J3) G[A ∪ {v}] is bipartite for all v ∈ V .

We construct A as follows. Denote by A0 the union of the sets N1[vb] over all b ∈ B, let
X0 ⊆ X = V \ Vh be the set of vertices that have a neighbour in A0, and set A = A0 ∪X0.
It remains to verify that A satisfies conditions (J1)–(J3).

Since H[B] is connected, we can deduce (J1): Indeed, G[A] is connected if H[B] is
connected and if additionally for any edge bb′ in H[B] we have a path from vb to vb′ in G[A].
The latter, however, is the case because by definition of H if there is an edge bb′ in H[B], we
have d

(
N(vb), N(vb′)

)
≤ 3 and this implies that there is a path of length at most 3 between

N(vb) and N(vb′) in G. This path is actually in G[A] because A contains all vertices at
distance at most 2 from vb or vb′ .

For proving that (J2) also holds, we shall use the following claim.

Claim 3.9. Each vertex in X \X0 has a neighbour in some N(vi) with i ∈ [h] \B.

Proof. Any vertex in X has a neighbour in some N(vi) with i ∈ [h] by (I2) of Claim 3.8. In
addition, X0 ⊆ X contains all the vertices that have a neighbour in some N(vi) with i ∈ B.
The claim follows. □

This allows us to show (J2).

Claim 3.10. G[V \A] is bipartite.

Proof. Assume thatG[V \A] is not bipartite, and fix an odd cycleC of shortest length. Recall
that the set V \A consists of vertices in N1[vi] with i ∈ [h] \B, and the vertices in X \X0.

If C ∩{v1, . . . , vh} = ∅ we call this the degenerate case and let Q1 = C . We now assume
this is not the case and start with the following operations. Removing from C all vertices in
C ∩ {v1, . . . , vh} gives a collection Q′

1, . . . , Q
′
ℓ′ of pairwise vertex-disjoint paths. Observe

that by definition of A, each removed vertex vj has j ∈ [h] \B. In each Q′
i we now further

identify all vertices in
⋃

j∈[h]\B N(vj) and split Q′
i along these vertices into (sub)paths.

More precisely, for a fixed i let Q′
i = q′1, . . . , q

′
s′ and let j1 ≤ . . . ≤ jℓ be all indices j

such that q′j ∈
⋃

j∈[h]\B N(vj). Then Q′
i is split into the paths q′1, . . . , q′j1 and q′j1 , . . . , q

′
j2

and so on, up to q′jℓ , . . . , q
′
s′ . By performing this splitting for all Q′

i, we obtain, in total, a
collection Q1, . . . , Qℓ of pairwise internally vertex-disjoint paths which (by definition of A
and Claim 3.9) have the following property. For i = 1, . . . , ℓ, all internal vertices of Qi are
contained in X \X0, and there is j ∈ [h] \ B such that the first vertex of Qi and the last
vertex of Qi−1 (which might be the same) are both contained in N(vj), where Q0 = Qℓ.
Again, we allow the degenerate where Q1 = C has only internal vertices.

Next, for each fixed i ∈ [ℓ], we construct a walk Ri in H corresponding to the path
Qi = q1, . . . , qs whose weight has the same parity as the length s − 1 of Qi. To this end
let r1, rs ∈ [h] \B be such that q1 ∈ N(vr1) and qs ∈ N(vrs). Our walk Ri has endpoints
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r1 and rs, which potentially could be the same. Recall that q2, . . . , qs−1 ∈ X \ X0. We
distinguish three cases.

s = 2: In this case r1 ̸= r2 by (I3) of Claim 3.8. In this case, for Ri we take the edge e = r1r2,
which has weight ω(e) = 3 because q1q2 is an edge between N(vr1) and N(vr2).

s = 3: If r1 = r3, we can simply take the one vertex path Ri = r1. Otherwise, namely if
r1 ̸= r3, we have by (I5) of Claim 3.8 that the edge r1r3 has weight 4. We take this
edge for Ri.

s > 3: For j = 3, . . . , s− 2, we use Claim 3.9 to conclude there is rj ∈ [h] \B such that qj
has a neighbour yj in N(vrj ). We set r2 = r1, rs−1 = rs, and let y2 = q1, ys−1 = qs.
Note that with this qj has a neighbour yj in N(vrj ) also for j = 2 and j = s − 1.
Finally, we define Ri as r2, . . . , rs−1.

We now show that Ri is a walk from r1 to rs whose weight has the same parity as
the length of Qi also in this case. First, we observe that Ri starts at r2 = r1 and ends
at rs−1 = rs. Next we note that rj ̸= rj+1 for j = 2, . . . , s − 2 by (I4) of Claim 3.8.
Finally, (I6) of Claim 3.8 implies that rjrj+1 has weight 3 or 5, since by construction,
there is a path of length 3 between N(vrj ) and N(vrj+1

) (namely yj , qj , qj+1, yj+1).
Since the weight of each edge in Ri is odd, the weight of Ri has the same parity as
s− 3 (the number of edges of Ri). Since Qi has length s− 1, the weight of Ri and the
length of Qi have the same parity as desired.

We return to the degenerate case. We have ℓ = 1 and Q1 is a cycle q1, q2, . . . , qs, qs+1 =

q1 of odd length s. For j = 1, . . . , s, we let rj ∈ [h] \ B be such that qj has a neighbour
in N(vrj ). As in the previous case, we conclude that r1, . . . , rs, r1 is a walk with edges of
weight 3 or 5, hence a closed odd walk.

This completes the construction of the walks Ri in H . As C was an odd cycle in G, the
sum of the lengths of the Qi is odd. Further, by construction, either we are in the degenerate
case when we get one closed odd walk, or we are in the non-degenerate case and each
walk Ri ends in the same vertex as Ri+1 starts in (where indices are taken modulo ℓ). In
either case, the union of the walksRi thus is a closed walk of odd weight inH[[h]\B] which
contains a cycle of odd weight. This is the desired contradiction and, therefore, G[V \A] is
bipartite. □

Our final claim shows that (J3) holds.

Claim 3.11. G[A ∪ {v}] is bipartite for every v ∈ V \A.

Proof. Let us assume that, for some v ∈ V \ A, there is an odd cycle C in G[A ∪ {v}].
There are three cases: either v = vw with w ∈ [h] \B, or v ∈ N(vw) with w ∈ [h] \B, or
v ∈ X \X0. We start by ruling out the first. Indeed, if v = vw with w ∈ [h] \ B, then v
cannot be contained in C because N(vw) ⊆ V \A, hence C ⊆ A. We conclude that in this
case we can simply choose some new v ∈ N(vw) and continue the following argument with
this v.

In the other two cases, we proceed as follows. If v ∈ X \X0, by Claim 3.9 we can fix a
w ∈ [h] \B such that v has a neighbour in N(vw). Otherwise, we fix w ∈ [h] \B such that
v ∈ N(vw). By assumption, H[B ∪ {w}] is weighted bipartite.

Recall that A consists of N1[vi] with i ∈ B and the vertices in X0, and that every vertex
inX0 has a neighbour in someN(vi) with i ∈ B. We want to construct a cycle of odd weight
in H[B ∪ {w}] to obtain a contradiction. We proceed almost exactly as in Claim 3.10 and
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we shall not repeat the details here, but only indicate the differences: First of all, the relevant
indices are now chosen from B ∪ {w} instead of [h] \ B, and the internal vertices of the
paths Q1, . . . , Qt come from X0 instead of X \X0. Moreover, if v ∈ N(vw) and v appears
as an end-vertex of a path Qi, then we need to take w for the corresponding end-vertex of
the path Ri. Similarly, in the case when v ∈ X \X0 and v appears as an internal vertex of a
path Qi, we take w as the corresponding vertex in the path Ri. The remaining arguments
work as before. □

This completes the proof of Theorem 3.1.

For the general upper bound δχ(C2k−1, c) ≤ 1
2k⌊c/3⌋ , we let G be a C2k−1-free graph of

minimum degree at least 1
2k⌊c/3⌋ |V (G)| and obtain an auxiliary graph H ∈ H(k, 2k⌊c/3⌋)

in the same way. We can then partition H into ⌊c/3⌋ parts of size at most 2k and apply
Lemma 3.5 to each of them. Almost exactly as above, we can translate the partition of each
part back to a 3-colouring of the corresponding part of G, while also taking care of the
left-over vertices in X , to obtain a 3⌊c/3⌋-colouring of G.

3.3 Finding and combining weighted bipartite sets

In this section, we focus on finding sufficient conditions for a set to be weighted bipartite. We
start with the following lemma, which states that certain balls around a vertex are weighted
bipartite.

Lemma 3.12. Let k ≥ 5 be an integer and H be a weighted graph with edge weight
ω : E(H) → {3, 4, 5}. If H contains no cycle of odd weight smaller than 2k + 1, then
for any u ∈ V (H) we have that Nk−3

ω [u] is weighted bipartite.

Proof of Lemma 3.12. For this proof, it is practical to return to the unweighted setting. Hence,
let G be the (unweighted) graph obtained from H by replacing every edge of weight s by a
path with s edges. By construction, all vertices of H are also vertices of G. Note further that
any odd cycle C in G corresponds to a cycle in H whose weight is exactly the length of C
and vice versa.

Let us now assume for contradiction that for some u ∈ V (H) there exists a cycle CH

of odd weight in Nk−3
ω [u], and denote by C the corresponding odd cycle in G. We define

for all non-negative integers j, the level sets Lj = {x ∈ V (G) : dG(u, x) = j} ⊆ V (G)

to be the sets containing all vertices in G at distance exactly j from u, and the set B =⋃k−1
j=0 Lj . We claim that V (C) ⊆ B. Indeed, for x ∈ V (C) ∩ V (H) ⊆ V (G) we have

dG(u, x) = dω,H(u, x) ≤ k − 3. For any y ∈ V (C), there are x, x′ ∈ V (C) ∩ V (H)

such that y is on a path from x to x′ of length at most 5. W.l.o.g. dG(x, y) ≤ 2 and, hence
dG(u, y) ≤ dG(u, x) + 2 ≤ k − 1.

Since C is an odd cycle, there must be an edge xy of C with x and y in the same level set
Lj . Indeed, otherwise we could properly 2-colour the vertices of the odd cycle C by parity
of the level of each vertex. We conclude that there are a u, x-path and a u, y-path each with
exactly j ≤ k − 1 edges. The odd closed walk obtained from these two paths and the edge
xy contains an odd cycle of length at most 2j + 1 ≤ 2k − 1. But this corresponds to a cycle
in H of weight odd and smaller than 2k + 1, which contradicts our assumption.

Lemma 3.12 gives us a large family of sets that are weighted bipartite. This gives us access
to many possible candidates for our setB. The additional advantage of Lemma 3.12 is that the
sets it refers to are very simple, and this makes it easier to interpret our constructions later
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on. Our next lemma provides a similarly useful construction, allowing us to build weighted
bipartite sets starting from a minimal weight path.

Lemma 3.13. Let i ≥ 1 be an integer and k ≥ 10i+20. Let H be a weighted graph with edge
weight ω : E(H)→ {3, 4, 5} which contains no cycle of weight odd and smaller than 2k + 1.
If P is a path of minimal weight between its endpoints, then N i[P ] is weighted bipartite.

Proof. Assume that there exists a path P = p1, . . . , pℓ, which is of minimal weight between
its endpoints and such that N i[P ] is not weighted bipartite. Further, assume that P is
minimal with this property. In particular, for P ′ = p1, . . . , pℓ−1, we have that N i[P ′] is
weighted bipartite. We label the vertices in N i[P ] \N i[P ′] by w1, . . . , wm. Notice that for
each i = 1, . . . ,m there is an edge between wi and N i[P ′]. Take h the minimal index such
that Lh = N i[P ′] ∪ {w1, . . . , wh} is not weighted bipartite. This implies that in Lh there
exists a cycle of odd weight. Let Q be a cycle of minimal odd weight in Lh. Note that Q has
to pass through wh, so we denote with x and y the two neighbours of wh in Q. Let x′ and y′

be the vertices in P ′ closest to x and y respectively.
Note that dLh−1

(x′, x) ≤ i+ 1 and dLh
(x, pℓ−1) ≤ dLh

(wh, pℓ−1) + 1 ≤ i+ 2. Where
the second inequality comes from the fact that by definition wh ∈ N i[P ] \N i[P ′]. As P is
a path of minimal weight between its endpoints, the sub-path between x′ and pℓ−1 is also of
minimal weight. Therefore,

dω,P (x
′, pℓ−1) ≤ dω,Lh−1

(x′, x) + dω,Lh
(x, pℓ−1) ≤ 5(2i+ 3)

and the analogous argument gives dω,P (y
′, pℓ−1) ≤ 5(2i + 3). This gives dω,P (x

′, y′) ≤
5(2i+ 3) because x′, y′ and pℓ−1 are in the same path and pℓ−1 is one of the two endpoints.
This also implies dω,Lh−1

(x, y) ≤ 10(2i + 3). We let Q′ ⊆ Q be the path in Lh−1 with
endpoints x and y, i.e. Q \ {z}. The parity of ω(Q′) and dω,Lh−1

(x, y) has to be the same,
as otherwise there would be a cycle of odd weight in Lh−1. But, as ω(xwh) + ω(ywh) and
ω(Q′) have different parity, the parity of dω,Lh−1

(x, y) is also different from the parity of
ω(xwh) + ω(ywh). Therefore, using that Q is the lightest cycle of odd weight, we get that
ω(Q) ≤ dω,Lh−1

(x, y) + 10 ≤ 10(2i+ 3) + 10. This is less than 2k + 1 by our choice of k
and gives us the desired contradiction.

Now that we proved that the most basic sets (paths and balls) have our desired property,
we are ready to start the construction of more complicated sets. In particular, the next
Lemma shows how to combine two weighted bipartite sets. We need to point out that
this combination is not always possible. It might be better to interpret the next result as a
condition under which the property of being weighted bipartite is preserved under the union
operation.

Lemma 3.14. Let i ≥ 1 be an integer and let H be a weighted graph. Let B1, B2 and P
be three sets of vertices in H such that d(B1, B2) ≥ 2i + 2 and H[P ] is connected. If both
N i[B1∪P ] andN i[B2∪P ] are weighted bipartite, thenN i[B1∪B2∪P ] is weighted bipartite.

Proof. Let K = B1 ∪ B2 ∪ P . We want to show that N i[K] is weighted bipartite. So let
us assume for contradiction that N i[K] contains a cycle C of odd weight. Let us denote
by B′

1 the set N i[B1] \N i[P ] and by B′
2 the set N i[B2] \N i[P ]. Since both N i[B1 ∪ P ]

and N i[B2 ∪ P ] are weighted bipartite, C must intersect both B′
1 and B′

2. Let y(C) be the
number of connected components ofC induced byC∩ (B′

1∪B′
2) inH . In other words, y(C)

is the number of times that C leaves B′
1 or B′

2. It is possible that C leaves B′
1, continues in
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N i[P ], but then returns to B′
1 (or the same with B′

2), so y(C) does not need to be even, but
it has to be at least 2. Assume that C is such that y(C) is minimal.

Let w be any vertex in C ∩ B′
1. Let q1 and q2 be the endpoints of the maximal path

in C ∩N i+1[B1] containing w. That is, q1 and q2 are obtained by moving from w in both
possible directions alongC and then taking the first vertices that are outsideN i[B1]. Because
q1, q2 ∈ N i+1[B1] \N i[B1], d(B1, B2) ≥ 2i+ 2, and C ∩ B′

2 ̸= ∅, it follows that q1 ̸= q2

and q1, q2 ∈ N i[P ].
As P is connected, there is a path inN i[P ] between q1 and q2. Since this path is different

from the two paths between q1 and q2 in C (as it cannot overlap with B′
1 and B′

2), we obtain
from C ∪ P at least two cycles in N i[K], and at least one of them, let us call it C ′, has odd
weight. We have that y(C ′) < y(C) since we substituted a path in C containing at least one
component of C ∩B′

1 (and thus contributing at least one to y(C)) with a path in N i[P ]. This
is a contradiction to the choice of C , which was picked with minimal value of y(C).

3.4 Cycles of odd weight have large neighbourhoods

We dedicate this section to proving Lemma 3.7, restated here.

Lemma 3.7. Let k ≥ 8 and H ∈ H(k). If C is a non-spanning cycle of odd weight, then∣∣N1[C]
∣∣ ≥ 2k+1

3 .

Note that if all edges of the cycle are of weight 3, the cycle itself has at least 2k+1
3 vertices,

but if edges have other weights, it might have fewer vertices. To overcome this, we use the
fact that there is a spanning tree with edges of weight 3. This gives us that each maximal path
composed by edges of weight 3 in the cycle has a neighbour outside of the cycle. Carefully
analysing this situation gives the desired bound.

Before working with cycles, we prove an analogous result for paths, which we use to
prove the former. Lemmas in this section are not stated in terms of H(k) as we want to
apply them in more generality.

Lemma 3.15. Let F be a weighted graph with edge weight ω : E(F ) → {3, 4, 5}. Assume
that F = T ∪ P , where T is a spanning tree in which all edges have weight 3 and P is a
non-spanning path of weight ℓ with endpoints x and y. If F has no cycles of weight 11 and P
has minimal weight among all x, y-paths in N1

F [P ], then
∣∣N1

F [P ]
∣∣ ≥ ℓ+5

3 .

For convenience we nevertheless state the following immediate corollary.

Corollary 3.16. Let k ≥ 6 and H ∈ H(k). If P is a non-spanning path of minimal weight
between its endpoints, then |N1[P ]| ≥ ω(P )+5

3 .

Proof of Lemma 3.15. We write P = Q1, . . . , Qs as a concatenation of (possibly trivial) sub-
paths Qi such that within each Qi all edges have weight 3 and the edge ei between Qi and
Qi+1 has weight ω(ei) > 3.

If s = 1 then each edge ofP has weight 3 and we are done because
∣∣N1[P ]

∣∣ > |P | = ℓ
3+1,

where the strict inequality comes from the fact that F is connected, and hence P has a
neighbour in V (F ) \ V (P ) (which is not empty because P is not spanning).

Assume now that s is at least 2. Since T is a spanning tree in F , for each Qi we can fix a
vertex zi ∈ N1[Qi] \ P and a vertex xi in Qi such that zixi has weight 3.

For i < j we have zi ̸= zj unless j = i + 1 and ei = xixi+1, because otherwise P
would not be an x, y-path of minimal weight in its neighbourhood. If zi = zi+1, we say that
(i, i+ 1) has a hat. In this case we also know that ei = xixi+1 has weight 4, as otherwise



cycles of odd weight have large neighbourhoods 79

xi w xi+2

z

Figure 3.2: Shortcut in the case d(C) = 2, where xiz and xi+2z are edges of weight 3 and the sum of the weights
of xiw and xi+2w is at least 7.

xi, xi+1, zi would form a cycle of weight 11. Moreover, neither (i− 1, i) nor (i+ 1, i+ 2)

has a hat (otherwise we would have without loss of generality that zi−1 = zi+1 and we
could replace the sub-path xi−1, xi, xi+1 of weight 8 with xi−1, zi+1, xi+1 of weight 6).

Now, if (i, i+ 1) has a hat, we “merge” Qi and Qi+1: We rewrite P = Q′
1, . . . , Q

′
s′ such

that each Q′
j either is the concatenation QieiQi+1 for some i such that (i, i+ 1) has a hat,

or is Qi for some i such that neither (i− 1, i) nor (i, i+ 1) has a hat. In the former case, we
say that Q′

j was formed by a hat. In both cases, we set z′j = zi. Observe that by construction
z′j ̸= z′j′ for j ̸= j′. We thus conclude that we have

|N1[P ]| ≥
∑
j∈[s′]

(|Q′
j |+ 1) = s′ + |P | .

Moreover, since Q′
j and Q′

j+1 are connected by an edge of weight at most 5, we have

ω(P ) ≤ 5(s′ − 1) +
∑
j∈[s′]

ω(Q′
j) .

If Q′
j was formed from a hat, then ω(Q′

j) = 3(|Q′
j | − 2) + 4 = 3|Q′

j | − 2 and otherwise
ω(Q′

j) = 3(|Q′
j | − 1) ≤ 3|Q′

j | − 2. Therefore,

ω(P ) ≤ 5(s′ − 1) +
∑
j∈[s′]

(3|Q′
j | − 2) = 3s′ − 5 + 3|P | ,

and hence |N1
F [P ]| ≥ |P |+ s′ ≥ ω(P )

3 + 5
3 as desired.

We are now ready to present our proof of Lemma 3.7, which provides a similar lower
bound on the size of the neighbourhood of a non-spanning cycle of odd weight in a graph
H ∈ H(k).

Proof of Lemma 3.7. Let T be a spanning tree of edges of weight 3 associated to H . If C
only has edges of weight 3, we are done because C has weight at least 2k + 1. If not, we
write C as a concatenation of maximal paths of edges of weight 3, this means that we write
C = Q1, e1, Q2, e2, . . . , Qs, es where each Qi is a (possibly trivial) sub-path of C only
composed of edges of weight 3, and where ω(ei) > 3. We also call these sub-paths Qi the
segments of the cycle.

For each Qi, we now want to choose vertices xi ∈ Qi and zi ∈ N1[Qi] \Qi such that
xizi is an edge of T and we call zi the pendant ofQi. This is possible, because T is a spanning
tree of weight three. Given the notation Z = {zi : i ∈ [s]} and Z ′ = Z \C , we select the zi
in such a way that |Z ′| is maximised. Further, among the options that maximise |Z ′|, we
select one that attains the maximum value for |Z|. Let I(C) = C ∪ Z . We also denote by
H(C) the graph with vertex set I(C) and edge set E(C) ∪ {xizi : i ∈ [s]}.

We now could be temped to immediately apply Lemma 3.15 to some spanning pathP inC .
However, this is not possible since P may not have minimal weight in N1

H(C)[P ]. Therefore,
our goal is to “move” to a (possibly) different cycle C ′ in which we do not encounter this
issue. For this procedure to work it is essential that we maximise the sizes of Z ′ and Z .
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Claim 3.17. There is a non-spanning cycle C ′ of odd weight in H such that C ′ has minimal
weight among all cycles of odd weight in H(C ′) (defined analogously as above) and such that
|I(C)| ≥ |I(C ′)|.

Proof. We shall move through a sequence C1, C2, . . . of odd weight cycles until we obtain a
cycle Cℓ̃ = C ′ with the desired properties, where from one cycle Cℓ to the next Cℓ+1 we
do not increase the weight, we decrease the number s of segments, and we have |I(Cℓ)| ≥
|I(Cℓ+1)|. We terminate this process when a unique odd weighted cycle Cℓ is left in H(Cℓ).
Observe that this happens eventually since we always decrease the number s of segments
and if s = 1 for some cycle Cℓ, then Cℓ is the only cycle in H(Cℓ). We set C1 = C and
assume that we currently have a cycle Cℓ with s segments and if it does not have minimal
weight among all cycles of odd weight in H(Cℓ), we move to a new cycle Cℓ+1 with the
properties just specified. We also keep track of the set Zℓ (and Z ′

ℓ) of pendant vertices zj
(outside of Cℓ), which is set to Z1 = Z (and Z ′

1 = Z ′) in the beginning.
Case A. Assume Cℓ has a chord in H(Cℓ). That is, for some i, we have zi ∈ Cℓ.
Let us denote by i′ the index such that zi ∈ Qi′ . Then this chord creates with Cℓ two

cycles and we let Cℓ+1 be the cycle of odd weight among the two. We divide Cℓ+1 into
segments as before. All the segments of Cℓ+1 were also segments of Cℓ with the exception
of the segment Q′

i of Cℓ+1 containing xizi. For the segments Qj of Cℓ+1 (including Q′
i), we

find the vertices xj ∈ Qj and zj ∈ N1[Qj ] \Qj as above and again maximise the size of the
sets

Z ′
ℓ+1 = Zℓ+1 \ Cℓ+1 and then Zℓ+1 = {zj : Qj segment of Cℓ+1} .

Note that Cℓ+1 has fewer segments since the chord zixi that gave us Cℓ+1 joined two
distinct segments as zi ̸∈ Qi by definition. Moreover Cℓ+1 has weight strictly smaller than
the weight of Cℓ because xi and zi are at unweighted distance at least 2 in Cℓ while they
are joined by an edge of weight 3 in Cℓ+1.

It remains to argue that |I(Cℓ+1)| ≤ |I(Cℓ)|. Note that all the vertices of Z ′
ℓ+1 were

also available as vertices in Z ′
ℓ, unless they are in V (Cℓ) \ V (Cℓ+1). Thus, we have |Z ′

ℓ| ≥
|Z ′

ℓ+1 \ V (Cℓ)|. This implies

|I(Cℓ)| = |Cℓ|+ |Z ′
ℓ| ≥ |Cℓ|+ |Z ′

ℓ+1 \ V (Cℓ)| ≥ |Cℓ+1|+ |Z ′
ℓ+1| = |I(Cℓ+1)| .

Case B. Assume C has no chords in H(Cℓ), that is, zi ̸∈ Cℓ for all i and, hence, Zℓ = Z ′
ℓ.

If there are no distinct xi and xj such that zi = zj , then H(Cℓ) contains only one odd
weight cycle and we are done. Otherwise, let d(Cℓ) be the maximum unweighted distance on
Cℓ between xi and xj such that zi = zj over all choices i, j ∈ [s]. If d(Cℓ) ≤ 1 then H(Cℓ)

consists of a cycle where neighbouring vertices can have a common neighbour outside the
cycle plus some pendent edges. As a path xizixj always has larger weight than an edge
xixj , then Cℓ is of minimal weight in H(Cℓ) and we are done.

We can therefore assume that d(Cℓ) ≥ 2. Let xi and xj be vertices at distance at least 2
in Cℓ such that zi = zj , and let P be the path between xi and xj in Cℓ such that the cycle
Cℓ+1 := Pxjzixi has odd weight. This cycle has weight not larger than Cℓ, as Cℓ \ V (P )

has at least two edges and thus weight at least 6, and xjzixi has weight exactly 6. Consider
a choice of pendants that maximises the sizes of Z ′

ℓ+1 and then Zℓ+1. Let z′ be the pendant
of the segment containing xjzjxi, let Z1 be the set of pendants of z of other segments in
Cℓ+1 such that z ̸∈ V (Cℓ), and let Z2 be the set of pendants z of other segments such that
z ∈ V (Cℓ).

We claim now that we can assume Z1 ⊆ Z ′
ℓ. Indeed, let f : Z1 → N such that z is a

pendant of the segment Qf(z) (in Zℓ+1) for z ∈ Z1. If Z1 ̸⊆ Z ′
ℓ, consider some z ∈ Z1 \ Z ′

ℓ,
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and replace the pendant of Qf(z) in Z ′
ℓ by z. This either causes Z1 \ Z ′

ℓ to decrease in size,
or it causes the size of {z ∈ Z1 ∩ Z ′

ℓ : z is not the pendant of Qf(z) in Z ′
ℓ} to decrease in

size while maintaining the size of Z1 \ Z ′
ℓ. Thus, repeating this step proves the claim.

If Z ′
ℓ \ (Z1 ∪ {zi}) is non-empty, or Z2 is empty, then I(Cℓ) \ I(Cℓ+1) contains at least

one vertex (namely a vertex from Z ′
ℓ \ (Z1 ∪ {zi}) in the first case and any vertex from

Cℓ\V (Cℓ) in the second case), whereas I(Cℓ+1)\I(Cℓ) contains at most one vertex (namely
z′), so |I(Cℓ)| ≥ |I(Cℓ+1)|. Otherwise, we have Z ′

ℓ = Z1 ∪ {zi} and Z2 not empty. In this
case, let z ∈ Z2, and let Qs be a segment in Cℓ+1 (and in Cℓ) whose pendant is z. Then in
Zℓ we can set the pendant of Qs to be z without decreasing the size of Z ′

ℓ (because for every
z ∈ Z ′

ℓ \ {zi} we have a segment which is not Qs with z as a pendant, and Qi and Qj have
zi as a pendant), but this increases the size of Zℓ, a contradiction to the maximality of Zℓ.

□

Let C ′ be an odd cycle such as the one promised by this claim, let s′ be the number
of its segments, and let z′1, . . . , z′s′ be the neighbours of the segments. Our goal now is to
argue that |I(C ′)| ≥ 2k+1

3 , which suffices to prove the lemma since |I(C ′)| ≤ |I(C)| and
I(C) ⊆ N1[C]. If s′ = 1, then all but at most one edge of C ′ have weight 3. In this case,
|I(C ′)| ≥ |C ′|+ 1 ≥ ω(C′)−2

3 + 1 ≥ 2k+1
3 . For the first inequality, we used that there is a

vertex in I(C ′) \ C ′, which is true because T is connected and C ′ is not spanning in H .
We assume for the rest of the proof that s′ ≥ 2. Let us fix and edge e in C ′ that is

not in the spanning tree T . Removing e from C ′, we obtain a path P of weight at least
(2k+1)−5. Let T ′ be the graph consisting of all edges of weight 3 inH(C ′) (except possibly
e) and one additional auxiliary vertex v connected to each of z′1, . . . , z′s′ with an edge of
weight 3. Observe that T ′ is a tree. Now, consider the graph F = (T ′ ∪ H(C ′)) \ {e}.
We have that V (F ) \ V (P ) ̸= ∅ (since v ∈ V (F ) \ V (P )), and P has minimal weight
among all paths in N1

F [P ] connecting its endpoints since v is not contained in N1
F [P ]

and by the minimality of C ′. Moreover, F has no cycles of weight 11 since any such
cycle would need to include the auxiliary vertex which is only connected to the vertices
z′1, . . . , z

′
s′ which form an independent set in F , and thus any cycle using the auxiliary

vertex has weight at least 12. We conclude that we can apply Lemma 3.15 to P and T ′ to get
I(C ′) ≥ N1

F [P ] ≥ 2k−4
3 + 5

3 ≥
2k+1

3 as required.

We end this section with a useful corollary of Lemma 3.7.

Corollary 3.18. Let ℓ ≥ 13 be an odd integer. Let F be a weighted graph with edge weight
ω : E(F ) → {3, 4, 5}. Assume that F = T ∪ P , where T is a spanning tree in which all
edges have weight 3 and P is a non-spanning path with endpoints x and y. If F has no cycles
of odd weight below ℓ + 4, and the minimal weight of an x, y-path in F is at least ℓ, then∣∣N1

F [P ]
∣∣ ≥ ℓ+4

3 .

Proof. We add the edge xy to F and define its weight to be s ∈ {4, 5} such that ω(P ) + s is
odd. LetC in F be the cycle of odd weight consisting of P and the edge xy. Because any x, y-
path is of weight at least ℓ, in F there is no cycle whose weight is odd and smaller than ℓ+4.
Therefore, F ∈ H( 12 (ℓ+ 4− 1)). We can then apply Lemma 3.7 with k = 1

2 (ℓ+ 4− 1) ≥ 8

an integer (since ℓ is odd), to get |N1
F [P ]| = |N1

F [C]| ≥ ℓ+4
3 .
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3.5 Proof of the main technical lemma

The main objective of this section is to prove our main technical lemma (Lemma 3.5). We
need some further preparations. In the previous sections we first showed how to generate a
candidate setB with weight bipartite neighbourhood, and then how to guarantee thatH \B
is weighted bipartite by analysing the size of int(B). However, we did not yet combine
results of these two types.

Observe that just taking a ball with Lemma 3.12 might only give a small set, while even
cleverly removing a few vertices from a cycle of odd weight does not necessarily make it
weighted bipartite. Therefore, the first result of this section (and the last piece missing in
order to prove Lemma 3.5), is a lemma combining these two ideas. Indeed, we show how we
can create a candidate set which is weighted bipartite and with a lower bound on its size.

Lemma 3.19. Let i ≥ 2 and k ≥ 5i+ 16 be integers, and let H ∈ H(k). For any odd cycle C
in H and any p in V (C), the following holds. There exists a path P such that E(P ) ⊆ E(C),
p ∈ V (P ), N i[P ] is weighted bipartite, and |N1[P ]| ≥ 2

3k −
10
3 i− 5.

Proof. Let x0 = p, fix an orientation of C , and denote by x⟳1 the clockwise neighbour of
p, by x⟳2 the clockwise neighbour of x⟳1 , and so on. Define analogously x⟲1 , x

⟲
2 , . . . . We

can define the sequence u0 = x0, u1 = x⟳1 , u2 = x⟲1 , u3 = x⟳2 , . . . that takes alternatively
vertices from the clockwise and the anticlockwise side of p in C .

We takeP to be the longest path of the formC[{u0, . . . , uj}] such thatN i
H [P ] is weighted

bipartite. Let us denote with x, y the two endpoints of P and with ux, uy the two vertices
in C \ P adjacent in C to x and y respectively. Without loss of generality we assume
N i

H [P ∪ {ux}] is not weighted bipartite.
In order to get the desired lower bound on |N1

H [P ]|, we want to use Corollary 3.18
with input ℓ = 2k − 10i − 19 ≥ 13. We do so in the following setting. First, we select a
further subpath P ′ = Px′y′ of P with endpoints x′ and y′ such that the weighted distance
in N i

H [P ] between x′ and y′ is at least ℓ. We then append to P ′ an auxiliary tree T ′ with the
property that there are no short paths with endpoints in P ′ that use edges of T ′ and such
that N1

T [P ] ⊆ N1
T ′ [P ], where T is the spanning tree of weight three associated with H . The

host graph F we use to apply Corollary 3.18 is formed by edges in either P ′ or T ′.
We start by selecting a subpath of P , the endpoints of which are given by the following

claim.

Claim 3.20. There are vertices x′, y′ in P which are at weighted distance at least ℓ in N i
H [P ]

and hence also in N i
H [P ] ∩ (P ∪ T ).

Proof. By construction, we do not have any weighted odd cycles in N i
H [P ] but we do have

an odd cycle in N i
H [P ∪ {ux}] by choice of ux. Let us fix an arbitrary order z1, . . . , zm of

the vertices of N i
H [{ux}] \N i

H [P ], let h be the minimum index such that Lh = N i
H [P ] ∪

{z1, . . . , zh} contains an odd cycle, and let Q be an odd cycle of minimal weight in Lh. By
construction, we have that Q passes through zh, and that there are no cycles of odd weight
in Lh−1.

Let x′′, y′′ be the two neighbours of zh in Q, and let x′, y′ ∈ P be vertices in P closest in
Lh−1 respectively to x′′ and y′′. We claim that dω,Lh−1

(x′′, y′′) ≥ 2k−9 (weighted distance
in Lh−1 between x′′ and y′′). Indeed, assume that this is not true and let P ′ be the shortest
path in Lh−1 between x′′ and y′′, and let PQ be the path in Q \ {zh} with endpoints x′′ and
y′′. We note that PQ ⊆ Q \ {zh} = Q ∩ Lh−1, therefore the parity of ω(P ′) and ω(PQ)

can not be different, because then there would be a cycle of odd weight in Lh−1. But the



proof of the main technical lemma 83

x′ y′

q2

q1 q3

q4

x∗

Figure 3.3: Construction of host graph F containing only P ′ and edges of a tree. To be used in Proof of Lemma 3.19.

parity of ω(x′′zh) + ω(zhy
′′) ≤ 10 is different from ω(PQ) and, therefore, from the parity

of ω(P ′). This means that P ′ (which is a path between x′′ and y′′) together with zh gives
a cycle of odd weight that is at most 2k. This is a contradiction and proves the claimed
bound. Since dω,Lh−1

(x′′, x′), dω,Lh−1
(y′′, y′) ≤ 5 · (i + 1), we have that x′ and y′ are at

weighted distance at least 2k − 9− 2 · 5 · (i+ 1) = ℓ in Lh−1 (and therefore in N i
H [P ] as

N i
H [P ] ⊆ Lh−1), as desired. □

Consider now the subpath P ′ = Px′y′ of P with endpoints x′ and y′ given by our claim.
We want to apply Corollary 3.18 with input ℓ = 2k − 10i − 19 ≥ 13 to a host graph F
containing only P ′ and edges of a tree that we now build (refer to Figure 3.3).

To build F , let Q1, . . . , Qm be the connected components of the sub-forest N i
H [P ′] ∩

(T \E(P ′)) of T on the vertices of N i
H [P ′] containing those edges of T which are not edges

of P ′. For each component Qi of N i
H [P ′] ∩ (T \E(P ′)) fix an arbitrary vertex qi ∈ Q \ P ′.

Consider now a spider graph with m legs, each of length ℓ, and denote by x∗ its central
vertex and with x1, . . . , xm its leaves (a graph obtained from the star K1,m by replacing
each edge with a path of length ℓ). We denote by T ′ the tree obtained from this spider graph
and the trees Q1, . . . , Qm by identifying xi with qi and then let F be the (not disjoint) union
of T ′ and P ′.

Notice that in F we do not have any short cycles, moreover we have N1
F [P

′] ⊆ N1
H [P ′].

Also, all paths in F with both endpoints in P ′ and not completely in N i
H [P ′] ∩ (P ′ ∪ T )

pass through x∗, and all paths with endpoints in P ′ passing through x∗ have weight at least
2ℓ. In particular, this gives us that the weighted distance in F between x′ and y′ is at least
ℓ, which allows us to use Corollary 3.18 to obtain the desired lower bound on the size of
N1

F [P
′] and hence also on the size of N1

H [P ].

We are now ready for proceeding to the main proof of this section. The strategy bringing
all this together is to use results of Section 3.3 to combine together constructions such as the
one in Corollary 3.16 and Lemma 3.19 whenever easier constructions, like balls, do not work.
We restate and prove the main lemma.

Lemma 3.5 (Main technical lemma). For any t ∈ N and any integer k ≥ k(t) = 20t+ 1460,
the following holds. For any H ∈ H(k, 2k + t) there exists a subset B of V (H) such that
H[B] is connected, H \B is weighted bipartite, and H[B ∪ {v}] is weighted bipartite for all
v ∈ V (H) \B.
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Proof of Lemma 3.5. Let us fix the functions ℓ0 = ℓ0(t) = 5t+ 310 and k(t) = 4ℓ0 + 220 =

20t+ 1460. Let t be a natural number and k ≥ k(t). In particular, note that since k ≥ 1460,
we have that k is large enough to apply Corollary 3.16, Lemma 3.19 with i = 10, and
Lemma 3.14 with i = 3. Let H ∈ H(k, 2k + t) and distinguish two cases.

Case A. Assume that in H there are two cycles C1 and C2 of odd weight at weighted
distance at least ℓ0 from each other. Let P be a path of minimal weight between C1 and
C2 (by assumption we have ω(P ) ≥ ℓ0). Let p1 and p2 be the endpoints of P in C1 and C2,
respectively. For j = 1, 2, let Bj be the path in Cj given by Lemma 3.19 with i = 10, and
note that d(B1, B2) ≥ 8. See Figure 3.4 for an illustration of the situation. We denote by B
the set of vertices N2[B1 ∪B2 ∪ P ] and note that H[B] is connected.

Claim 3.21. N1[B] is weighted bipartite

Proof. Let us first establish that N3[Bj ∪ P ] is weighted bipartite for j = 1, 2. Let Pj be
the path on the first 8 vertices of P starting from Bj . Note that Pj is disjoint from B3−j

since d(B1, B2) ≥ 8. Let P ′
j be the subpath of P , starting right after the last vertex of Pj

and ending in B3−j , i.e. P ′
j = P \ V (Pj). Then P ′

j is non-empty and since Pj contains 8
vertices we have d(Bj , P

′
j) ≥ 8.

Next we note that N3[Bj ∪ Pj ] ⊆ N10[Bj ] is weighted bipartite because we defined Bj

according to Lemma 3.19 with i = 10. Also N3[Pj ∪ P ′
j ] = N3[P ] is weighted bipartite by

Lemma 3.13 as P is a shortest path between its endpoints and k ≥ 50. We can then apply
Lemma 3.14 with Bj ∪Pj , Pj ∪P ′

j , and Pj to deduce that N3[Bj ∪Pj ∪P ′
j ] = N3[Bj ∪P ]

is weighted bipartite. Another application of Lemma 3.14 with B1, B2, and P immediately
gives that N1[B] = N3[B1 ∪B2 ∪ P ] is weighted bipartite. □

B2B1

C1 C2

p1 p2

P

Figure 3.4: Two cycles C1 and C2 at weighted distance at least ℓ0 and the construction of the weighted bipartite
set.

Since N1[B] is weighted bipartite, it remains to show that H \B is weighted bipartite.
In view of Lemma 3.6, it thus suffices to show that |int(B)| ≥ |N1[B1 ∪B2 ∪ P ]| ≥ 4

3k + t.
As Bj is given by Lemma 3.19 with i = 10, we have |N1[Bj ]| ≥ 2k

3 − 29. Therefore, as
N1[B1] ∩N1[B2] = ∅ and |P ∩N1[Bj ]| ≤ 2 for j = 1, 2, we get

|N1[B1 ∪B2 ∪ P ]| ≥ |N1[B1]|+ |N1[B2]|+ |P | − 4 > 4
3k − 58 + 1

5ℓ0 − 4 ≥ 4
3k + t ,

where the last inequality uses the lower bound ℓ0 = ℓ0(t) ≥ 5 · (62 + t) = 310 + 5t.
Case B. In this case we have that between any two odd cycles there is a path of weight at

most ℓ0. Let C be a cycle in H with minimal odd weight. Up to increasing the value of k in
the statement, we may assume C has weight 2k + 1. Fix an arbitrary vertex x ∈ C , and let
y ∈ C be a vertex of maximal weighted distance from x. Let P denote the path of minimal
weight in C between x and y. Note that P is also a path of minimal weight between x and y
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in H , as a path of smaller weight not in C between x and y would create an odd cycle of
weight smaller than C . Hence, dω,H(x, y) ≥ (ω(C)− 5)/2 = k − 2.

Let Ax = N1[C] ∩Nk/2−18
ω [x] be the set of vertices in N1[C] with weighted distance

at most k
2 − 18 from x and, similarly, let Ay = N1[C] ∩ Nk/2−18

ω [y]. Denote by P ′ the
path obtained by removing from P the vertices at unweighted distance at most 30 from its
endpoints, x and y, which is non-empty as ω(P )− 2 · 30 · 5 ≥ k − 302 > 0.

LetCx be a cycle of minimal odd weight inH \Nk−8
ω [y]. We might assume that such aCx

exists because otherwise we can take as set B the set Nk−8
ω [y] which respects our conditions

by Lemma 3.12. Analogously, let Cy be a cycle of minimal odd weight in H \Nk−8
ω [x]. We

can see Cy exists by the same argument used above. Let Px and Py be paths of minimal
weight between C and Cx and C and Cy , respectively. Denote by px and py the weight of
Px and Py , respectively, and note that 0 ≤ px, py ≤ ℓ0 as we are in Case B.

We claim that all vertices of Px are at weighted distance at most 2px + 11 ≤ 2ℓ0 + 11

from x and similarly the vertices of Py are close to y. To see this let x′ be the end-point
of Px on C and note that dω(v, x′) ≤ px for v ∈ V (Px). As Cx ∩ Nk−8

ω [y] = ∅ implies
dω(x

′, y) ≥ k− 8− px and dω(x, y) ≥ k− 2 implies that both paths in C with endpoints x
and y have weight at most k + 3, we get dω(x, x′) ≤ k + 3− (k − 8− px) ≤ 11 + px.

Set now Bx = Cx ∩ Nk−38
ω [x], By = Cy ∩ Nk−38

ω [y], Dx = Bx ∪ Px ∪ Ax and
Dy = By ∪Py ∪Ay and view Figure 3.5 for an illustration. Our set B essentially consists of
Dx and Dy , which are both weighted bipartite by Lemma 3.12, connected by P ′.

Bx Ax Ay By

P ′

Cx C Cy

x

yPx

Py

Figure 3.5: Three cycles C , Cx, and Cy together with the vertices x and y on C , the paths P ′, Px, and Py ,
and the sets Ax = N1[C] ∩ N

k/2−18
ω [x], Ay = N1[C] ∩ N

k/2−18
ω [y], Bx = Cx ∩ Nk−38

ω [x], and By =

Cy ∩Nk−38
ω [y].

Claim 3.22. The set N2[Dx ∪ P ′ ∪Dy] is weighted bipartite.

Proof. We show this by employing Lemma 3.14 with i = 2, with Dx as B1, with Dy as B2

and with V (P ′) as P .
Clearly P ′ is connected. We also note that N2[Dx ∪ P ′] is contained in Nk−3

ω [x] and
N2[Dy ∪ P ′] is contained in Nk−3

ω [y], both of which are weighted bipartite.
It suffices now to show that the unweighted distance between Dx and Dy is at least 6,

which we do by checking thatDx andDy have weighted distance at least 30. Let us first note
that the weighted distance dω,H(Bx, By) between Bx and By is at least 30, because Bx ⊆
Nk−38

ω [x] and By ⊆ H \Nk−8
ω [x]. Similarly, dω,H(Ax ∪Px, By), dω,H(Ay ∪Py, Bx) ≥ 30.

The weighted distance between Px and Ay is at least (k− 2)− (k2 − 18)− (2ℓ0 + 11) ≥ 30,
because dω(x, Px) ≤ 2ℓ0 + 11, dω(y,Ay) ≤ k/2− 18, and dω(x, y) ≥ k − 2. Analogously,
dω(Py, Ax) ≥ 30. Finally, dω(Ax, Ay) ≥ (k − 2)− 2 · (k2 − 18) ≥ 30 by the definition of
Ax and Ay and dω(x, y) ≥ k − 2.

Therefore, all the conditions for Lemma 3.14 are satisfied. □
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We now claim that B = N1[Dx ∪ P ′ ∪Dy] satisfies the properties of Lemma 3.5. Note
that H[B] is connected, because H[Dx] and H[Dy] are connected and V (P ′)∩Ax ̸= ∅ and
V (P ′) ∩ Ay ̸= ∅ as k

2 − 18 ≥ 30. By Claim 3.22, N1[B] is weighted bipartite. It remains
to show that H \ B is weighted bipartite. In order to do this, we prove that |intB| ≥ 4

3k,
which suffices by Lemma 3.6.

Note that intB contains the union of the following four pairwise disjoint sets: Ax ∩
Nk−8

ω [y], Ay ∩ Nk−8
ω [x], Bx, and By . To see that they are pairwise disjoint, note that

Ax∩Ay = ∅ as dω(x, y) ≥ k−2, thatBx∩Nk−8
ω [y] = ∅ andBy∩Nk−8

ω [x] = ∅ by definition,
and that Bx ⊆ Nk−38

ω [x] and By ⊆ Nk−38
ω [y] by definition while Ax ⊆ N

k/2−18
ω [x] and

Ay ⊆ Nk/2−18
ω .

The size of Bx is at least 2
5 (k − 2px − 53) ≥ 2

5k −
4
5ℓ0 − 22. Indeed, as dω(x,Cx) ≤

2px +11 there are two paths of weight at least k− 38− 4− 2px− 11 in Bx that are disjoint.
The same bound holds for the size for By .

For the set Ax ∩Nk−8
ω [y] we want to apply Corollary 3.16 to two different paths. We

recall that Corollary 3.16 states that if a path of weighted length p is of minimal weight
between its endpoints, then the size of its 1-neighbourhood is at least p+5

3 . Let x1 and x2
be the vertices closest to x in C ∩Nk−8

ω [y] and note that dω(xi, x) ≤ 15 and xi ∈ Ax for
i = 1, 2. Next let y1 and y2 be the vertices farthest from x in C ∩ Nk/2−18

ω [x] ⊆ Ax and
note that dω(yi, x) ≥ k

2 − 22 for i = 1, 2. Without loss of generality, the two paths induced
in C from x1 to y1 and from x2 to y2 are pairwise disjoint. These paths have weight k

2 − 37,
are of minimal weight between their end-points, and are at unweighted distance at least
three. Hence, we can apply Corollary 3.16 twice to obtain

∣∣Ax ∩Nk−8
ω [y]

∣∣ ≥ 2
3

(
k
2 − 32

)
.

We get the same bound for the size of Ay ∩Nk−8
ω [x] and in total obtain

|intB| ≥ 2

(
2

5
k − 4

5
ℓ0 − 22

)
+ 2

(
k

3
− 22

)
≥ 22

15
k − 8

5
ℓ0 − 88 ≥ 4

3k ,

where the last inequality holds by our bound on k.



At least, I will get to be happy. At least the world might
be alright. Just for one day. Just for me. Is that selfish?

R.F. Kuang4
A Transference Principle and a Counting Lemma for
Sparse Hypergraphs

The objective of this chapter is to formalise and extend the Transference Principle, which is
a method that can be traced back to the seminal paper of Green and Tao [GT08] and that
was then further developed by Conlon and Gowers [CG16].

Intuitively, the transference principle is a method that allows to translate “robust” count-
ing results that are known in the dense regime to a random sparse regime. Let us see an
example.

For graphsH andG, let us denote by c(H,G) the number of copies ofH inG. Moreover,
letm2(H) = maxH′⊆H,|H′|≥3

e(H′)−1
v(H′)−2 . For any graphH , Erdős-Stone-Simonovits’ Theorem

[ES46; ES66] guarantees that for any ε > 0 there is N large enough such that any subgraph
F of KN with at least

(
1− 1

χ(H)−1 + o(1)
)(

N
2

)
edges contains a copy of H . This result is

“robust”, by which we mean that any subgraph of KN with at least
(
1− 1

χ(H)−1 + ε
)(

N
2

)
contains Ω(Nv(H)) copies of H , as proved by Erdős and Simonovits [ES83] (see also [PY17]
for a survey on the topic).

Now that we have an example of a robust counting result that is known in the dense
regime, let us see how we can translate it to a sparse random regime. In this variation, we are
interested in finding copies of H in subgraphs of GN,pN

, the random graph over N vertices
where each edge is selected independently with probability pN .

What the transference principle allows us to do is to reduce a counting in the sparse
random regime to a counting in the dense regime. That is, the transference principle allows
us to count the copies of H in a subgraph Y of GN,pN

by counting the copies of H in a
dense model Z of our subgraph Y of the random graph.

The formal translation from the sparse random regime to the dense regime (which is a
special case of our general transference principle) is as follows.

Theorem 4.1. Let H be a fixed graph and ε > 0. Then there exists a constant C > 0 such that
the following holds. Suppose that pN > CN−1/m2(H), and let ηN be the probability that the
number of copies of H in G = GN,pN

exceeds (1 + ε
2 )p

e(H)
N Nv(H). Then with probability at

least 1− ηN , for every subgraph Y ⊆ G there exists a graph Z on V (G) that satisfies:

e(Y )p−1
N = e(Z)± εN2 and c(H,Y )p

−e(H)
N = c(H,Z)± εNv(H) .

This result allows us to do counting in the following way. Let us fix a graph H . Let
us consider pN > CN−1/m2(H) and let Y be a subset of G = GN,pN

with at least
(
1 −

1
χ(H)−1 + ε

)
pN
(
N
2

)
edges. By Theorem 4.1, applied with the right parameter ε = ε′, we

can find a good model Z of Y . Which means we can find a subgraph Z of KN with at least

87
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(
1− 1

χ(H)−1 +ε
′)(N

2

)
edges and such that the number of copies ofH in Y is (up to rescaling)

the number of copies of H in Z . In particular, Erdős and Simonovits’ result [ES83] gives us
that Z contains Ω(Nv(H)) copies of H , which guarantees that Y contains Ω(Nv(H)p

e(H)
N )

copies of H , which is a positive proportion of the expected number of copies of H in GN,pN
.

Let us now see that the condition pN > CN−1/m2(H) is somehow optimal.
Let us take in consideration the graph H over four vertices consisting of a triangle

and a pendant edge attached to it (i.e. the graph with vertex set {1, 2, 3, 4} and edge set
{12, 23, 13, 14}). We first point out that CN−1/m2(H) is optimal here. Indeed, G = GN,pN

is a graph with approximately pNN2 many edges and with about Nv(H)pe(H) = N4p4

copies of H . This means that if N4p4N ≪ pNN
2, we can remove only a small fraction of the

edges (one per each copy of H) and remove all the copies of H contained in G. Therefore,
we must have pN ≫ N− v(H)−2

e(H)−1 , i.e. pN ≫ N−2/3. However, notice also that in order to
remove all copies of H in G, an adversary could try and delete all the triangles T of G by
removing one edge per each triangle. The expected number of triangles in G is N3p3 and
this needs to be much larger than the number of edges of G. And therefore we must have
pN ≫ N−1/2, which explains the requirement pN ≥ CN−1/m2(H).

We also have that our “success probability” 1− ηN is optimal, but we postpone to the
proof of the theorem to see the details.

4.1 A General Transference Principle and its applications

We mentioned that our interest is to generalise and extend the transference principle. We
start by seeing how we can translate Theorem 4.1 in a more abstract setting. We are then
going to state and prove an extended version of this translation.

The main idea here is that we can formulate Theorem 4.1 as a statement about the set of
edges of KN . That is, we can consider n =

(
N
2

)
, and arbitrarily define a bijection between

[n] and the set of edges of KN . Once we have done that, we can define the hypergraph S of
all copies of H in [n]. By construction, S is a subset of

(
n
k

)
(we have k = 4 as H has 4 edges),

and has size of the order of Nv(H). Counting copies of H in G is the same as counting
elements of S contained in [n]pN

.
Notice a similar procedure can also be done for counting copies of an r-uniform hyper-

graph (we would just need to consider n =
(
N
r

)
).

Given a set [n], a uniform hypergraph S, and a subset Y of the random set [n]pN
(for

appropriate values of pN ), our general transference principle allows us to find a dense model
Z of Y such that the number of elements of S in Y is (up to scaling) close to the number of
elements of S in Z .

Actually, our transference principle allows for a further layer of generality, for which we
need additional notation. We now introduce the necessary notation and state the general
version of our transference principle.

Given positive integers n, k ≥ 2, a k-uniform ordered hypergraph S of size n is a k-
uniform hypergraph on [n] with an order associated to each of its edges. That is, each edge
of a k-uniform ordered hypergraph is an (ordered) sequence of length k of elements of [n].
Given x ∈ [n] and i ∈ [k], we write Si(x) for the subset of S consisting of all edges whose
i-th entry is x. Given such an hypergraph S, and a sequence x of length k of elements
of [n] ∪ {∗}, we write degS(x) for the number of edges of S which agree with x at all
positions which do not equal ∗. That is, those entries equalling ∗ are allowed to vary, while
the others are fixed to the value they have in x. For ℓ a positive integer, we write ∆ℓ(S) for
the maximum value of degS(x) over all sequences x with exactly ℓ entries not equal to ∗.
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This is the standard codegree in the ordered hypergraph setting, where ℓ vertices are fixed
and the number of edges containing them is counted.

We call a function σ : [n]→ [0, 1] over the set of vertices a similarity function. We call
a function ω : S → [0, 1] over the set of edges a subcount. We abuse notation by denoting
with 1 any function that takes value 1 on its domain (whatever that might be). We write 1 to
denote the indicator function of a proposition, which is, we write for example 1(y ∈ Y ) to be
the function that has value 1 when ‘y ∈ Y ’ is true, and value 0 when it is false (the domain
is always clear from the context). For any real numbers x, y, z, we also write x = y ± z to
indicate y − z ≤ x ≤ y + z.

Very importantly, we now introduce a general setting that accompanies us for the rest of
this chapter. That is, we fix now the following quantities, and refer back to them frequently
in the following.

Setting 4.2. Let k, n ≥ 2 be fixed integers, let c, p > 0 be real numbers with p ∈ (0, 1). Let S
be a k-uniform ordered hypergraph on [n], and let Σ and Ω be sets of respectively similarity
functions on [n] and subcounts of S. Let both Σ and Ω contain the 1 function that takes
value 1 everywhere in their respective domains, and let Σ contain each of the n functions
f(x) ≡ 1(x = i).

We point out that this setting contains no conditions on any of these objects, which is
why we need the following definition.

Definition (C-conditions). Let us be in Setting 4.2. For C ≥ 0 a real number, we say that
the C-conditions are satisfied if all the following inequalities are respected. We first ask
p ≥ C(log2k n)n−1, and that for all 1 ≤ ℓ ≤ k, we have

∆ℓ(S) ≤ cC1−ℓpℓ−1 e(S)
n .

Where e(S) is the number of edges of S. We also ask that Σ and Ω have at most exp
(
pn
C

)
elements.

This setting and definition allow us to set up statements as follows. “Let us be in Setting 4.2.
For every ε > 0 there is C > 0 such that, if the C-conditions are satisfied, then . . . ”.

We need one more set of definitions.

Definition. Let us be in Setting 4.2. We say that Z ⊆ [n] is an ε-good dense model for
Y ⊆ [n] if it satisfies the following:

(K1) For each σ ∈ Σ, we have
∑
y∈[n]

p−1
1(y ∈ Y )σ(y) =

∑
z∈[n]

1(z ∈ Z)σ(z)± εn, and

(K2) For each ω ∈ Ω, we have
∑
s∈S

p−k
1(s ⊆ Y )ω(s) =

∑
s∈S

1(s ⊆ Z)ω(s)± εe(S).

Notice that whether Z is an ε-good dense model of Y depends on Ω and Σ even if this is
not explicit from the notation. We say that Z is an ε-good dense lower model if the second
equality of the definition is just a lower bound, i.e. if it satifies (K1) and

∀ω ∈ Ω,
∑
s∈S

p−k
1(s ⊆ Y )ω(s) ≥

∑
s∈S

1(s ⊆ Z)ω(s)− εe(S) .

We are now ready to introduce our general transference principle.

Theorem 4.3. Let us be in Setting 4.2. For every ε > 0 there exists a constant C > 0 such that,
if the C-conditions are satisfied, the following holds.
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(L1) Lower bound: With probability at least 1− exp
(
−pn

C

)
, every subset Y of the binomial

random set X = [n]p has an ε-good dense lower model Z ⊆ [n].

(L2) Upper bound: Let

ηn := P
(
|{s ∈ S : s ⊆ [n]p}| ≥ (1 + ε

2 ) · E(|{s ∈ S : s ⊆ [n]p}|)
)
+ exp(−pn

C ) .

With probability at least 1− ηn, every subset Y of the binomial random set X = [n]p

has an ε-good dense model Z ⊆ [n].

(L3) Dense model with deletion: With probability at least 1− exp
(
−pn

C

)
, there exists a

subset X̃ with at least (1 − ε)pn elements of the binomial random set X = [n]p such
that for every subset Y ⊆ X̃ , there is an ε-good dense model Z ⊆ [n] for Y .

Notice that the probabilities mentioned above are asymptotically optimal. Indeed, the
failure probability has the same order of magnitude of the probability that X contains no
element of S at all for cases (L1) and (L3). Moreover, for case (L2), ηn corresponds to the
probability that X contains many more elements of S than expected, plus an error term of
the order of magnitude of the probability that [n]p contains no element of S at all. In this
case, taking Y = X would show that we cannot ask for the existence of a good dense model
for all subsets of X .

4.1.1 A further note about graphs

We now see that Theorem 4.1 follows from Theorem 4.3. Indeed, if we take Σ, and Ω to be
minimal (as required by Setting 4.2), we obtain a counting result that is exactly Theorem 4.1.
This is because for a subset Y of [n]p, Theorem 4.3 gives us an ε-good dense model Z ⊆ [n]

such that |Y |p−1 = |Z| ± εn and
∑

s∈S 1(s ⊆ Y )p−k =
∑

s∈S 1(s ⊆ Z) ± εn. The first
equality says that Z has the appropriate size, and the second allows us to know the number
of copies of H in Y provided we can count the copies of H in Z .

4.1.2 Counting lemma for sparse hypergraphs

We provide a further application of our transference principle, which is a counting lemma
for sparse hypergraphs. However, because much more notation is needed to state such a
theorem, we postpone its statement to Section 4.11, where it is presented as Theorem 4.30.
Because Section 4.11 is completely separated from the preceding sections, besides for the use
of our transference principle, the interested reader can explore Section 4.11 independently
from the rest of the chapter.

Theorem 4.30 is a strong counting result for hypergraphs in the sparse random regime.
Indeed, it provides a more precise counting statement than the one obtained by Balogh,
Morris, and Samotij [BMS15], and by Saxton, and Thomason [ST15] with the container
method. Similarly, with their version of the transference principle, Conlon, Gowers, Samotij,
and Schacht [Con+14] also obtained weaker lower bounds, and were able to obtain an
upper bound only in the case of strictly-balanced graphs (while their work can probably be
generalised to hypergraphs, no such generalisation has been completed).

4.1.3 The Deletion Version of our Transference Principle

Before Section 4.10, we focus on item (L3) of Theorem 4.3, which is the deletion version of
our Counting Lemma. In Section 4.10 we show how to obtain the rest of Theorem 4.3 from
item (L3). We restate now item (L3) of Theorem 4.3 as an independent theorem and make
explicit the notation.
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Definition (ε-deletion). Let X be a sample of the binomial random set [n]p. Given ε > 0,
we say that X̃ is an ε-deletion of X if X̃ is a subset of X with at least (1− ε)pn elements.

Theorem 4.4 (Case (L3) of Theorem 4.3). Let us be in Setting 4.2. For every ε > 0 there exists
C > 0 such that, if theC-conditions are satisfied, then with probability at least 1−exp

(
− pn

C

)
,

the binomial random set X = [n]p admits an ε-deletion X̃ such that for each Y ⊆ X̃ , there is
an ε-good dense model Z ⊆ [n] for Y .

4.2 Tools

4.2.1 Concentration Ineqalities

We start with some standard concentration inequalities. Theorem 4.5, Lemma 4.16 and
Theorem 4.7 can be found in [Ver18], respectively in Section 2.3, Section 2.8, and Section 2.9.

Theorem 4.5 (Chernoff’s inequality). Let X1, . . . , Xn be independent Bernoulli random
variables, let Y =

∑n
i=1Xi, and let δ ∈ (0, 1). Then we have

P[Y ≥ (1 + δ)E[Y ]
]
,P[Y ≤ (1− δ)E[Y ]

]
≤ exp

(
− δ2

3 E[Y ]
)
.

The following result is known as Bernstein’s inequality.

Lemma 4.6 (Bernstein’s inequality). Let Y1, . . . , Yn be independent random variables taking
values in [−M,M ]; let S = Y1 + . . . + Yn. For λ ≥ 0 we have

P
[∣∣S − E[S]

∣∣ ≥ λ] ≤ 2 exp

(
−λ2/2

Mλ
3 +

∑
i Var(Yi)

)
.

The following result is due to McDiarmid.

Theorem 4.7 (McDiarmid’s inequality). Let X1, . . . , Xn be independent real-valued random
variables, and let f : Rn → R be a function. Assume that the value of f(x) can change by at
most ci > 0 under an arbitrary change1 of the i-th coordinate of x ∈ Rn. Then, for every ε > 0

we have

P
[∣∣f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]

∣∣ ≥ ε] ≤ 2 exp
(
− 2ε2∑n

j=1 c2j

)
.

We also require a further concentration inequality, due to Kim and Vu [KV00] which
provides a concentration result for a multi-variable polynomial over independent Bernoulli
random variables as follows. Let F be an hypergraph with V (F ) = {1, . . . , n} and edge
set E(F ). Let us assume each edge e is associated to a weight w(e) > 0 and that each
edge of F contains at most d vertices. Moreover, for any A ⊆ V (F ), let FA denote the
A-truncated sub-hypergraph of F , which is the hypergraph with vertex set V (F ) \A and
edge set E(FA) = {e′ ⊆ V (FA) : e

′ ∪ A ∈ E(F )}. Note that w extends in a unique way
from E(F ) to E(FA), therefore we abuse notation and use w to denote either function.

Suppose now t1, . . . , tn are independent random variables, such that for each i ∈ [n]

there is pi ∈ [0, 1] such that ti is either a Bernoulli {0, 1} random variable with E(ti) = pi,
or the constant random variable ti ≡ pi. The following polynomial is a well-defined random
variable

YF =
∑

e∈E(F )

w(e)
∏
ti∈e

ti .

1This means that for any index i and any x1, . . . , xn, x′
i we have

∣∣f(. . . , xi, . . . )− f(. . . , x′
i, . . . )

∣∣ ≤ ci.
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Analogously we can define YFA
, where by convention

∏
ti∈∅ ti = 1.

In order to provide a concentration statement for YF , we need to introduce a language
to describe its deviations. For i ∈ {0, . . . , d} let Ei(YF ) = maxA⊆V (F ):|A|=i E(YFA

).
Note E0(YF ) = E(YF ) is just the expectation of YF . Let E′(YF ) = maxi Ei(YF ) and
E′′(YF ) = maxi≥1 Ei(YF ).

Theorem 4.8 (Kim-Vu’s inequality). Let F , w, d, and {t1, . . . , tn} be as above. For λ > 1

and ad := 8dd!1/2, we have

P
[
|YF − E(YF )| > ad(E′(YF )E′′(YF ))

1/2λd
]
= O(exp(−λ+ (d− 1) log n)) .

The moral of this theorem is that if the average effect of any group of at most d random
variables is considerable smaller than the expectation of YF , then YF is strongly concentrated.

4.2.2 Optimisation tools

Here and in the rest of this chapter, by polytope we mean a convex polytope, i.e. the convex
hull of a finite set of points in a finite-dimensional Euclidean space. Given a polytope Φ,
the vertex set of Φ is the2 minimal set V of points whose convex hull equals Φ. The reader
should not confuse the vertex set of a polytope with the vertex set of a graph or hypergraph.

Lemma 4.9. Consider f : Rn → R a polynomial in n variables that can be written in the
form f(x1, . . . , xn) =

∑n
i=1 aix

d
i , where d is either 1 or any positive even integer, and where

a1, . . . , an ≥ 0. Let Φ be a polytope in Rn with vertex set V . Then f attains its maximum over
Φ at a vertex of Φ, which is:

max
x∈Φ

f(x) = max
v∈V

f(v) .

Proof. We show that if a maximiser is in the interior of a line segment in Φ, then all points
on the line segment are also maximisers.

For distinct (Y1, . . . , yn) and (z1, . . . , zn) in Φ, let us denote by (x1, . . . , xn) their middle
point 1

2 (Y1 + z1, . . . , yn + zn). If
∑n

i=1 aix
d
i is at least

∑n
i=1 aiy

d
i and strictly larger than∑n

i=1 aiz
d
i , then it is also larger than

∑n
i=1

1
2ai(y

d
i + zdi ). By averaging, there exists i such

that aixdi > 1
2ai(y

d
i + zdi ), so xdi > 1

2 (y
d
i + zdi ). But the function x → xd is convex, a

contradiction.
If x is in the interior of a face of Φ of some dimension D, by picking a line through x

in this face, we see that there is a maximiser in a boundary face of dimension D − 1, and
iterating we reach a vertex which is a maximiser.

A functional is a function that has R as codomain. Given a functional h : X → R≥0,
we say a functional f : X → R≥0 is h-bounded if 0 ≤ f(x) ≤ h(x) for all x ∈ X . More
generally, given a collection H of functionals from X to R≥0, we say that a functional
f : X → R≥0 is H-bounded if there exists a functional h ∈ H such that f is h-bounded.
Suppose that f is H-bounded. We say that f is H-extreme if there is h ∈ H such that for
every x ∈ X we have either f(x) = 0 or f(x) = h(x).

A celebrated theorem about the existence of functionals is the Hahn-Banach theorem.

Theorem 4.10 (Hahn-Banach). Let K be a closed convex set in Rn and let f be a vector that
does not belong to K . Then there is a linear functional ψ on Rn such that ψ(f) > 1 and such
that ψ(g) ≤ 1 for every g ∈ K .

2A proof of uniqueness follows by greedy selection.
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Another celebrated result is the Stone-Weierstrass Theorem, which we present in its
original form, proved by Weierstrass. We refer to Theorem 7.26 of [Rud76].

Theorem 4.11 (Weierstrass Approximation). If f is a continuous real function on [a, b]. For
every ε > 0 there exists a polynomial P with real coefficients such that for every x ∈ [a, b] we
have |P (x)− f(x)| ≤ ε.

4.3 Main technical theorem

The focus of this section is to rewrite our setting in the language of functionals, and create
a parallelism between sets, functionals, and vectors. This is done following the example of
Green and Tao [GT08], and Conlon and Gowers [CG16] after them.

4.3.1 Sets, functionals, and vectors

It is fundamental for understanding the rest of this chapter the idea that we can represent
subsets of a specific set as functionals, and functionals as vectors, and that tools used in one
of these scenarios often have a useful translation in one of the others.

We start by introducing the equivalence between subsets of [n] and functionals from [n]

to R≥0. The statement of Theorem 4.4 is about random subsets of a given set [n]. Given a
sample X = [n]p we write µ = µ(X) for the scaled indicator function x→ p−1

1(x ∈ X).
This functional µ is our representation of X in the space of functionals [n] → R. Strictly
speaking, we should not say this, since µ(X) depends not just on X but on the value of p
used when X was chosen, but this is always clear from context. In this language, we think
of a weighted subset of X as being a functional f : [n]→ R satisfying 0 ≤ f(x) ≤ µ(x) for
all x ∈ [n]. Also, the unweighted subset Y ⊆ X corresponds to the scaled indicator function
p−1

1(x ∈ Y ) which takes value p−1 on Y and 0 elsewhere.

Often we also want to think of a functional f : [n] → R as a vector of Rn, in order to
define more easily operations and norms over the space of such functionals. While quite
standard, we give an explicit example of how this allows us to define an inner product on
the set of said functionals by

⟨f, g⟩ := 1
n

∑
x∈[n]

f(x)g(x) . (4.1)

It is quite important in the following that this operation is indeed an inner-product, and
therefore is, in particular, linear in each component and symmetric. We often apply real
operations and operators to vectors, by which we always intend to apply them pointwise.
For example, the product of two vectors, written fg, is the vector for which the component x
has value the pointwise product f(x)g(x). We also define, maybe in a less standard way, the
operator ·+, which we apply to functionals and vectors alike, as follows. For f a functional,

f+(x) =

{
x if x ≥ 0

0 if x < 0
.

Also, for a positive integer d, the notation fd indicates the pointwise product, so this
indicates the functional fd(x), or equivalently the vector with d-powers at every component.
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4.3.2 Further definitions towards our goal

The objective of this section is to define a norm over the set of functionals [n] → R. We
want to use this norm to rewrite Theorem 4.4 in the language of functionals. More precisely,
we want to define a norm such that, if the functional f representing Y and the functional
g representing Z are close with respect to this norm, then Z is a good dense model for Y .
We now proceed with introducing the necessary definitions, before moving to rewriting
Theorem 4.4.

A fundamental operation for our work is the convolution, which is an operation on
functionals that is dependent of S.

Definition (Convolution). Given our k-uniform ordered hypergraph S on [n], let i ∈ [k]

be an index, let f1, . . . , fi−1, fi+1, . . . , fk be non-negative functionals from [n] to R≥0, and
let ω : S → [0, 1] be a subcount. The convolution ∗i,S,ω(f1, . . . , fi−1, fi+1, . . . , fk) is the
functional [n]→ R defined as follows. For x ∈ [n],

∗i,S,ω(f1, . . . , fi−1, fi+1, . . . , fk)(x) :=
n

e(S)

∑
s∈Si(x)

ω(s)
∏
j ̸=i

fj(sj) .

In the following, we only write ∗i,ω(f1, . . . , fk), as S is fixed. Moreover, we would write
“let f1, . . . , fk be non-negative functionals” instead of saying “let f1, . . . , fi−1, fi+1, . . . , fk”
when we only need k − 1 functionals, for ease of indexing.

Note that the convolution operator is multilinear, i.e. it is linear in each of the f1, . . . , fk .

The reason we need such a definition is the following. Consider the expression

⟨fi, ∗i,ω(f1, . . . , fk)⟩ =
1

|S|
∑
s∈S

ω(s)

k∏
j=1

fj(sj) . (4.2)

If for each j ∈ [k] we select fj to be the scaled indicator function of the sparse subset Y ,
i.e. fj(x) = p−1

1(x ∈ Y ), then we obtain that equation (4.2) becomes the left-hand side of
point (K2) of Theorem 4.4 (without the error term). On the other hand, if we select as gj the
indicator function of the dense model Z , i.e. gj(x) = 1(x ∈ Z), then equation (4.2) becomes
the right-hand side of point (K2) of Theorem 4.4 (without the error term).

In order to say that the right and left side of point (K2) of Theorem 4.4 are close to each
others we bound a telescoping sum. Which is, we prove that the quantity

⟨fi − gi, ∗i,ω(f1, . . . , fi−1, gi+1, . . . , gk)⟩ (4.3)

is small whenever gi is a dense model of fi. The reader should see this as a further example
of taking advantage of the parallelism between the sets, functionals, and vectors formalisms.

We now go one step forward, and define a polytope Φ. The goal of this polytope is
contain some witness functionals so that if ⟨f − g, ϕ⟩ is small for all ϕ in the polytope, then
the various (4.3) are also small.

Following Conlon and Gowers [CG16], we give a simplified version of their definition as
follows.

Definition. Let us be in Setting 4.2, and let H be a set of functionals [n]→ R.
A functional ϕ is said to be H-anti-uniform if it is in Σ, or if it can be written in the

form ∗i,ω(f1, . . . , fk) for some H-bounded functionals f1, . . . , fk, some i ∈ [k], and some
ω ∈ Ω. The polytope Φ(H,Σ,Ω) of H-anti-uniform functionals is the polytope in the space



main technical theorem 95

of functionals R[n] defined by convex hull of the set containing all the H-anti-uniform
functions ϕ and their inverses −ϕ.

Because we use this definition only under Setting 4.2, we usually write only Φ(H) instead
of Φ(H,Σ,Ω). Moreover, whenever we enumerate H we write Φ(h1, . . . , hs) instead of
Φ({h1, . . . , hs}). E.g. we often write Φ(µ̃) or Φ(1) for Φ({µ̃}) and Φ({1}).

Because the convolution operator is multilinear, every vertex of Φ(H) is either in Σ,
or it is a convolution ∗i,ω(f1, . . . , fk) where each fi is H-extreme. Moreover, if we have
f1, . . . , fk non-negative functionals, respectively bounded by H-elements h1, . . . , hk , then
we also have that for all x ∈ [n] it holds

0 ≤ ∗i,ω(f1, . . . , fk)(x) ≤ ∗i,1(h1, . . . , hk)(x) .

This justifies the following definition.

Definition. For h1, . . . , hk in H , we say that an element of Φ(H) that can be written as
∗i,1(h1, . . . , hk) is an H-largest anti-uniform functional of Φ(H) (or a largest anti-uniform
functional of Φ(H)).

Moreover, we call H-extreme anti-uniform functional a functional that is in Σ or of the
form ∗i,ω(h1, . . . , hk), where h1, . . . , hk are H-extreme.

Remark 4.12. We consider a few properties of H-anti-uniform functionals and of Φ(H).

• Φ(H) is by definition centrally symmetric.

• BecauseΣ contains by definition all the standard basis vectors, which is all the functions
of the form f(x) ≡ 1(x = i), we have that Φ(H) is a full-dimensional polytope in
R[n].

• All H-largest anti-uniform functionals are H-extreme anti-uniform functionals, but
not vice-versa.

• For any set H , and for any v ∈ Φ(H) a vertex of the polytope, there exist a H-
largest anti-uniform functional ∗i,1(h1, . . . , hk) such that, pointwise, we have 0 ≤
v ≤ ∗i,1(h1, . . . , hk). This follows, as mentioned above, from multilinearity of the
convolution operator.

As mentioned, the objective of this section is to rewrite in the language of functionals
and vectors the statement of Theorem 4.4. The last technical step needed is the definition of
a norm over R[n]. Our candidate is the following:

∥f∥Φ(H) := max
ϕ∈Φ(H)

⟨f, ϕ⟩ .

To see that this is indeed a norm, we can consider that Φ(H) is a centrally symmetric
polytope of dimension n, thusmaxϕ∈Φ(H)⟨f, ϕ⟩ is zero if and only if f = 0 by the hyperplane
separation Theorem (section 2.3 of [BS18]). Moreover, absolute homogeneity comes from
equation (4.1). Finally we leave triangle inequality as an exercise for the reader. In the
following, we write ∥ · ∥ when Φ(H) is clear from the context.

A useful bit of notation is as follows.

Notation 4.13. In Setting 4.2, given X̃ a subset of [n], we denote by µ̃ the functional µ̃(x) =
p−1(x ∈ X̃) with domain [n] and codomain {0, p−1} ⊆ R. We often denote with Φ the
polytope Φ(µ̃,1).
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We now have the language to state our main technical theorem, which is a functional
version of Theorem 4.4.

Theorem 4.14. Let us be in Setting 4.2. For every ε > 0 there exists C > 0 such that, if
the C-conditions are satisfied, then with probability at least 1 − exp

(
− pn

C

)
the random

set X = [n]p admits an ε-deletion X̃ such that —using Notation 4.13— for every µ̃-bounded
functional f there exists a 1-bounded functional g such that ∥f − g∥Φ(µ̃,1) ≤ ε.

Something to note is that we have allowed f to be a general µ̃-bounded function (not
just a scaled indicator function of a subset of X̃ , which would be the exact translation of
Theorem 4.4) but we also relaxed our conclusion to let the dense model g be a 1-bounded
function, not necessarily {0, 1}-valued. To prove Theorem 4.4, we need to return to integer-
valued dense models, which is the subject of the next section.

4.4 Integer dense models

4.4.1 Integer dense models suffice

The following result says that we can approximate the dense model g given by Theorem 4.14
by an integer-valued model.

Theorem 4.15. Let us be in Setting 4.2. For every ε > 0 there is C > 0 such that, if the
C-conditions are satisfied, then for any functional g : [n] → [0, 1], there is a functional
g∗ : [n]→ {0, 1} such that ∥g − g∗∥Φ(1) ≤ ε.

The proof of Theorem 4.4 from Theorem 4.14 and Theorem 4.15 is an exercise in func-
tional analysis. We write the statement as functionals, then replace the sparse functional f
representing X̃ with its fractional dense model g by a telescoping sum, then the fractional
dense model with its integer dense model g∗ by another telescoping sum. This proof contains
the type or argument needed when converting a statement to the functional setting.

Proof of Theorem 4.4. We are in Setting 4.2. Given ε > 0 we can take C such that both
Theorem 4.14 and Theorem 4.15 hold in Setting 4.2 with 1

2kε (instead of ε) if the the C-
conditions are satisfied.

Suppose now that the likely event of Theorem 4.14 occurs for X = [n]p, and let X̃ be
the set that this event provides. Now, for any given Y ⊆ X̃ , let f(y) = p−1

1(y ∈ Y ). By
definition, f is µ̃-bounded, so by Theorem 4.14 there is a 1-bounded g such that

∥f − g∥Φ(µ̃,1) ≤ 1
2kε . (4.4)

By Theorem 4.15, there is an integer 1-bounded function g∗ such that

∥g − g∗∥Φ(1) ≤ 1
2kε . (4.5)

Let Z = {z ∈ [n] : g∗(z) = 1}. Given σ ∈ Σ, since σ and −σ are in Φ(µ̃,1) and in its
subset Φ(1), the inequalities (4.4) and (4.5) give us

⟨f, σ⟩ = ⟨g, σ⟩ ± ε
2k = ⟨g∗, σ⟩ ± ε

k

which, multiplying by n and filling in the definitions of inner product, f and g∗, gives (K1).
Given now ω ∈ Ω, we have the telescoping expression

⟨f, ∗1,ω(f, . . . , f)⟩ = ⟨g, ∗1,ω(f, . . . , f)⟩ ± ε
2k = ⟨f, ∗2,ω(g, f, . . . , f)⟩ ± ε

2k

= . . . = ⟨g, ∗k,ω(g, . . . , g)⟩ ± 1
2ε ,
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where we have in total k replacements of an f with a g, in each case using that the corre-
sponding convolution and its negative are in Φ(µ̃,1); and k rearrangements of terms, where
the value does not change but the inner product is rewritten.

Repeating the same telescoping argument, but this time replacing each occurrence of g
with g∗, and using that the corresponding convolutions are in Φ(1), we get

⟨g, ∗k,ω(g, . . . , g)⟩ = ⟨g, ∗1,ω(g, . . . , g)⟩ = ⟨g∗, ∗1,ω(g, g, . . . , g)⟩ ± ε
2k

= . . . = ⟨g∗, ∗k,ω(g∗, . . . , g∗)⟩ ± 1
2ε ,

Putting these two expressions together we have

⟨f, ∗1,ω(f, . . . , f)⟩ = ⟨g∗, ∗k,ω(g∗, . . . , g∗)⟩ ± ε ,

which filling in the definitions of f , g∗, inner product and convolution, and multiplying by
n · e(S)

n , is (K2).

4.4.2 Random splitting: a useful techniqe

In this section we prove Theorem 4.15. We start by giving a sketch of the approach, as some
of the ideas reappear later in this this chapter. In particular, we use a refinement of similar
techniques to prove Theorem 4.18.

We start by defining g∗ via randomised rounding. That is, independently for each x, we
generate g∗(x) by choosing 1 with probability g(x) and 0 otherwise. We then argue that the
required closeness in norm is likely.

A first intuitive approach would be to try leverage our optimization Lemma 4.9 and say
that the extremal value is attained at a vertex. This would allow us to argue that for any
given vertex ϕ of Φ(1), with high probability we have ⟨g− g∗, ϕ⟩ < ε and then take a union
bound over the choices of ϕ. The reason to believe this might work is that g(x)− g∗(x) is,
for each x ∈ [n], a random variable in [−1, 1] with mean zero, while ϕ is a fixed vector, so
the inner product is a sum of independent mean zero random variables. Unfortunately, this
fails by a technical detail: there are too many choices of vertex for the required union bound.
To get around this, we now define a polytope which contains Φ(1) but has fewer vertices.

Definition (Random split). Let L be a positive integer, and let χ : [n]→ [L] be a sample
of the uniform random function. For i ∈ [L] we then denote by νi the function on [n] such
that νi(x) = L if χ(x) = i, and νi(x) = 0 otherwise. We have 1 = 1

L

∑L
i=1 νi. We call this

a random split of 1.

By linearity, every vertex of Φ(1) is a convex combination of vertices of Φ(ν1, . . . , νL),
so it suffices to show ⟨g − g∗, ϕ⟩ < ε holds for all vertices ϕ ∈ Φ(ν1, . . . , νL).

It follows from the ∆1(S) bounds of the C-conditions and from the definition of Φ(1)
that any ϕ ∈ Φ(1) only attains values with absolute value at most c. Unfortunately, no such
bound holds for functionals in Φ(ν1, . . . , νL), which can attain values as large as Lk−1c.
Such large values spoil the concentration we require of the random variable ⟨g − g∗, ϕ⟩. We
deal with this by splitting up ϕ in two components ϕsmall and ϕbig: we define ϕsmall(x) =

ϕ(x)1(|ϕ(x)| ≤ 2c), and ϕbig = ϕ− ϕsmall.
We can now write ⟨g−g∗, ϕ⟩ = ⟨g−g∗, ϕsmall⟩+ ⟨g−g∗, ϕbig⟩. The point of this is that

the random variable ⟨g− g∗, ϕsmall⟩ does concentrate well, while we can use a high moment
argument to show that ⟨g− g∗, ϕbig⟩ is tiny. Importantly, while our concentration argument
needs to take a union bound over all vertices of Φ(ν1, . . . , νL) (i.e. all {ν1, . . . , νL}-extreme
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functions and their negatives), we only need to bound high moments of the {ν1, . . . , νL}-
largest anti-uniform functions.

We start with a technical lemma that has apparently nothing to do with the proof we
want to show. We present this lemma separately because we use it also in a later section.

Definition. Let us be in Setting 4.2. Let d be a positive integer, x ∈ [n] and i1, . . . , id ∈ [k].
A configuration with spine x and index tuple (i1, . . . , id) is an ordered tuple (s1, . . . , sd) of
edges of S such that sjij = x. If i1 = . . . = id = i, we call this a d-book with spine x.

For i = (i1, . . . , id) and t a positive integer, we denote by α(i, t, x) the number of
configurations (s1, . . . , sd) with spine x and index tuple i such that

∣∣∪isi \ {x}∣∣ = t.

Lemma 4.16. Let us be in Setting 4.2. Let C > 0 be a positive real number and let d and t be
positive integers, with k − 1 ≤ t ≤ d(k − 1). If the C-conditions are satisfied, then for any
x ∈ [n] and any i = (i1, . . . , id) we have:

α(i, t, x) ≤ td · (2dkk!)d · cdCd+t−kdpkd−d−te(S)dn−d .

Moreover, for t = d(k − 1) we have:

α(i, t, x) ≤ cde(S)dn−d

Proof. Let us fix x, t, d and i. We now describe a process that can generate any configuration
with spine x, index tuple (i1, . . . , id), and covering t vertices besides x. By counting the
number of choices we make until a specific configuration is selected, we can upper bound
α(i, t, x). We start by picking non-negative integers m1, . . . ,md ≤ k − 1 with m1 = k − 1.
We choose s1 to be an edge of S whose i1-th element is x. We then pick k −m2 elements,
including x, among the k elements of s1 that are also to be contained in S2. We then fix a
position of these elements in S2, which is an injection from these k −m2 elements to [k],
making sure that x is assigned position i2 in s2. We then select an element s2 of S that
satisfy these constraints. We repeat a similar procedure, fixing k −m3 elements of S2 to
generate S3 (fixing x in i3 for s3), and repeat the procedure until we get sd.

In this procedure, the main contribution to the number of books constructed comes from
choosing the m1 = k − 1 new elements of s1, the m2 new elements of s2, and so on; the
number of ways to do the i-th step is a constant —that counts the number of ways we have
to fix elements of the previous edges into the new one, and can be upper-bounded by 2kk!, a
constant— multiplied by the codigree of S of the right magnitude ∆k−mi(S) for which we
have by hypothesis the upper-bound cC1+mi−kpl−1−mi e(S)

n . The total number of elements
of [n] \ {x} our constructed book covers is at most

∑d
i=1mi (we do not enforce that the

‘new’ elements are really distinct from the previously chosen ones). We can therefore ignore
books which cover too few elements of [n] and assume

∑d
i=1mi = t. This means that the

product of codegrees we get is cdCd+t−kdpkd−d−te(S)dn−d. This gives an upper bound on
α(i, t, x) of

α(i, t, x) ≤ td · (2dkk!)d · cdCd+t−kdpkd−d−te(S)dn−d .

Indeed, the td counts the ways to choosem1, . . . ,md, the factor 2dkk! corresponds to picking
a subset of used elements and an injection to [k], and the final product is the product of
codegrees. Note that in one special case we can do better: when t = d(k − 1), we have
m1 = . . . = md = k − 1, and we do not have to pick any used elements (we must pick x
and no other element every time) nor injection (x must be the ij-th vertex of each Sj , and
no other elements are repeated) and we get the upper bound α(i, t, x) ≤ cde(S)dn−d on the
number of these books.
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We are now ready for the proof of Theorem 4.15.

Proof of Theorem 4.15. We are in Setting 4.2. Given ε > 0, let d ≥ 4 be an integer such that
24−dc2 ≤ 1

2ε. Let L = ⌈1000c2dε−2⌉ be another integer, and set

C = 100(dk)d+1(2dkk!)dL .

We can assume now that the C-conditions are satisfied in our setting. Let ν1, . . . , νL be
a random split of 1. In the following claim, recall that when ϕ is a vector, ϕd denotes the
pointwise power.

Claim 4.17. With high probability3, the following properties are satisfied. For each i ∈ [L], we
have the inequality ⟨1, νi⟩ ≤ 2; and in addition, for each j ∈ [k] and i1, . . . , ik ∈ [L], we have

⟨1,
(
∗j,1 (νi1 , . . . , νik)

)d⟩ ≤ 2cd .4

This claim is our bound on high moments of the {ν1, . . . , νL}-extreme functions.

Proof. For the first statement, fix i. As ⟨1, νi⟩ = 1
n

∑n
x=1 νi(x), we are asking for the

probability that νi has more than 2n/L entries equal to L. If we consider
∑

x 1(νi(x) = L),
this is a binomial random variable with mean n/L, so by Chernoff’s inequality (Theorem 4.5)
the probability that it exceeds 2n/L is at most exp

(
− 1

3n/L
)
. Considering an union bound

over i, the probability of failure of the first statement is o(1).
For the second statement, fix j and i1, . . . , ik. Let Z = ⟨1,

(
∗j,1 (νi1 , . . . , νik)

)d⟩. We
first argue that E[Z] ≤ 3

2c
d. We have

Z =
1

n

∑
x∈[n]

(
∗j,1 (νi1 , . . . , νik)

)d
(x) =

∑
x∈[n]

1

n

nd

e(S)d

 ∑
s∈Sj(x)

∏
t̸=j

νit(st)

d

=
∑
x∈[n]

1

n

nd

e(S)d
Ld(k−1)

 ∑
s∈Sj(x)

∏
t̸=j

1(χ(st) = it)

d

=
∑
x∈[n]

∑
s1,...,sd∈Sj(x)

1

n

nd

e(S)d
Ld(k−1) ·

∏
t̸=j

d∏
h=1

1(χ(sht ) = it) .

Notice that the internal sum of our last equation is a sum of d-books with spine x. Each
term of said sum takes value either zero or 1

n ·
nd

e(S)d
·L(k−1)d. Let us fix a d-book s1, . . . , sd,

and let us ask what is the probability that the internal sum takes the larger value. If we let
Q = ∪dt=1s

t \ {x} and q = |Q|, the probability depends only on q. Indeed, notice that for
each element of Q, the random variable χ needs to attain a specific value, otherwise the
whole term is set to zero. Therefore, given s1, . . . , sd, the probability that the corresponding
element of the sum takes value 1

n ·
nd

e(S)d
·L(k−1)d is at mostL−q (it can be that the probability

is zero, for example if we have νi1(y)νi2(y) as a term in our sum). Notice that lower values
of q imply larger probability that the corresponding element of the sum samples the higher
value. We can use Lemma 4.16 to count the number of books as follows.

Fix i = (j, . . . , j) a d-tuple with all entries equal to j. For the calculation of the expecta-
tion of Z , we need the following to bound the main term.

∑
x∈[n]

∑
s1,...,sd∈Sj(x)

∏
t̸=j

d∏
h=1

1(χ(sht ) = it) ≤
∑
x∈[n]

d(k−1)∑
q=k−1

α(i, q, x)L−q .

3With probability tending to 0 as n tends to ∞.
4The two 1 in this statement are functionals over different domains.
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If we insert the bounds of Lemma 4.16 in the calculations we obtain:

E[Z] ≤ cd + 1
2c

d .

where the first term cd is the q = d(k − 1), and by choice of C each other term in the sum
contributes at most 1

2 (dk)
−1cd.

We next want to apply McDiarmid’s inequality (Theorem 4.7) to Z . We therefore need to
argue that Z does not vary a lot when just one component of the colouring χ is changed.
For any fixed y ∈ [n], consider that changing the colouring at y affects only the terms of the
sum Z where y is in at least one edge of the book s1, . . . , sd. As before, we upper-bound the
number of these terms by showing a procedure that can generate any such book containing
y, and keeping track of the choices we made. We start by picking i ∈ [d] and i′ ∈ [k] such
that y is vertex number i′ of si. Because the C-conditions are satisfied, ∆1(S) ≤ c e(S)

n ,
and therefore there are at most c e(S)

n choices of si containing y in position i′. For the same
reason, the remaining d − 1 elements of the book (which all contain x at position j) can
be chosen in at most cd−1 e(S)d−1

nd−1 ways. This means that the chance of value of χ at y can
influence at most dkcde(S)dn−d terms (we multiplied by d to take into account the choice
of i and by k to take into account the choice of i′). Since each term takes value either 0 or
1
n

nd

e(S)d
Ld(k−1), the effect of changing the colouring at y is at most

1
n

nd

e(S)d
Ld(k−1) · dkcde(S)dn−d = 1

nL
d(k−1)dkcd .

Applying McDiarmid’s inequality, the probability that Z exceeds its expectation by 1
2c

d

is at most
exp

(
− 2· 14 c

2d

n·(Ld(k−1)dkcdn−1)2

)
,

which tends to zero exponentially in n.

Taking the union bound over the at most kLd−1 choices of j and i1, . . . , ik−1, the failure
probability for the second statement is o(1). □

Let g be a 1-bounded functional from [n] to [0, 1]. Our aim is to prove that there exists
a functional g∗ : [n] → {0, 1} such that ∥g − g∗∥Φ(1) ≤ ε. We take g∗ to be a random
rounding of g, which means that for each x ∈ [n] we sample g∗(x) independently at random
to take the value 1 with probability g(x).

By Claim 4.17, there exists ν1, . . . , νL a random split such that the likely event of
Claim 4.17 holds (otherwise it wouldn’t hold with high probability). Fix such ν1, . . . , νL.
In order to prove that ∥g − g∗∥Φ(1) ≤ ε we first show that for any ϕ an arbitrary vertex
of Φ(ν1, . . . , νL), we have ⟨g − g∗, ϕ⟩ ≤ ε. We then show that this is enough because
Φ(1) ⊆ Φ(ν1, . . . , νL) and because linear functions attain their maximum over a polytope
at a vertex (Lemma 4.9).

For a vertex ϕ of Φ(ν1, . . . , νL), we write ϕsmall(x) := ϕ(x)1
(
|ϕ(x)| ≤ 2c

)
and ϕbig =

ϕ−ϕsmall. We first prove that for each vertexϕ ofΦ(ν1, . . . , νL)we have ⟨g−g∗, ϕsmall⟩ ≤ ε
2 ,

and then we prove a similar statement for ϕbig.

For ϕsmall, we do this by union-bounding, for the choice of ϕ, the probability that we
selected a g∗ that is too far from g with respect to ϕsmall. To apply the union bound, we start
by considering that the number of vertices of Φ(ν1, . . . , νL) is at most

|Σ|+ k · |Ω| · Lk−12(k−1)2n/L .

Indeed, every element of Φ(ν1, . . . , νL) can be seen as the convex combination of elements
of Σ (at most |Σ| many) and ν1, . . . , νL-extreme anti-uniform functionals (by Remark 4.12).
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The number of these latter functionals can be bounded by the fact that each of them is
determined by being of the form ∗i,ω(f1, . . . , fk), where there are k choices for the value i;
there are |Ω| choices for ω; and each of the k − 1-many fj comes from the selection of one
of L-many elements of {ν1, . . . , νL} and a subset of the at most 2n/L-many (by Claim 4.17)
non-zero entries of the selected element of {ν1, . . . , νL}.

We now observe that, considering g∗ as a random variable with E[g∗(x)] = g(x), we
have that ⟨g − g∗, ϕsmall⟩ is a sum of n-many 0-mean random variables, each with range
at most 2cn−1 and so variance at most c2n−2 [BD00]. Applying Bernstein’s inequality, we
have

P
[
⟨g − g∗, ϕsmall⟩ > 1

2ε
]
≤ exp

(
− ε2/4

4
3 ·

1
n · 12 ε+n·c2n−2

)
≤ exp

(
− ε2n

32c2

)
.

By choice of L, taking the union we obtain that with high probability we have ⟨g −
g∗, ϕsmall⟩ ≤ 1

2ε for every vertex ϕ of Φ(ν1, . . . , νL). Therefore, there must exist a g∗

for which this condition holds. Fix such a g∗.

Let us now prove that ⟨g − g∗, ϕbig⟩ ≤ ε
2 for all ϕ in Φ(ν1, . . . , νL). Take such a ϕ and

let ψ be a {ν1, . . . , νL}-largest anti-uniform functional such that ϕ ≤ ψ pointwise (which
exists, as discussed in Remark 4.12). We have

|⟨g − g∗, ϕbig⟩| ≤ |⟨g, ϕbig⟩|+ |⟨g∗, ϕbig⟩|
≤ ⟨g, |ϕbig|⟩+ ⟨g∗, |ϕbig|⟩ ≤ 2⟨1, |ϕbig|⟩
≤ ⟨1, (ϕbig)2⟩ ≤ 2 · (2c)2−d⟨1, (ϕbig)d⟩

≤ 2 · (2c)2−d⟨1, ψd⟩ ≤ 4cd(2c)2−d ≤ ε

2
,

where the first line holds by triangle inequality, the second line holds by non-negativity of g,
g∗ and |ϕbig|, the third line holds because |ϕbig| is bounded pointwise by (ϕbig)2 and because
all these entries are either zero or at least 2c. The final line follows since ϕbig ≤ ϕ ≤ ψ

pointwise, and then uses Claim 4.17. By choice of d, this final number is at most 1
2ε.

Putting these two estimates together, we have for every vertex ϕ of Φ(ν1, . . . , νL) the
bound

⟨g − g∗, ϕ⟩ ≤ 1
2ε+

1
2ε = ε .

Since linear functionals over a polytope are maximised at vertices, we conclude the same
bound holds for every ϕ ∈ Φ(ν1, . . . , νL).

To complete the proof, we now show Φ(1) ⊆ Φ(ν1, . . . , νL). Because both sets are
polytopes, it is enough to show that all vertices of Φ(1) are in Φ(ν1, . . . , νL). Given a
vertex ϕ of Φ(1), either ϕ ∈ Σ —in which case ϕ ∈ Φ(ν1, . . . , νL) and we are done—,
or ϕ = ∗i,ω(f1, . . . , fk) for some 1-bounded functions f1, . . . , fk. For each j ∈ [k] and
t ∈ [L], let fj,t(x) := fj(x)νt(x), which is νt-bounded. By definition of random split,
fj =

1
L

∑
t∈[L] fj,t. Therefore, we have by linearity

∗i,ω(f1, . . . , fk) = L1−k
∑

t1,...,tk∈[L]

∗i,ω(f1,t1 , . . . , fk,tk) ,

which is a convex combination of elements of Φ(ν1, . . . , νL).

4.5 Reduction to anti-correlation

We now show that an anti-correlation statement implies Theorem 4.14. Which is, we reduce
Theorem 4.14 to the following.
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Theorem 4.18. Let us be in Setting 4.2. For every ε > 0 there exists C > 0 such that, if
the C-conditions are satisfied, then with probability at least 1− exp

(
− pn

C

)
the random set

X = [n]p admits an ε-deletion X̃ such that —using Notation 4.13— for every ϕ ∈ Φ(µ̃,1) we
have ⟨µ̃− 1, ϕ+⟩ < ε and |⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c. In addition we have ∥µ̃− 1∥Φ(µ̃,1) < ε.

We now show, following closely the proof of Lemma 2.5 of Conlon and Gowers’ pa-
per [CG16], that Theorem 4.18 implies Theorem 4.14.

Proof of Theorem 4.14. We are in Setting 4.2. Given ε > 0, let δ = 1
10cε

2. Take C such that
Theorem 4.18 holds in Setting 4.2 with δ (in place of ε) if the C-conditions are satisfied.
Suppose that the likely event of Theorem 4.18 occurs; that is, we are given µ̃ such that
⟨µ̃− 1, ϕ+⟩ < δ and |⟨1, ϕ⟩| ≤ 2 for every ϕ ∈ Φ(µ̃,1). For the rest of the proof, we only
consider the polytope Φ(µ̃,1) and simply denote it by Φ.

Suppose now that f is some µ̃-bounded function which contradicts the conclusion of
Theorem 4.14. That is, we cannot write f = g + h where g is 1-bounded and ∥h∥Φ < ε.

We first show that we can write 1
1+2ε−1δf = g+hwhere g is 1-bounded and ∥h∥Φ ≤ 1

2ε.
Suppose for a contradiction that this is impossible. The set K of functions of the form g + h

where g is 1-bounded and ∥h∥Φ ≤ 1
2ε is a convex set containing the zero function, since the

1-bounded functions form a hypercube (which is convex) containing zero, and norm-balls are
convex and contain zero. By the Hahn-Banach Theorem (Theorem 4.10), if 1

1+2ε−1δf is not in
K there is a hyperplane separation. Because linear functionals can be represented as scalar
products, this means that there is ψ ∈ R[n] such that ⟨ 1

1+2ε−1δf, ψ⟩ > 1 but ⟨g + h, ψ⟩ ≤ 1

for all 1-bounded g and ∥h∥Φ ≤ 1
2ε.

A functional analysis argument shows that ϕ = 1
2εψ is in Φ. To see this, we consider

that maxh′∈Φ⟨h′, ψ⟩ ≤ 2ε−1 due to linearity of the product and from the Hahn-Banach
Theorem (and that 0 is a 1-bounded function). From this, we obtain that the dual norm (see
[Rud91, Ch. 4]) ∥ψ∥∗ is at most 2ε−1, which is sufficient to conclude, considering that Φ
is a full-dimensional polytope containing zero. The fact that ϕ ∈ Φ gives us, because of
Theorem 4.18, that ⟨µ̃− 1, ψ+⟩ < 2ε−1δ. If we let ḡ(x) = 1(ψ(x) ≥ 0), we can write

1 + 2ε−1δ < ⟨f, ψ⟩ ≤ ⟨f, ψ+⟩ ≤ ⟨µ̃, ψ+⟩ < ⟨1, ψ+⟩+ 2ε−1δ = ⟨ḡ, ψ⟩+ 2ε−1δ . (4.6)

Where the first inequality comes from Hahn-Banach, the second from considering that f is
non-negative, the third from the fact that f is µ̃-bounded, the fourth we just proved, and the
last equality follows by definition of ḡ. Since ḡ is 1-bounded, we have ⟨ḡ, ψ⟩ ≤ 1. But (4.6)
now reads 1 + 2ε−1δ < 1 + 2ε−1δ, a contradiction.

We can therefore write f = g + 2ε−1δg + h, where g is 1-bounded and ∥h∥Φ < 1
2ε. By

triangle inequality, to complete the proof it suffices to show ∥2ε−1δg∥Φ ≤ 1
2ε. But this is

equivalent to showing that for every element ϕ of Φ, we have ⟨g, ϕ⟩ ≤ 1
4ε

2δ−1.
As Φ is the convex hull of non-negative elements and their negatives, and as g is non-

negative, we can assume that ϕ is non-negative as well. We can thus write

⟨g, ϕ⟩ ≤ ⟨1, ϕ⟩ ≤ 2c

where the first inequality holds because g ≤ 1 and ϕ is non-negative, and the second is by
Theorem 4.18. By choice of δ, this proves ∥2ε−1δg∥Φ ≤ 1

2ε.

In this proof we did not use the conclusion ∥µ̃− 1∥Φ(µ̃,1) < ε of Theorem 4.18, however
this is a convenient fact to record.
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The rest of this chapter is concerned with proving Theorem 4.18. The proof of this result
follows the same broad lines that we followed in proving Theorem 4.15. There are however
some important differences. Before entering in details in the next sections, we give a broad
informal outlook of these differences.

First, in Theorem 4.18 we need to optimize for ϕ+, which is not linear in ϕ. This means that
that we cannot assume ⟨µ̃− 1, ϕ+⟩ is maximised at a vertex of Φ as we did in Theorem 4.15.
In the following Section 4.6 we show how to reduce this problem to a linear (and thus
maximised at a vertex) optimisation problem over a different polytope.

Second, in Theorem 4.15 we were approximating a [0, 1]-valued functional via a random
rounding. In Theorem 4.18 we have to obtain concentration inequalities for µ̃, which is a
sparse random function. Therefore the kind of concentration we can hope for is much weaker.
However, we still need an optimisation over Φ(µ̃,1), which has 2Ω(n) vertices. Thus, the
same union bounds that we used in Theorem 4.15 would simply not work here.

Third, Φ(µ̃,1) itself depends on the randomness in µ̃. Therefore, one cannot fix a vertex
ϕ of Φ before revealing µ̃.

It turns out that a concept similar to the previously-defined ‘random splitting’ deals with
both these second and third problems; we describe the random splitting in Section 4.7 and
prove it does the job in Section 4.8.

Finally, entries of ϕ+ can be as large as log n, which makes bounding inner products
more difficult. However, the same idea that worked for Theorem 4.15 —applying moment
bounds to control exceptionally large entries— works just as well here. We prove the required
moment bounds hold with high probability in Section 4.9, and in Section 4.10 we show that
this high probability can (at the cost of some deletion) be upgraded to exponentially high
probability.

4.6 A linear approximation

Part of proving Theorem 4.18 is to show that for every ϕ ∈ Φ(µ̃,1) we have ⟨µ̃−1, ϕ+⟩ < ε.
The difficulty in proving this statement is that the function ϕ→ ϕ+ makes this a non-linear
optimisation problem over Φ(µ̃,1). Thus, we cannot use, out-of-the-box, that ⟨µ̃− 1, ϕ+⟩ is
maximised —as a function of ϕ in Φ(µ̃,1)— at a vertex of Φ(µ̃,1). We show in this section
that we can get around this by using the Weierstrass Approximation Theorem (Theorem 4.11)
to approximate ϕ→ ϕ+ with a polynomial. As we now see, this translates our optimisation
problem to a linear one over the product polytope Φd := {

∏d
i=1 ϕi : ϕi ∈ Φ(µ̃,1)}, with

d ∈ N determined by Weierstrass’ Approximation Theorem. Since the constant 1 function is
in Σ, and therefore in Φ(µ̃,1), any product of at most d elements of Φ(µ̃,1) is in Φd. Any
vertex of Φd is a product of d vertices of Φ(µ̃,1).

We need to be careful because the Weierstrass Approximation Theorem allows us to
approximate well the function x→ x+ only within a closed and bounded interval: we use
the interval [−2c, 2c]. We show using high moment bounds that the contribution to the
inner product where ϕ lies outside of this interval is almost surely negligible. This argument
is broadly similar to the one used in the proof of Theorem 4.15.

To this end, for any function ϕ on [n], write ϕbig for the function which takes the value
ϕ(x) on x ∈ [n] whenever |ϕ(x)| > 2c, and 0 otherwise, and ϕsmall = ϕ− ϕbig. That is,
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ϕsmall(x) =

ϕ(x) if ϕ(x) ∈ [−2c, 2c]
0 otherwise

ϕbig(x) =

0 if ϕ(x) ∈ [−2c, 2c]
ϕ(x) otherwise

.

Note that ϕbig and ϕsmall have disjoint support. The aim of this section is to prove the
following deterministic reduction of Theorem 4.18, which tells us that the above sketched
approach works.

Lemma 4.19. Let us be in Setting 4.2 and let X̃ be a subset of [n]. Let us use Notation 4.13. For
any ε′ > 0 there exist ε > 0 and d, d′, with d′ even, such that if the following holds:

(M1) For all ϕ ∈ Φ(µ̃,1)d, we have |⟨µ̃− 1, ϕ⟩| < ε,

(M2) For all ϕ ∈ Φ(µ̃,1) we have |⟨µ̃, ϕd′⟩|, ⟨1, ϕd′⟩| ≤ 2cd
′
,

then for all ϕ ∈ Φ(µ̃,1) we have
∣∣⟨µ̃− 1, ϕ+⟩

∣∣ < ε′.

Proof. Recall that by ϕ+ we mean applying the operator ·+ on each component of ϕ. There-
fore, in particular for any x ∈ [n] we have ϕ+(x) = ϕ(x)+.

Consider the functional ·+ : [−2c, 2c]→ R+ (which we remind the reader can defined
as x+ := x · 1(x ≥ 0)). This is a continuous function from a closed interval of R to R+.
By Weierstrass Approximation Theorem (Theorem 4.11), for any given ε′ > 0, we can find
a polynomial P (x) = adx

d + . . . + a1x + a0 of maximum degree d such that for any
x ∈ [−2c, 2c] we have |P (x)−x+| < ε′

12 (note that without loss of generality we can assume
d ≥ 2). Define now M = maxi∈{0,...,d} |ai| and set ε = ε′

2M(d+1) . Moreover, set d′ to be the
smallest positive even integer such that 21−d′

(2c)2d ≤ ε′

8M(d+1)+8 .

What we want to do is to upper bound |⟨µ̃− 1, ϕ+⟩| given an arbitrary ϕ ∈ Φ. We use
the linearity of the inner product and triangle inequality to obtain the following inequality.

|⟨µ̃− 1, ϕ+⟩| ≤ |⟨µ̃− 1, P
(
ϕ
)
⟩|+ |⟨µ̃− 1, P

(
ϕ
)
− ϕ+⟩| . (4.7)

We remind the reader that every operator here and in the following is defined component-
wise. Therefore, P (ϕ) is defined as the functional such that P (ϕ)(x) = P (ϕ(x)). We now
upper bound each of the right hand side terms with ε′

2 .

To upper bound the first term |⟨µ̃− 1, P
(
ϕ
)
⟩|, we expand the polynomial into its terms.

Using again linearity of the inner product and triangle inequality, we obtain

|⟨µ̃− 1, P
(
ϕ
)
⟩| = |⟨µ̃− 1,

d∑
i=0

ϕi⟩| ≤M
d∑

i=0

|⟨µ̃− 1, ϕi⟩| .

For any i ∈ {0, . . . , d} and ϕ ∈ Φ, we have that ϕi ∈ Φd. Indeed, we have that 1 ∈ Φ,
and therefore we can make up for the missing d − i terms by multiplying ϕi · 1d−i = ϕi.
Therefore, by (M1) of Lemma 4.19 we have |⟨µ̃− 1, ϕi⟩| ≤ ε = ε′

2M(d+1) . Summing over the
various terms, we obtain

|⟨µ̃− 1, P
(
ϕ
)
⟩| ≤M(d+ 1)ε ≤ ε′

2 .

We now turn to the second term of (4.7), for which we apply the splitting of ϕ into the two
functionals ϕbig and ϕsmall. As before, we have ϕsmall(x) = x1(|x| ≤ 2x) and ϕbig(x) =
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ϕ(x)− ϕsmall(x). In general, neither of these is in the polytope Φ. Since ϕbig, ϕsmall have
disjoint support, and all operations are done pointwise, we have

P
(
ϕsmall + ϕbig

)
−
(
ϕsmall + ϕbig

)+
= P

(
ϕsmall

)
−
(
ϕsmall

)+
+ P

(
ϕbig

)
−
(
ϕbig

)+
.

In order to complete the proof, by linearity of inner product, it suffices to show

|⟨µ̃, P (ϕsmall)− (ϕsmall)+⟩|, |⟨1, P (ϕsmall)− (ϕsmall)+⟩| ≤ ε′

8 and (4.8)
|⟨µ̃, P (ϕbig)− (ϕbig)+⟩|, |⟨1, P (ϕbig)− (ϕbig)+⟩| ≤ ε′

8 . (4.9)

Of these, we address (4.8) first. Consider first that by definition of ϕsmall, we have that
ϕsmall(x) is always in [−2c, 2c]. Moreover, for every x, we have that by definition of P it
holds

∣∣P (ϕsmall)(x)− (ϕsmall)+(x)
∣∣ ≤ ε′

12 . The upper bound |⟨1, P (ϕsmall)−(ϕsmall)+⟩| ≤
ε′

8 follows by triangle inequality as the inner product with 1 can be upper bounded by
1
n

∑
x

∣∣P (ϕsmall)(x)− (ϕsmall)+(x)
∣∣ ≤ ε′

12 <
ε′

8 as we just saw. For the inner product with
µ̃, observe that by (M1) of Lemma 4.19, we have

|⟨µ̃− 1,1⟩| = |⟨µ̃,1⟩ − ⟨1,1⟩| = 1
n |p

−1|X̃| − n| < ε ,

so µ̃ takes the value p−1 on at most (1 + ε)np < 3
2pn entries, and it is zero elsewhere. Thus,

by these considerations, triangular inequality, and definition of P , we get that the inner
product with µ̃ is bounded by

|⟨µ̃, P (ϕsmall)− (ϕsmall)+⟩| ≤ 1
n

∑
x

1(µ̃(x) ̸= 0) · p−1 · ε
′

12 ≤
3
2pn · p

−1 · ε
′

12 · n
−1 = 1

8ε
′ .

It remains to deal with (4.9). Here we use (M2) of Lemma 4.19. Since every entry of
ϕbig is either equal to zero or has absolute value larger than 2c > 1, we have pointwise
(ϕbig)+ ≤ ϕ2. For the same reason, we have pointwise

∀i, j ≥ 0, (ϕbig)i ≤ (ϕbig)2i ≤ (2c)−2jϕ2i+2j . (4.10)

In particular, for any fixed 1 ≤ i ≤ d, let j = 1
2 (d

′−2i). Then we have by (M2) of Lemma 4.19

⟨µ̃, ϕi⟩, ⟨1, ϕi⟩ ≤ (2c)−d′+2i(2cd
′
) ≤ 21−d′

(2c)2d ≤ ε′

8M(d+1)+8 , (4.11)

where the final inequality is by choice of d′.
We now use the triangle inequality and (4.10) to write

|⟨µ̃, P
(
ϕbig

)
−
(
ϕbig

)+⟩| ≤ d∑
i=0

|ai|⟨µ̃, ϕ2i⟩+ ⟨µ̃, ϕ2⟩ ,

and from (4.11) we get

|⟨µ̃, P
(
ϕbig

)
−
(
ϕbig

)+⟩| ≤M(d+ 1) ε′

8M(d+1)+8 + ε′

8M(d+1)+8 = ε′

8 .

An identical argument replacing µ̃with 1 completes (4.9) and hence completes the proof.

4.7 More independence, less vertices

We introduced Lemma 4.19 to be of use in the proof of Theorem 4.18. When proving
Theorem 4.18 we start by showing that µ̃− 1 is unlikely to correlate with any ϕ ∈ Φ(µ̃,1)d,
for some large fixed d given to us by Weierstrass Approximation Theorem. Much as in
Section 4.4, a problem we encounter when doing so is that Φd has too many vertices, and
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therefore we cannot directly apply a union bound. As in Section 4.4, the solution to this
problem is to randomly split µ̃ and 1. An additional problem that exists in this section, which
was not present in Section 4.4, is that in order to write down a vertex ϕ of Φ(µ̃,1)d we need
to know µ̃. Therefore, we cannot then ask for µ̃− 1 to be independent of ϕ, if ϕ is a vertex
of Φ(µ̃,1)d. It turns out that random splitting deals with this problem as well.

We now introduce a finer notation for dealing with random splitting, and then prove
that anti-correlation over Φ(µ̃,1)d is implied by anti-correlation over a new polytope with
fewer vertices.

Notation 4.20. Let us be in Setting 4.2. We assume we are using Notation 4.13 throughout
whenever needed.

If it is given a function χ1 : [n]→ {1, . . . , ⌈Lp−1⌉} —called 1-colouring—, we denote by
νi (for i ∈ [⌈Lp−1⌉]) the functional:

νi(x) =

⌈Lp−1⌉ if χ1(x) = i

0 else
.

If it is given a function χµ : [n] → {1, . . . , L} —called µ-colouring— and a subset X of
[n], we denote by µi (for i ∈ [L]) the functional:

µi(x) =

Lp−1 if x ∈ X and χµ(x) = i

0 else
.

We call each pre-image χ−1
µ (x) a part of the µ-colouring (similarly for χ1), and we call colours

the codomains of χ1 and χµ.

If, in addition to χµ, it is given X̃ a subset of [n], we denote by µ̃i (for i ∈ [L]) the functional:

µ̃i(x) =

Lp−1 if x ∈ X̃ and χµ(x) = i

0 else
.

If, in addition to χµ, χ1, and X̃ , it is given a positive integer d, we denote by Φ′ the polytope
Φ′ := Φ

(
µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉

)d
.

Also, for any ϕ a vertex of Φ′, let Qϕ ⊆ [L] be the minimum set of µ-colours such that we
can write ϕ as a product of at most d functions which are {µ̃j : j ∈ Qϕ} ∪ {ν1, . . . , ν⌈Lp−1⌉}-
anti-uniform. We denote by Y (ϕ) the revealed part of ϕ, i.e. the set {x ∈ [n] : χµ(x) ∈ Qϕ}.

Finally, for ϕ ∈ Φ(µ̃,1)d, we write ϕsmall(x) := ϕ(x)1(|ϕ(x)| ≤ 2cd) and ϕbig(x) =

ϕ(x)− ϕsmall(x).

We now prove that, with the above notation, Φ′ containsΦd in the following deterministic
lemma.

Lemma 4.21. Let us be in Setting 4.2. Let χ1 : [n] → {1, . . . , ⌈Lp−1⌉} and χµ : [n] →
{1, . . . , L} be an arbitrary 1- and µ-colouring respectively, and let X̃ be an arbitrary subset of
[n]. Let us use Notation 4.20. For all d ≥ 1, we have the set inclusion Φ(µ̃,1)d ⊆ Φ′.

Proof. It is enough to show that the vertices of Φd are in Φ′. By definition of Φd and Φ′

(as the power of polytopes generated by anti-uniform functionals and their negatives), we
can consider a vertex ϕ ∈ Φd which is a product of at most d of the {µ̃,1}-anti-uniform
functions. We say at most d and not exactly d because 1 ∈ Φ.
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By definition, every vertex of Φ is either in Σ or is of the form ∗i,ω(f1, . . . , fk), where
i ∈ [k], ω ∈ Ω, and f1, . . . , fk are {µ̃,1}-bounded, or is the negative of such a vertex.
Therefore, we can write our vertex ϕ as

ϕ =

ℓ∏
j=1

∗ij ,ωj
(f

(j)
1 , . . . , f

(j)
k )

ℓ′∏
j=1

σj

where ℓ+ ℓ′ ≤ d and where each σj is in Σ. Consider a specific j ∈ [ℓ] and j′ ∈ [k] \ {ij}.
Then f (j)j′ is bounded either by µ̃ or by 1.

If f (j)j′ is bounded by µ̃, then we can write

f
(j)
j′ =

1

L

∑
j′′∈[L]

f
(j)
j′
µ̃j′′

µ̃
.

Where the fraction µ̃j′′

µ̃ is to be interpreted pointwise and if µ̃(x) = 0 (so µ̃j′′(x) = 0 too)
then we define the result to be 0.

On the other hand, if f (j)j′ is bounded by 1, then we can write

f
(j)
j′ =

1

⌈Lp−1⌉
∑

j′′∈[⌈Lp−1⌉]

f
(j)
j′ νj′′ .

Recall that ∗ij ,ωj
(f

(j)
1 , . . . , f

(j)
k ) is linear in each argument. Therefore, substituting the

two equations above into the definition of ϕ, and pulling the sums and coefficients 1
L and

1
⌈Lp−1⌉ out by linearity, we have written ϕ as a weighted sum of vertices of Φ′. The sum has
Lq⌈Lp−1⌉q′ terms, where q is the number of functions bounded by µ̃ and q′ the number
bounded by 1. Each term in the sum has the same coefficient L−q⌈Lp−1⌉−q′ , so that this
weighted sum is a convex combination and we proved ϕ ∈ Φ′.

4.8 The final probabilistic estimate

In this section, we finally show that, assuming some moment bounds, it is likely that∣∣⟨µ̃− 1, ϕ⟩
∣∣ < ε for all ϕ ∈ Φ′.

This proof looks quite similar to the corresponding statement from the proof of The-
orem 4.15 in Section 4.4. As before, it is enough to prove anti-correlation for vertices of
Φ′. And as before, we split the anti-correlation into anti-correlation with ϕsmall(x) and the
remaining ϕbig.

Much as in Section 4.4, we can show that ⟨µ̃−1, ϕbig⟩ is small by applying some moment
bounds. However, proving ⟨µ̃− 1, ϕsmall⟩ is small requires some new ideas. There are two
reasons for this: first, the entries of µ̃ are not independent random variables, and second, in
order to describe a vertex of ϕ we first need to reveal some entries of µ̃.

In the case when X̃ is an ε-deletion of X , we have that µ and µ̃ are equal in most
components. Therefore, we show that it suffices to prove ⟨µ− 1, ϕsmall⟩ is small. We then
show that this holds as this inner product is a sum of independent mean zero random
variables. It turns out we do not need to reveal many entries of µ in order to describe ϕ. We
give more details of why this is later, but the idea is as follows.

Given a vertex ϕ of Φ′, recall that ϕ is a product of some at most d functions which are
{µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉}-anti-uniform. Therefore, with Notation 4.20, we have that
|Qϕ| ≤ d(k − 1), and hence that Y (ϕ) is a small subset of [n]. The idea is to split the inner
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product ⟨µ−1, ϕsmall⟩ into the contribution from Y (ϕ), which we can bound using moment
bounds, and the contribution from the remainder, which we can bound using Bernstein’s
inequality. We do this latter bound in the next lemma. That is, we now show how to apply
Bernstein’s inequality to the contributions not from Y (ϕ).

Lemma 4.22. Let us be in Setting 4.2. Given d be a positive integer, and δ > 0, let C =

100c2ddkδ−2. IfL ≥ 16C and theC-conditions are satisfied in Setting 4.2, then with probability
at least 1 − exp

(
− 1

10δ
2pn
)

over the uniform and independent choices of X = [n]p, and
χµ : [n]→ {1, . . . , L}, and χ1 : [n]→ {1, . . . , ⌈Lp−1⌉}, the following holds. For any given
X̃ ⊆ X , let us use Notation 4.20. For each vertex ϕ of Φ′, we have∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ < δ . (4.12)

Something we need to be a little careful about in the above statement is that in order
to know any vertices of Φ′, we need to reveal all of µ (because Φ′ depends on µ̃). We
actually show the above bound for vertices of Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)

d, and deduce
the required statement for Φ′.

Proof. By Chernoff’s inequality and by doing a union bound, we get that with probability
at least 1− 2Lp−1 exp

(
− 1

300pn
)

each part of the µ-colouring of [n] has size at most 1.1n
L ,

and each part of the 1-colouring has size at most 2pn
L . Suppose this likely event occurs, and

reveal the µ- and 1-colourings χµ and χ1.
Without revealing X , we know that every vertex ϕ of Φ′ has a revealed part Y (ϕ) which

is the union of some at most d(k − 1) parts of the µ-colouring. We can therefore prove the
lemma by a union bound over the possible choices of Y ; which is, over the choices of at most
d(k − 1)-many µ-colours of [L].

LetQ be a set of at most d(k−1) colours in [L], and let Y be the union of the parts of the
µ-colouring that are mapped to Q. We can now consider the random variable X ∩ Y (where
Y is fixed andX needs to be sampled). By Chernoff’s inequality and by doing a union bound,
we obtain that with probability at least 1− |Q| exp

(
− 1

8pn
)
, for each q ∈ Q the number

of elements of X with µ-colour q is at most 2pn
L . Suppose that this likely event occurs,

and reveal X ∩ Y . We now can define the set Ψ(Q) of {µj : j ∈ Q} ∪ {ν1, . . . , ν⌈Lp−1⌉}-
extreme anti-uniform functions. For this proof only, let us denote with HQ = {µj : j ∈
Q} ∪ {ν1, . . . , ν⌈Lp−1⌉}.

We can upper bound |Ψ(Q)| as follows. First consider that by definition every vertex of
Ψ(Q) is either in Σ, or of the form ∗i,ω(f1, . . . , fk) where f1, . . . , fk are HQ-extreme. By
definition, fj is HQ-extreme if there is hj ∈ HQ such that for every x ∈ [n] we have either
f(x) = 0 or f(x) = h(x). Therefore, to upper bound |Ψ(Q)| we can consider that every
H-extreme anti-uniform function can be in Σ, or of the form ∗i,ω(f1, . . . , fk) obtained as
follows. We first select ω ∈ Ω and a sequence of k − 1 bounding functions h1, . . . , hk from
H ; we then choose for each bounding function hj , from the at most 2pn

L non-zero entries,
the non-zero entries of fj (which by definition of ‘extreme’ are equal to the corresponding
entries of hj ). The total number of elements of Ψ(Q) is therefore is at most

|Σ|+ |Ω|(2Lp−1)k−1 · 2
2pn
L (k−1) .

We now select a function ϕ which is a product of at most d elements of Ψ(Q). The
number of possible choices for ϕ is at most

d
(
|Ω|(2Lp−1)k−1 · 2

2pn
L (k−1) + |Σ|

)d
≤ d(2Lp−1)d(k−1)2δ

2pn/162
4pn
L d(k−1) .
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By definition, the entries of ϕsmall ·1
(
[n] \Y (ϕ)

)
are in [−2cd, 2cd], and only the entries

outside Y (ϕ) can be non-zero. Thus, the quantity

⟨µ− 1, ϕsmall · 1
(
[n] \ Y (ϕ)

)
⟩

is a sum of n− |Y (ϕ)| ≤ n independent random variables

1
n

(
1(x ∈ X)p−1 − 1

)
cx

where the number cx = ϕsmall(x) ·1
(
x ∈ [n]\Y (ϕ)

)
is in [−2cd, 2cd]. Since the probability

of x ∈ X is p, these random variables all have mean zero, and are bounded between −2cd

n

and 2cd

n p−1. It remains to calculate the variance. We have

Var(1(x ∈ X)p−1 − 1) = p(p−1 − 1)2 + (1− p)(−1)2 = p−1 − 1 ≤ p−1 ,

so that the variance of each of our random variables is at most 4c2d

n2 p
−1.

By Bernstein’s inequality (Lemma 4.6), the probability that when we reveal X \ Y (ϕ) we
get ∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ ≥ δ

is at most

2 exp
(
− δ2/2

2p−1δ/(3n) + n 4c2d

n2 p−1

)
≤ 2 exp

(
− 1

16c2d
δ2pn

)
.

Taking a union bound over the choices of ϕ, the probability that there exists any product
ϕ of at most d elements of Ψ(Q) with∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ ≥ δ

is at most

d(2Lp−1)d(k−1) · 2
4pn
L d(k−1)+δ2pn/16 · 2 exp

(
− 1

16c2d
δ2pn

)
+ d(k − 1) exp(− 1

8pn) .

Finally, taking a union bound over the choices of Q, the probability that there exists Q
and a product ϕ of at most d elements of Ψ(Q) such that∣∣⟨µ− 1, ϕsmall · 1

(
[n] \ Y (ϕ)

)
⟩
∣∣ ≥ δ

is at most

2Ld(2Lp−1)d(k−1) · 2
4pn
L d(k−1)2δ

2pn/16 · 4 exp
(
− 1

16c2d
δ2pn

)
≤ exp

(
− 1

100c2 δ
2pn
)
,

where the final inequality is by choice of L and since pn ≥ 100c2dδ−2dk log n.
Suppose now that X is such that this unlikely event does not occur. Given X̃ , we can

now calculate the polytope Φ′. Let ϕ be a vertex of this polytope: then ϕ is a product of at
most d extreme restricted anti-uniform functions. LettingQ be the set of µ-colours bounding
ϕ, we see ϕ is a product of at most d members of Ψ(Q), because for each j the function µ̃j is
pointwise either equal to µj or equal to zero. The lemma statement follows.

There is a last anti-correlation lemma we need. But before introducing that, we state a
moment bound lemma (Lemma 4.23) which is needed in its proof. The proof of Lemma 4.23
is left for a later section.
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Lemma 4.23. Given δ > 0, and d′ an even positive integer, there exists L0 such that, if
L ≥ L0, then there exist C such that, if the C-conditions are satisfied in Setting 4.2, then with
probability at least 1 − 3 exp(− 1

8δ
2pn) over the choice of X = [n]p, the following happens.

With probability at least 0.9 over the choice of χµ : [n] → [L] and χ1 : [n] → [⌈Lp−1⌉]
independent and uniform at random, there is a δ-deletion X̃ of X such that the following
happens. Let us use Notation 4.20. For any 1 ≤ ℓ ≤ d′ and ψ an largest anti-uniform functional
in either Φ(µ̃,1)ℓ or Φ(µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉)

ℓ,

⟨µ̃, ψ⟩ ≤ 2cℓ and ⟨1, ψ⟩ ≤ 2cℓ .

In addition, if ψ is any largest anti-uniform functional in Φ(µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉)
ℓ,

and 1 ≤ j ≤ L and 1 ≤ j′ ≤ ⌈Lp−1⌉ then we have

⟨µ̃j , ψ⟩ ≤ 2cℓ and ⟨νj′ , ψ⟩ ≤ 2cℓ .

We are now in a position to state and prove the final anti-correlation lemma we need:
Lemma 4.24. The main probabilistic inputs to this lemma are the above Lemma 4.22 and the
moment bounds Lemma 4.23, which we prove in a following section.

Lemma 4.24. Let us be in Setting 4.2. Given d, d′ positive integers with d′ even, given ε > 0,
there exist L0 such that, if L ≥ L0, there exists C such that, if the C-conditions are satisfied
in Setting 4.2, then with probability at least 1 − exp

(
− pn

C

)
over the choice of X = [n]p,

there is an ε-deletion X̃ of X such that the following happens. There exist functions χµ :

[n] → [L] and χ1 : [n] → ⌈Lp−1⌉ such that, using Notation 4.20, we have ⟨µ̃ − 1, ϕ⟩ < ε

for all ϕ ∈ Φ(µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉)
d. In addition, for all ϕ ∈ Φ(µ̃,1), we have

|⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c and ⟨µ̃, ϕd′⟩, ⟨1, ϕd′⟩ ≤ 2cd
′
.

Proof. In this proof, let us use the notation H̃ = {µ̃1, . . . , µ̃L, ν1, . . . , ν⌈Lp−1⌉} and H =

{µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉}.
Given d, d′, ε > 0 with d′ even, we set δ = ε

12cd
and d′′ = max(d′, d

(
1 + ⌈log2 2cd

δ ⌉
)
.

Let L0 = 1600c2ddkδ−2, which guarantees that if L ≥ L0, then it satisfies the conditions for
Lemma 4.22 with input δ. Let C be large enough for Lemma 4.23 and Lemma 4.22. Without
loss of generality we assume C ≥ 16dδ−2 and that the C-conditions are satisfied.

Chernoff’s inequality tells us that with probability at least 1 − exp
(
− 1

3pn
)
, the set

X = [n]p has at most 2pn elements. Moreover, Lemma 4.22, with input δ, tells us that with
probability (over the product probability space of [n]p and the µ- and 1-colourings) at least
1− exp

(
1
10δ

2pn
)

we have, for each vertex ϕ ∈ Φ′, the following inequality holds:∣∣⟨µ− 1, ϕsmall · 1
(
[n] \ Y (ϕ)

)
⟩
∣∣ < δ . (4.13)

In particular, with probability at least 1− exp
(

1
20δ

2pn
)

over [n]p, the probability of the µ-
and 1-colourings having this property is at least 0.9.

In addition, because of the conditions on L and d′′ and C , Lemma 4.23 tells us that with
probability at least 1− exp

(
− 1

8δ
2pn
)

(over the choice of [n]p), the set X = [n]p has the
following property. There exists a δ-deletion X̃ of X such that we have, with probability at
least 0.9 (over the random choice of χµ and χ1) that for any 1 ≤ ℓ ≤ d′′ and ψ′ a H̃-largest
anti-uniform functional in Φ(H̃)ℓ, and 1 ≤ j ≤ L, it holds

⟨µ̃j , ψ
′⟩, ⟨µ̃, ψ′⟩, ⟨1, ψ′⟩ ≤ 2cℓ . (4.14)

Suppose now that X is such that all three likely events occur, which by the union bound has
probability at least

1− exp
(
− 1

3pn
)
− exp

(
1
20δ

2pn
)
− exp

(
1
8δ

2pn
)
≥ 1− exp

(
1
30δ

2pn
)
.
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Fix X̃ a δ-deletion witnessing the likely event occurring. The probability that the µ- and
1-colourings are such that their likely events occur is by the union bound at least 0.8. Suppose
this likely event occurs: this gives us that there exist χµ and χ1 as in the lemma statement.

We next establish the anti-correlation claimed in the lemma.

Claim 4.25. For each H̃-largest anti-uniform functional ψ ∈ Φ′ and each j ∈ [L], we have

⟨µ̃j , ψ⟩ ≤ 2cd , (4.15)
⟨µ̃, ψbig⟩ ≤ δ , (4.16)
⟨1, ψbig⟩ ≤ δ . (4.17)

Proof. Equation (4.15) is immediate from (4.14) taking ψ′ = ψ with ℓ ≤ d and using c ≥ 1.
For the remaining two equations, choose ℓminimal such thatψ is a H̃-largest anti-uniform

functional in Φ(H̃)ℓ, and note ℓ ≤ d. Let a = ⌈log2 2cd

δ ⌉, and note (1+a)ℓ ≤ (1+a)d ≤ d′.
For (4.16), observe that by definition of H̃-largest anti-uniform functional (with this

specific H̃), if ψ ̸= 0 for some x then ψ(x) > 2cd. It follows that

⟨µ̃, ψbig⟩ · (2cd)a ≤ ⟨µ̃, (ψbig)1+a⟩ ≤ ⟨µ̃, ψ1+a⟩ ≤ 2c(1+a)ℓ ,

where the final inequality is by (4.14) with ψ′ = ψ1+a. By choice of a, we have the upper
bound 2c(1+a)ℓ(2cd)−a ≤ δ, giving (4.16). Swapping 1 for µ̃ in the above calculation
establishes (4.17). □

By Lemma 4.9, the maximum maxϕ∈Φ′
∣∣⟨µ̃−1, ϕ⟩

∣∣ is attained in one of the vertices of Φ′.
By central symmetry in the definition of Φ′ and linearity of the inner product, the maximum
value of

∣∣⟨µ̃− 1, ϕ⟩
∣∣ over Φ′ is also an extremal value of |⟨µ̃− 1, ϕ⟩| over the vertices of Φ′

which are products of d restricted anti-uniform functions (and not their opposites).
Let us therefore fix such a vertex ϕ in Φ′, and let Y = Y (ϕ). Our goal is to show that

|⟨µ̃− 1, ϕ⟩| < ε. We use linearity of the inner product and the triangle inequality to split
this up. Write µ̃′ = µ̃1([n] \ Y ) and µ̃′′ = µ̃1(Y ); define similarly µ′, µ′′ and 1′ and 1′′. We
obtain ∣∣⟨µ̃− 1, ϕ⟩

∣∣ ≤ ∣∣⟨µ̃′ − 1′, ϕ⟩
∣∣+ ∣∣⟨µ̃′′ − 1′′, ϕ⟩

∣∣ .
We can further split the first term∣∣⟨µ̃′ − 1′, ϕ⟩

∣∣ ≤ ∣∣⟨µ′ − 1′, ϕsmall⟩
∣∣+ ∣∣⟨µ′ − µ̃′, ϕsmall⟩

∣∣+ ∣∣⟨µ̃′ − 1′, ϕbig⟩
∣∣ .

Of these terms, (4.13) tells us that the first term is bounded by δ. Since µ̃ and µ differ in at
most δpn places, µ′ − µ̃′ is equal to p−1 in at most δpn places and otherwise equal to zero,
while |ϕsmall| is bounded by 2cd, so the second term is at most 1

n · p
−1 · δpn · 2cd = 2cdδ.

Splitting the third term∣∣⟨µ̃′ − 1′, ϕbig⟩
∣∣ ≤ ⟨µ̃′, ϕbig⟩+ ⟨1′, ϕbig⟩ ≤ ⟨µ̃, ϕbig⟩+ ⟨1, ϕbig⟩ ,

where in the final two inner products, all terms are non-negative.
Returning to split ∣∣⟨µ̃′′ − 1′′, ϕ⟩

∣∣ ≤ ⟨µ̃′′, ϕ⟩+ ⟨1′′, ϕ⟩ ,

again all the terms in the inner products are non-negative. In particular, if ψ is any function
which is pointwise greater than or equal to ϕ, replacing ϕ with ψ gives an upper bound
on all these non-negative inner products. Let ψ then be a largest restricted anti-uniform
function which is pointwise at least ϕ. By (4.16), (4.17), we have ⟨µ̃, ψbig⟩, ⟨1, ψbig⟩ < δ.
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We apply (4.15) to obtain ⟨µ̃j , ψ⟩ ≤ 2cd where µ̃j is revealed by ϕ, that is, χ−1
µ (j) ⊆ Y .

Recall that the normalisation of µ̃j is p−1L, so that µ̃′′ = 1
L

∑
j µ̃j , where the sum ranges

over j with χ−1
µ (j) ⊆ Y . This gives

⟨µ̃′, ϕ⟩ ≤ ⟨µ̃′′, ψ⟩ = 1
L

∑
j

⟨µ̃j , ψ⟩ ≤ 2cdd(k−1)
L .

Finally, we come to ⟨1′′, ψ⟩. Here we split ψ = ψsmall + ψbig, and write

⟨1′′, ψ⟩ = ⟨1′′, ψsmall⟩+ ⟨1′′, ψbig⟩ ≤ ⟨1′′, ψsmall⟩+ ⟨1, ψbig⟩ .

To deal with the first term of this, observe that 1′′ takes the value 1 in at most 2d(k−1)n
L

places, and zero elsewhere, while ψsmall is bounded by 2cd, so that the first inner product is
at most 1

n ·
2d(k−1)n

L · 2cd = 4cdd(k−1)
L . The second inner product is one we have already

bounded, using (4.17), by δ.
Putting the pieces together, we have∣∣⟨µ̃− 1, ϕ⟩

∣∣ ≤ δ + 2cdδ + δ + δ + 2cdd(k−1)
L + 4cdd(k−1)

L + δ ≤ ε ,

as required.

Finally, we need to prove the moment bounds required in the lemma. By Lemma 4.21, we
have Φ(µ̃,1) ⊆ Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉), so it suffices to prove the required moment
bounds hold for all ϕ in the latter polytope.

Consider the optimisation problem maxϕ⟨µ̃, ϕd
′⟩, over ϕ ∈ Φ(H). By Fact 4.9, the

maximum is attained at a vertex of Φ(H). Since µ̃ is a non-negative vector, the vertex in
question is aH-anti-uniform function ψ (and not a negation). If ψ ∈ Σ, then since 0 ≤ ψ ≤ 1

we have ⟨µ̃, ψ⟩ ≤ ⟨µ̃,1⟩ ≤ 2 since X has at most 2pn elements, which is sufficient. So we
may assume ψ is not in Σ. Again since µ̃ is non-negative, we may assume this anti-uniform
function is pointwise maximised, in other words it is an H-largest anti-uniform functional in
Φ(H), and therefore ψd′ is an H-largest anti-uniform functional in Φ(H)d

′ . Applying (4.14),
we have ⟨µ̃, ψd′⟩ ≤ 2cd

′ as required.
A similar argument applies to the optimisation problemmaxΦ |⟨µ̃, ϕ⟩|. SinceΦ is centrally

symmetric, the maximum is the same as for the linear problem maxΦ⟨µ̃, ϕ⟩; as above, this is
attained for ϕ an H-largest anti-uniform functional in Φ(H), and (4.14) gives ⟨µ̃, ψ⟩ ≤ 2c

for such functionals.
The same argument, replacing µ̃ with 1, gives the other required moment bounds.

Finally, we are in a position to prove Theorem 4.18: at this stage, this simply amounts to
putting together the lemmas we showed in the last two sections.

Proof of Theorem 4.18. Given ε > 0, let ε1 > 0 and d, d′ be returned by Lemma 4.19 for input
ε. Without loss of generality, we may assume ε1 ≤ ε. Note that d′ is guaranteed to be even.
We now input d, d′, and ε1 to Lemma 4.24, which returns L0, and, provided L ≥ L0 also C .

Now, assume that our setting satisfies the C-conditions. In particular, the conditions of
Lemma 4.24 are satisfied, so with probability at least 1−exp

(
− pn

C

)
, the setX = [n]p has an

ε1-deletion X̃ such that there exist χµ, χ1 for which the following hold, with Notation 4.20.
For all ϕ ∈ Φ′, we have ⟨µ̃ − 1, ϕ⟩ < ε1, and in addition for all ϕ ∈ Φ(µ̃,1) we have
|⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c and ⟨µ̃, ϕd′⟩, ⟨1, ϕd′⟩ ≤ 2cd

′ . Suppose X satisfies the likely event, and
fix X̃ and χµ, χ1 witnessing this.

The inequalities |⟨µ̃, ϕ⟩|, |⟨1, ϕ⟩| ≤ 2c for allϕ ∈ Φ(µ̃,1) are as required for Theorem 4.18,
while the inequalities ⟨µ̃, ϕd′⟩, ⟨1, ϕd′⟩ ≤ 2cd

′ for ϕ ∈ Φ(µ̃,1) verify (M2) of Lemma 4.19.
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Applying Lemma 4.21, we have Φ(µ̃,1)d ⊆ Φ′, so in particular we obtain ⟨µ̃−1, ϕ⟩ < ε1

for all ϕ ∈ Φ(µ̃,1)d. This verifies (M1) of Lemma 4.19, and hence we obtain the conclusion
that |⟨µ̃− 1, ϕ+⟩| < ε for all ϕ ∈ Φ(µ̃,1). In addition, since Φ(µ̃,1) ⊆ Φ(µ̃,1)d, we have
⟨µ̃−1, ϕ⟩ < ε1 ≤ ε for all ϕ ∈ Φ(µ̃,1), which is the same as ∥µ̃−1∥Φ(µ̃,1) < ε, completing
the proof of Theorem 4.18.

It remains to prove Lemma 4.23.

4.9 Moment estimates

Ultimately, as per the reduction in Theorem 4.18, we seek that our random subset X con-
tains, outside of an event with exponentially small probability, a large subset X̃ whose
corresponding functional µ̃ satisfies certain anti-correlation and moment bound properties
with the functions in the polytope Φ′. In this section we show that these properties hold
with a reasonably high probability for X itself; we use this to prove that a subset with these
properties X̃ ⊆ X exists with the required exponential probability in the next section.

To state the precise lemma, we need the following definition.

Definition ((q, d)-special product). Let us be in Setting 4.2. A (q, d)-special product is a
random functional ψ : [n]→ R obtained as the product of at most d convolution functions
∗i,1(f1, . . . , fk), in which each of the fj is either equal to the 1 function, or it is a scaled
copy of the random set [n]q (having entries valued 0 or q−1). Moreover the copies of [n]q in
the product comprising ψ have the property that each is either identical to, or completely
independent from, any of the other copies of [n]q used in ψ.

The technical lemma we require is as follows.

Lemma 4.26. Let us be in Setting 4.2. Given d′ ∈ N and α ≥ 0, there exists a C such that
the following holds if the C-conditions are satisfied. Let q be at least C log2k n−1. Then with
probability at least 1− 1

nαk over the sample of a (q, d′)-special product ψ, and over the choice
of X as a copy of [n]q which is either identical to a copy of [n]q in ψ, or completely independent
from all copies, we have the following:

⟨µ, ψ⟩ ≤ 2cd
′

and ⟨1, ψ⟩ ≤ 2cd
′
.

Proof. Let C = (1 + α)2kd′d
′+1k3k+d′

2kd
′2+8k. As ψ is a (q, d′)-special product we have

for some d ≤ d′ that ψ(x) =
∏

j∈[d] ∗ij ,1(f
(j)
1 , . . . , f

(j)
k ) for some i1, . . . , id ∈ [k] and some

f
(j)
ℓ that are either equal to the 1 function, or to a scaled copy of independent random

sets [n]q (with possibility of two functionals being the same, but all different samples taken
independently). For such ij and f (j)ℓ we can therefore write explicitly

ψ(x) =
( n

e(s)

)d d∏
j=1

∑
s∈Sij

(x)

∏
ℓ̸=ij

f
(j)
ℓ (sℓ) .

It is helpful to refer to each of the terms in this summation individually. To this end we
use the following notation

ψ̂(x; s(1), . . . , s(d)) =

d∏
j=1

∏
ℓ̸=ij

f
(j)
ℓ (s

(j)
ℓ ) .
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We require that with high probability ⟨1, ψ⟩ ≤ 2cd
′ and ⟨µ, ψ⟩ ≤ 2cd

′ . Since we may
assume c ≥ 1, it is enough to show that ⟨1, ψ⟩ ≤ 2cd and ⟨µ, ψ⟩ ≤ 2cd. To do so, we prove
the concentration of the following polynomials around their expectations. We have:

Y1 = ⟨1, ψ⟩ = 1

n

(
n

e(S)

)d ∑
x∈[n]

∑
s(1)∈Si1 (x)...
s(d)∈Sid

(x)

ψ̂(x; s(1), . . . , s(d))

Yµ = ⟨µ, ψ⟩ = 1

n

(
n

e(S)

)d ∑
x∈[n]

∑
s(1)∈Si1

(x)

...
s(d)∈Sid

(x)

µ(x)ψ̂(x; s(1), . . . , s(d)) .

It is extremely important to notice that all of these terms make use of the same set
of functionals f (j)ℓ (evaluated in different points of different edges). Thus, the difference
between terms is not given by a difference in functionals, which are always the same, but a
different in indices and hyperedges. This justifies the following notation: we denote by l the
number of the d(k − 1) functions f (j)ℓ comprising ψ (and thus each of the ψ̂) that are copies
of [n]q , and l′ = d(k − 1) − l are copies of 1. Moreover, recalling that any copies of [n]q
must be either identical or completely independent from each other, we denote by w ≤ l the
number of independent copies of [n]q in ψ. As mentioned above, it is important to keep in
mind that l, l′ and w hold term-by term, as the functionals do not change in between terms.

Our plan now is to first calculate the expectation of Y1 and Yµ. We then use Kim-Vu’s
inequality (Theorem 4.8) to prove the concentration. This result applies since we may form
new polynomials Ỹ1, Ỹµ, having the same value as Y1, Yµ, but consisting of independent
Bernoulli random variables (as required by Theorem 4.8) by factoring out q−1 from each
{0, q−1} valued Bernoulli variable into a collective weight, and dropping any repeat copies of
the now {0, 1} valued Bernoulli variables within a configuration, we obtain the polynomials
Ỹ1, Ỹµ as required. The details are as follows.

Observe that each term in Y1 and in Yµ corresponds to a tuple (s(1), . . . , s(d)) of d
hyperedges of S for which the i1, . . . , id-th vertices within the corresponding hyperedge are
the same element x ∈ [n]. We thus refer to the terms within these polynomials as (linked
hyper-edge) configurations. Each configuration is completely determined by (s(1), . . . , s(d)).

Notice that each of the f (r)j (s
(r)
j ) with r ∈ [d], j ∈ [k] \ {ir}, is a random variable taking

a value of 1 if f (r) = 1 is the constant one function, or else q−1 with a probability q, and 0

with probability 1− q, if f (r) is a copy of [n]q . Since ψ is a (q, d′)-special product, any two
of the random variables, f (i1)j1

(s
(i1)
j1

) and f (i2)j2
(s

(i2)
j2

), are dependent if and only if f (i1)j1
, f

(i2)
j2

are the same copy of [n]q (if one of them is 1, or if they’re two distinct copies of [n]q , they’d
be independent) and s(i1)j1

= s
(i2)
j2

(every entry of [n]q is selected independently). In this
case, they are identical. The second condition s(i1)j1

= s
(i2)
j2

, corresponds to the hyperedges
s(i1), s(i2) overlapping on their j1-th and j2-th elements respectively. We again point out
that the number of independent variables in each configuration is not given by any choice
of functionals (which are always the same), but rather by how much the corresponding
hyperedges of the configuration intersect one another (thus possibly allowing for two
identical functionals to be evaluated at the same value).

We first calculate the quantities E(Y1),E(Yµ) whose concentration we wish to establish.
Let us consider the polynomial Y1. We want to calculate E(Y1) applying the linearity of
expectation and summing the contribution from each edge configuration. As mentioned
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above, every term of Y1 makes use of always the same functions f (j)ℓ which never change.
Thus, in Y1, the number of independent variables f (r)j (s

(r)
j ) within a configuration is at least

max(k−1, l′+w) and at most d(k−1). The lower bound k−1 holds since each hyperedge s(r)

contains k distinct elements of [n], so for any fixed r ∈ [d], the set {f (r)j (s
(r)
j )}, j ∈ [k]\{iu}

is a set of mutually independent (possibly constant) random variables. The lower bound l′+w,
holds because, as mentioned above, each term comprises of l′ +w independent random func-
tionals (evaluated at some of their points, possibly the same). That is, if {f (u1), . . . , f (uw+l′ )}
is a maximal independent set of functionals —containing w independent copies of [n]q and l′

copies of constant 1— for ψ (and thus for the specific term we are considering) then any set
of random variables formed taking one argument from each of these, is a set of mutually
independent variables. Note for E(Yµ) the corresponding bounds are max(k− 1, l′ +w)+ 1

and d(k − 1) + 1 since µ(x) contributes one variable independent from all the others.
For E(Y1), suppose that, in a given configuration the edges are such that t of the variables

are mutually independent with max(k − 1, l′ + w) ≤ t ≤ d(k − 1). The number of repeat
{0, q−1}-valued Bernoulli variables is then d(k − 1)− t, each of which contributes an extra
factor of q−1 to the expectation of this configuration. To see this, consider the product of s
such identical variables Z = x1 . . . xs. We have that Z takes value q−s with probability q
and 0 otherwise, so E(Z) = q−(s−1), whereas the expectation of each of the xi is 1.

To calculate the expectation of Y1, it is therefore enough to enumerate the configura-
tions having the same number t of independent variables. To this end, let S(ψ, t, x) ⊆
Si1(x) × Si2(x) × . . . × Sid(x) be those d-tuples (s(1), s(2), . . . , s(d)) in which exactly
t of the {f (i)j (s

(i)
j )} are mutually independent (counting also those for which f (i)j is the

constant functional 1), and let α(ψ, t, x) = |S(ψ, t, x)|. For the sake of notational brevity,
let t′ = d(k − 1) and a = max(k − 1, l′ + w). We have

E(Y1) =
1

n

( n

e(S)

)d ∑
x∈[n]

∑
a≤t≤t′

(q−1)(t
′−t)α(ψ, t, x) .

Note that E(Y1) = E(Yµ) as µ(x) is independent from all other variables within a given
configuration, since the k elements in each edge s of S are distinct; therefore the argument
of µ does not occur as the argument of any other f (i)j within this configuration, and for any
x ∈ [n] we have that µ(x) contributes an expectation factor of E(µ(x)) = 1.

To obtain an upper bound for α(ψ, t, x) with a ≤ t ≤ t′, first note that when t = t′ =

d(k − 1), we may take the crude upper bound fixing only x in each Si(x), thus α(ψ, d(k −

1), x) ≤
∏

j∈[d] |Sij (x)| ≤ (∆1)
d ≤

(
c e(S)

n

)d
. If the number of independent variables t is

less than d(k−1) in a configuration, we have at least two random variables that are identical,
say f (i1)j1

(s
(i1)
j1

) = f
(i2)
j2

(s
(i2)
j2

). Note that this can only occur if s(i1)j1
= s

(i2)
j2

. Thus, in order to
have precisely t independent variables in the configuration (s(1), s(2), . . . , s(d)) ∈ S(ψ, t, x),
it must be that the union of underlying hyperedges, ∪i∈[d]s

(i), together covers at most t
vertices other than x. But this calculation is exactly what is given by Lemma 4.16 setting
i = (i1, . . . , id) and forgiving the horrible notation α(ψ, t, x) ≤ α(i, t, x) (which is only
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needed here). We therefore obtain:

E(Y1) =
( n

e(S)

)d 1
n

∑
x∈[n]

∑
a≤t≤t′

(q−1)(t
′−t)α(ψ, t, x)

≤
( n

e(S)

)d 1
n

∑
x∈[n]

α(i, t′, x) +
( n

e(S)

)d 1
n

∑
x∈[n]

∑
a≤t≤t′−1

(q−1)(t
′−t)α(i, t, x)

≤ cd +
∑

k−1≤t≤t′−1

(q−1)(t
′−t)2kd

2

cdtdC−(t′−t)qt
′−t

= cd + 2kd
2

cd
∑

a≤t≤t′−1

tdC−(t′−t)

= cd + 2kd
2

cd
∑

1≤s≤t′−a

(t′ − t)dC−s

≤ cd + 2kd
2

cd(kd)(d+1)C−1 ≤ cd(1 + k1−3k) ≤ 3cd/2 .

Where the last line follows because of our lower bound on C .
We now advise the reader to familiarise themselves with the notation of Kim-Vu’s

inequality (Theorem 4.8), which we now want to apply. It is not difficult to see, as claimed
above, that Y1 is a polynomial in random variables exactly as the one studied by Kim-
Vu’s inequality (up to a scaling factor). We use here the notation introduced for Kim-Vu’s
inequality.

Consider now the calculation for Ei(Y1) with i ≥ 1. Suppose we fix the variables A ⊆
{f (u)j (x) : u ∈ [d], j ∈ [k] \ {iu}, x ∈ [n]}. Note that if we have f (u)j (a), f

(u)
j (b) ∈ A with

a ̸= b then the expectation is 0 since no term in the sum contains both. Thus, also Ei(Y1) = 0

whenever i > d(k−1), and we may equivalently describe any subset of variablesA for which
E(Y1A

) is non-vanishing, by specifying the elements s(i)j held fixed in the corresponding
functions f (i)j in ψ. To this end, we introduce the following notation. Write mi for the vector
of length k, and whose entries may be empty, for the elements s(i)j held fixed in s(i). Letmi be
the number of non-empty elements in mi andM =

∑
mi ≤ l (the total number of elements

held fixed). For instance, suppose ψ = ∗i1,1(f
(1)
1 , . . . , f

(1)
k ) . . . ∗id,1 (f

(d)
1 , . . . , f

(d)
k ) and we

fix f (1)1 (s
(1)
1 ), f

(1)
k (s

(1)
k ), f

(2)
1 (s

(2)
1 ), with all other variables allowed to vary. Then letting ⋆

denote the empty element, we have m1 = (s
(1)
1 , ⋆, . . . , ⋆, s

(1)
k ), m2 = (s

(2)
1 , ⋆, . . . , ⋆) and

for all other 3 ≤ j ≤ l, mj is the empty vector of length k. Write M = (m1, . . . ,md) for the
collection of mi and HM for the truncated polynomial retaining those configurations fixing
M. We use the notation S(m) for the collection of hyperedges fixing m, and Si(x;m) for
the set of hyperedges with x in the i-th position, and the elements of the m in the positions
in which they occur. Note that wherever we use this notation, we have m empty in the i-th
position, so there is no potential conflict here. Recalling that l is the number of copies of [n]q
in ψ, let l̃ = l̃(M) be the number of these whose entries are fixed in M. In this notation, the
truncated polynomial H1,M fixing m1, . . . ,md in the edges s(1), . . . , s(d) takes the form

H1,M =
q−l̃

n

( n

e(S)

)d ∑
x∈[n]

∑
s(1)∈S1(x;m1)

...
s(d)∈Sd(x;md)

g1(·) . . . gl−M (·) . (4.18)

where we have omitted explicitly writing any variables corresponding to constant one
functions since it does not change the value of the polynomial. g1(·) . . . gl−M (·) denote only
the l−M unfixed variables f (i)j (·) where f (i)j is a copy of [n]q and · the appropriate element
x ∈ [n] at which it is evaluated within the configuration.
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In this form, it is clear that fixing additional constant-one valued variables decreases
the polynomial expectation since it only amounts to dropping terms, each having a strictly
positive expectation. Specifically given any M, if M′ fixes all the elements of M, along with
elements s(i1)j1

, . . . , s
(ia)
ja

for which the corresponding f (i1)j1
, . . . , f

(ia)
ja

are all constant-one
valued, then the polynomial HM′ retains only those configurations (if any) of HM which
fix also s(i1)j1

, . . . , s
(ia)
ja

in s(i1), . . . , s(ia) respectively and so E(HM) ≥ E(HM′). We may
therefore assume that no constant-one variables are fixed for the purpose of maximising
Ei(Y1) to apply Theorem 4.8. Recalling that ψ has l of its d(k−1) comprising functions being
copies of [n]q and the rest being constant one, we are interested only inEi(Y1)with 1 ≤ i ≤ l.
In general, the greater the number i of 0, q−1 valued variables being fixed, the larger the
premultiplying coefficient q−i. However, fixing these variables also reduces the number of
contributing configurations by a factor of order (C−1q)i < qi (arising from the maximum
co-degree condition), meaning an overall reduction in Ei(Y1) with greater i. Moreover,
where a fixed variable corresponds to an f (i)j which is identical to an unfixed copy of [n]q ,
there is a further reduction from the interdependence. Although in almost all configurations,
the arguments for these indicator functions differs and thus the corresponding variables are
independent. In this way one expects that Ei(Y1) is greatest for i = 1, decreasing by a factor
of about C−1 per variable fixed.

Recalling 1 ≤M ≤ l. When M = l,

E(H1,M) =
q−l

n

∑
x∈[n]

(
n

e(S)

)d ∑
s(1)∈Si1

(x;m1)
...

s(d)∈Sid
(x;md)

≤ q−l

n
·
(

n

e(S)

)d ∑
s(1)∈S(m1)

s(2)∈Si2
(s

(1)
i1

;m2)
...

s(d)∈Sid
(s

(1)
i1

;md)

1

≤ q−l

n
·
(

n

e(S)

)d

∆m1∆m2+1 . . .∆md+1

≤ q−l

n
·
(

n

e(S)

)d

cdCd−(M+d−1)q(M+d−1)−d

(
e(S)

n

)d

≤ q−1cdC1−l

n

≤ cdC−l

log2k(n)
.

Thus, El(Y1) ≤ cdC−l

log2k(n)
. Otherwise, M < l and within each configuration in HM there

are l −M Bernoulli-{0, q−1} variables, which may or may not be independent. As with the
calculation for E0(Y1), we allow that any configuration fixing m1, . . . ,m2 in s(1), . . . , s(d)

may result in precisely t ∈ [l −M ] of the gi(·) being mutually independent. We follow a
similar approach to that for E0(Y1), counting configurations which have the same number
of mutually independent gi(·). Note first that

E(H1,M) =
q−M

n

(
n

e(S)

)d ∑
x∈[n]

∑
s(1)∈Si1 (x;m1)

...
s(d)∈Sid

(x;md)

Eg1(·) . . . gM−l(·)

=
q−M

n

( n

e(S)

)d ∑
s(1)∈S(m1)

∑
s(2)∈Si2

(s
(1)
i1

);m2)
...

s(d)∈Sid
(s

(1)
i1

;md)

Eg1(·) . . . gM−l(·) .

For a given s(1) ∈ S(m1), let α(ψ,M, t, s(1)) be the size of the set S(ψ,M, t, s(1)) ⊆
{s(1)}×Si2(s

(1);m2)×. . .×Sid(s
(1);md) for which t of the gi(·) are mutually independent.
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The expectation of the product g1(·) . . . gl−M (·) for such a configuration is q−(l−M−t). We
have

α(ψ,M, t, s(1))≤
∑

r2+...+rd=l−M−t

(
(k − 1)

r2

)
∆m2+1+r2

(
2(k − 1)− r2

r3

)
∆m3+1+r3 · . . .

. . . ·
(
(d− 2)(k − 1)−

∑
i∈[d−1]\{1} ri

rd

)
∆md+1−rd

≤ 2kd
2

(l −M − t)d−1cd−1C−l+t+m1ql−t−m1

(e(S)
n

)d−1

.

Thus

E(H1,M) ≤ q−M

n

( n

e(S)

)d ∑
s(1)∈S(m1)

∑
t∈[l−M ]

q−(l−M−t)2kd
2

(l −M − t)d−1cd−1

· C−l+t+m1ql−t−m1

(e(S)
n

)d−1

≤ q−1

n
2kd

2

(l −M)dcdC1−M

≤ cd2kd
2

(l −M)dC−M

log2k(n)
.

Hence, for M ≥ 1, E(HM) is maximised when M = 1. Using the notation as in
Theorem 4.8 we have E′(Y1) ≤ cd2kd2 (l−1)dC−1

log2k(n)
≤ cd

k3klog2k(n)
and using the lower bound

for q and C . Clearly E′(Y1)≪ 1 < E0(Y1) = E(Y1).
Using (Theorem 4.8) we have

P
[
|Y1 − E0(Y1)| > (8k · k!1/2)(E(Y1)E′(Y1))

1/2λk
]
= O(e(−λ+(k−1) log(n))) .

To achieve the concentration we require, take λ = k(1 + α) log(n). It then follows that we
have e(−λ+(k−1) log(n)) ≤ e−(αk+1) log(n) ≤ 1

nαk . We then have

(8k · k!1/2)(E(Y1)E′(Y1))
1/2λk ≤ (8k · kk/2)

( 3c2d

2k3klog2k(n)

)1/2
(k(1 + α) log(n))k

≤ 2cd8k(1 + α)k .

We now turn to the concentration of Yµ = ⟨µ, ψ⟩. Observe first that since the argument
of µ is distinct from the argument of any other f (i)j within a configuration, then µ(x) is
independent of all other variables in the configuration. Since E(µ(x)) = 1 for any x, we
have E0(Yµ) = E0(Y1) ≤ 3/2.

For any subset A of variables that we fix in Y1 to calculate EA(Y1), we have E(Y1A
) =

EA(YµA
) and for a fixed x ∈ [n] and B = A ∪ {µ(x)}, we have E(YµB

) ≤ E(YµA
)

since we merely sum the same expectations over fewer configurations. Thus, Ei(Yµ) is
maximised for i = 1 as for Ei(Y1). Note that if A = {f (i)j (s

(i)
j )} then E(Y1A

) = E(YµA
).

If A = {µ(x)} for some fixed x ∈ [n] then the calculation E(Y1A
) proceeds just as for

E0(Y1) except with the summation over x ∈ [n] dropped. That is, for A = {µ(x)}, we have
EA(YµA

) ≤ 3/2n ≤ q−l

n 2kd
2

ldcd, thus the upper bound for E′(Y1) holds for E′(Yµ) also,
and the concentration obtained from the Kim-Vu inequality applies.

We deduce the following corollary.
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Corollary 4.27. Given d positive integer, there exist C and L0 such that, if the C-conditions
are satisfied in Setting 4.2 and L ≥ L0, then with high probability over the choice of X =

[n]p, and independently χµ : [n] → {1, . . . , L} uniformly at random, and independently
χ1 : [n] → {1, . . . , ⌈Lp−1⌉} uniformly at random, the following holds. Let us use Nota-
tion 4.20. For any 1 ≤ ℓ ≤ d and ψ a largest anti-uniform functional in either Φ(µ,1)ℓ or
Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)

ℓ.

⟨µ, ψ⟩ ≤ 2cℓ and ⟨1, ψ⟩ ≤ 2cℓ .

In addition, if ψ is any largest anti-uniform functional in Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)
ℓ,

and 1 ≤ j ≤ L and 1 ≤ j′ ≤ ⌈Lp−1⌉ then we have

⟨µj , ψ⟩ ≤ 2cℓ and ⟨νj′ , ψ⟩ ≤ 2cℓ .

The idea of the proof is to take a union bound over choices of ψ and j, of which there are
only polynomially many, and use Lemma 4.26 to obtain the correlation bounds.

The only place where we need to be a bit careful is that the µj are not independent; and
similarly the νj′ . We find some related functions µ̂j and ν̂j′ which are independent and to
which we apply Lemma 4.26, and deduce the required correlation bounds from these.

Proof. Let H = {µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉}, let α be such that both dkd · 2(k−1)d 1
nαk and

dkd(2Lp−1)d(k−1)+1 1
nαk are o(1). Let C be large enough so that Lemma 4.26 works for the

choice q = p, α, and d′ = d. Assume the C-conditions are satisfied.
We first establish bounds on ⟨µ, ψ⟩ and ⟨1, ψ⟩ for ψ ∈ Φ(µ,1)ℓ. Given 1 ≤ ℓ ≤ d, if ψ is

a largest anti-uniform functional in Φ(µ,1)ℓ, then ψ =
∏ℓ

j=1 ∗ij ,1(fj,1, . . . , fj,k−1), where
1 ≤ ij ≤ k for each j and each fj,j′ is either µ or 1. For any such function, the probability of

⟨µ, ψ⟩ > 2cℓ or ⟨1, ψ⟩ > 2cℓ

is, by Lemma 4.26, at most 1
nαk . Taking the union bound over the at most dkd · 2(k−1)d

choices of ℓ, ij and fj,j′ , we see that the probability of any of these events occurring is at
most dkd · 2(k−1)d 1

nαk , which is o(1) because of our choice of α.
We now establish corresponding bounds on ⟨µj , ψ⟩ and ⟨νj , ψ⟩. Observe that, as before,

we can describe any largest anti-uniform functional ψ in Φ(H)ℓ as follows. We choose
i1, . . . , iℓ, and for each of the ℓ(k − 1) functions in the product, we must choose one of H .
Finally, to describe the entire inner product, we must choose the left term in the inner product
(either µj or νj ) from H . In total, the number of choices is at most dkd(2Lp−1)d(k−1)+1.

Fix now one such set of choices. Let T denote a collection of d(k − 1) + 1 indices in [L]

such that µt is one of the chosen functions for each t ∈ T , and T ′ a subset of [⌈Lp−1⌉] of
size d(k − 1) such that νt is chosen for each t ∈ T ′.

Consider the following random experiment. For each t ∈ T , we first generate independent
binomial random subsets Zt = [n]q , with 0 < q < 1 chosen such that (1− q)|T | = 1− t pL .
We now obtain sets Z ′

t for t ∈ T as follows. For each x ∈
⋃

t∈T Zt independently, pick t
uniformly at random from the set {t : x ∈ Zt}, and let x ∈ Z ′

t.
By definition of q, for a given x ∈ [n] the probability that x ∈

⋃
t∈T Zt is tp

L , and
conditioning on this event occurring, the events x ∈ Z ′

t are disjoint over t ∈ T , and x is
equally likely to appear in any given Z ′

t for t ∈ T , so that probability of x ∈ Z ′
t is p

L . Observe
that this is the same probability as the event that x ∈ X and χµ(x) = t, which are also
disjoint events over t ∈ T . It follows that the distribution of (Zt)t∈T is the same as the
distribution of (X ∩ {x : χµ(x) = t})t∈T , so we can consider the coupling in which the
latter sets are generated according to the above random experiment.
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Let µ̂t(x) = q−1
1(x ∈ Zt). By construction, we have 0 ≤ µt(x) ≤ Lp−1qµ̂t(x).

We now perform a similar, independent, random experiment. For each t ∈ T ′, we
generate independently Wt = [n]q where q is as defined above. Letting now 0 < q′ < 1

solve (1 − q′)|T ′| = 1 − t 1
⌈Lp−1⌉ , we observe q′ ≤ q. We generate W ′′

t by sampling the
elements of Wt independently with probability q′

q , so that the W ′′
t are independent copies of

[n]q′ . Finally, we generate W ′
t by, as above, picking t from {t : x ∈W ′

t} independently and
uniformly and letting x ∈W ′

t .
As before, the distribution of (W ′

t )t∈T ′ is identical to the distribution of ({x : χ1(x) =

t})t∈T ′ and we consider the coupling in which the latter sets are generated by the above
random experiment. Letting ν̂t(x) = q−1

1(x ∈Wt), we have 0 ≤ νt(x) ≤ ⌈Lp−1⌉qν̂t(x).
Let ψ̂ denote the function obtained by replacing each µt with µ̂t for t ∈ T , and each νt

with ν̂t for t ∈ T ′, in the product defining ψ. Then we have

⟨µj , ψ⟩ ≤ (⌈Lp−1⌉q)d(k−1)+1⟨µ̂j , ψ̂⟩ and ⟨νj , ψ⟩ ≤ (⌈Lp−1⌉q)d(k−1)+1⟨ν̂j , ψ̂⟩ .

Now, ψ̂ is a (q, d)-special product. Assume C is also large enough that so that Lemma 4.26
holds for d′ = d, our α, and q = q.

⟨µ̂j , ψ̂⟩ > 7
4c

ℓ and ⟨ν̂j , ψ̂⟩ > 7
4c

ℓ

each have probability at most 1
nαk by Lemma 4.26. Since 7

4 (⌈Lp
−1⌉q)d(k−1)+1 < 2, the same

probability bounds hold on the events

⟨µj , ψ⟩ > 2cℓ and ⟨νj , ψ⟩ > 2cℓ .

Finally taking the union bound, the probability that any one of these events fails is o(1)
by our choice of α.

Suppose that none of the above bad events occur. We deduce, deterministically, the
remaining bounds of Corollary 4.27. We begin with 1 ≤ ℓ ≤ d and ψ ∈ Φ(H)ℓ, for which
we have

⟨µ, ψ⟩ = 1
L

L∑
i=1

⟨µi, ψ⟩ ≤ 1
L

L∑
i=1

2cℓ = 2cℓ .

Similarly, we have

⟨1, ψ⟩ = 1
⌈Lp−1⌉

⌈Lp−1⌉∑
i=1

⟨νi, ψ⟩ ≤ 1
⌈Lp−1⌉

⌈Lp−1⌉∑
i=1

2cℓ = 2cℓ .

4.10 Deletion method

4.10.1 A general deletion method

In this section we prove that the required X̃ satisfying moment estimates exists with ex-
ponentially small failure probability. This follows from the Harris inequality. Recall that
a subset D of P

(
[n]
)

is called decreasing if whenever S′ ⊆ S ∈ D we have S′ ∈ D, and
increasing if the same statement holds with ⊆ replaced by ⊇.

Theorem 4.28 (Harris [Har60]). For any p ∈ [0, 1] and n, let A and B be two subsets of
P
(
[n]
)
, which are both decreasing. Then

P([n]p ∈ A ∩ B) ≥ P([n]p ∈ A)P([n]p ∈ B) .
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Spöhel, Steger and Warnke [SSW13] deduced the following theorem. They state their
result for the specific case [n] =

(
[m]
2

)
(i.e. for the random graph), but their proof works

verbatim in the more general situation. For completeness, we give the details.

Theorem 4.29 ([SSW13, Theorem 4]). Let D be a decreasing subset of P
(
[n]
)
. Given α, δ ∈

(0, 1], let p ∈ (0, 1] be such that P
(
[n]p ∈ D

)
≥ δ. Then with probability at least 1 −

δ−1 exp
(
− 1

2α
2pn
)
, there is a subset of [n]p with at least (1− α)pn elements which is in D.

Proof. Let I be the subset of P([n]) consisting of sets with at least (1−α)pn elements. Let S
be the subset of sets S ∈ P([n]) such that S has a subset in I∩D, which is clearly increasing,
so S is decreasing. By Theorem 4.28, we have P

(
[n]p ∈ S

)
P
(
[n]p ∈ D

)
≤ P

(
[n]p ∈ S ∩D

)
.

Rearranging, and observing S ∩D ⊆ I , we get

P
(
[n]p ∈ S

)
≤

P
(
[n]p ∈ S ∩D

)
P
(
[n]p ∈ D

) ≤ δ−1P
(
[n]p ∈ I

)
.

Chernoff’s inequality now gives P
(
[n]p ∈ I

)
≤ exp

(
− 1

2α
2pn
)
, which gives the

required probability bound.

We now have the tools to prove the last remaining Lemma, i.e. Lemma 4.23.

Proof of Lemma 4.23. We are in Setting 4.2. LetC andL be large enough so that Corollary 4.27
works for our choice of d = d′. Assume the C-conditions are satisfied.

Let D ⊆ P([n]) be the set of subsets Y ⊆ [n] satisfying the following. Letting
µ(x) = p−1

1(x ∈ Y ), for uniform random choices of χµ and χ1, with probability at
least 0.9, for all 1 ≤ ℓ ≤ d and all largest anti-uniform functionals ψ either in Φ(µ,1)ℓ or in
Φ(µ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)

ℓ, we have

⟨µ, ψ⟩ ≤ 2cℓ and ⟨1, ψ⟩ ≤ 2cℓ .

In addition, if ψ is any largest anti-uniform functional in Φ(Hµ1, . . . , µL, ν1, . . . , ν⌈Lp−1⌉)
ℓ,

and 1 ≤ j ≤ L and 1 ≤ j′ ≤ ⌈Lp−1⌉ then we have

⟨µj , ψ⟩ ≤ 2cℓ and ⟨νj′ , ψ⟩ ≤ 2cℓ .

Observe that since all the left hand sides of these conditions are increasing in X , the event
D is a decreasing event. Furthermore, Corollary 4.27 states that P(D) = 1− o(1) ≥ 1

2 .
We now apply Theorem 4.29 with this D, with α = 1

2δ, and with P(D) ≥ 1
2 , to deduce

that with probability at least 1 − 2 exp
(
− 1

8δ
2pn
)

there is a subset X̃ of X which is in
D and which has at least

(
1− 1

2δ)pn elements. Additionally, the probability that [n]p has
more than

(
1 + 1

2δ
)
pn elements is by Theorem 4.5 at most exp

(
− 1

8δ
2pn
)
. Suppose that X

satisfies both conditions, which occurs with probability at least 1− 3 exp
(
− 1

8δ
2pn
)

by the
union bound. Then |X \ X̃| ≤ δpn as required.

4.10.2 Transference Principle without Deletion

We are finally ready to prove items (L1) and (L2) of Theorem 4.3.

(L1) and (L2) of Theorem 4.3. We are in Setting 4.2. We have that (L1) follows immediately
from (L3) as an ε-good dense model for X̃ provides an ε-good lower dense model for X .

Let us now show how to get (L2) from (L3) in Theorem 4.3. First, we may assume without
loss of generality that Ω̄ = {ω̄ = 1 − ω : ω ∈ Ω} is contained in Ω. This is because this
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assumption at most doubles the size of Ω, and therefore doesn’t affect the order of magnitude
of its size. Let C be large enough to guarantee that (L3) works for ε = ε

2k+2 . Assume the
C conditions are satisfied. Let X be a sample of [n]p such that |{s ∈ S : s ⊆ X}| ≤ (1 +
ε
2 )E[|{s ∈ S : s ⊆ [n]p}|] and such that X admits an ε

2k+2 -deletion X̃ such that all subsets
of X̃ have an ε

2k+2 -good dense model. This happens with probability at most 1− ηn on the
choice of X = [n]p. Notice that we have |{s ∈ S : s ⊆ X \ X̃}| ≤ ε

2E[|{s ∈ S : s ⊆ [n]p}|]
because of our upper bound on |{s ∈ S : s ⊆ X}| and because by Theorem 4.18 we have
that 1 is a dense model of X̃ . Let µ and µ̃ be the p−1 scaled indicator functions of X and X̃
respectively.

Let us now consider a subset Y of X . Let Ỹ = Y ∩ X̃ , and let Ȳ = X̃ \ Y . Let f be the
scaled indicator function of Ỹ . We use f̄ for the complements in X̃ .

Fix an arbitrary ω ∈ Ω, and let ω̄ = 1− ω. We have the following.

⟨µ̃, ∗i,1(µ̃, . . . , µ̃)⟩ = ⟨µ̃, ∗i,ω(µ̃, . . . , µ̃)⟩+ ⟨µ̃, ∗i,ω̄(µ̃, . . . , µ̃)⟩

Consider now that we can split the set of edges of S contained in X̃ by grouping together
edges depending on what are the indices corresponding to elements of Y and which to
element of Ȳ .

⟨µ̃, ∗i,ω(µ̃, . . . , µ̃)⟩ =
∑

f∈{f,f̄}k

⟨fi, ∗i,ω(f1, . . . , fk)⟩

Because Ỹ is a subset of X̃ , we can ask for an ε
2k+2 -good dense model ZỸ of Ỹ . Let g be

the scaled indicator function of its model ZỸ and define ḡ as 1− g. Because ZỸ is a good
model of Ỹ we have ∥f − g∥Φ(1) ≤ ε

2k+2 . We therefore have:

∑
f∈{f,f̄}k

⟨fi, ∗i,ω(f1, . . . , fk)⟩ =
∑

g∈{g,ḡ}k

⟨gi, ∗i,ω(g1, . . . ,gk)⟩ ±
ε

4
.

We can substitute this to obtain the following:

⟨µ̃, ∗i,1(µ̃, . . . , µ̃)⟩≥⟨µ̃, ∗i,ω̄(µ̃, . . . , µ̃)⟩+ ⟨f, ∗i,ω(f, . . . , f)⟩ − ⟨g, ∗i,ω(g, . . . , g)⟩

+
∑

g∈{g,ḡ}k

⟨gi, ∗i,ω(g1, . . . ,gk)⟩ −
ε

4
.

Considering now that g + ḡ = 1, and that, by Theorem 4.18 we have ∥µ̃− 1∥Φ(µ̃,1) <
ε

2k+2 ,
we obtain:

⟨µ̃, ∗i,1(µ̃, . . . , µ̃)⟩≥⟨µ̃, ∗i,ω̄(µ̃, . . . , µ̃)⟩+ ⟨f, ∗i,ω(f, . . . , f)⟩ − ⟨g, ∗i,ω(g, . . . , g)⟩

+⟨µ̃, ∗i,ω(µ̃, . . . , µ̃)⟩ −
ε

2
.

By cancelling out the terms (which we can do as 1 = ω + ω̄), we obtain:

⟨f, ∗i,ω(f, . . . , f)⟩ ≤ ⟨g, ∗i,ω(g, . . . , g)⟩+
ε

2
.

Returning to the definition of inner product (i.e. noticing that we have ⟨f, ∗i,ω(f, . . . , f)⟩ =
pk

e(S)

∑
s∈S ω(s)1(s ⊆ Y ) and similarly for µ̃ and X̃ , f and Ỹ , and X and µ) we conclude.
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4.11 A sparse counting lemma

In this section we prove Theorem 4.30. This turns out to be an application of Theorem 4.3,
together with a standard counting lemma for hypergraphs; most of what follows is simply
dealing with the somewhat complicated hypergraph regularity setup.

Let k be a positive integer. A k-complex is a down-closed hypergraph in which all edges
have size at most k. Given a k-complex H with at least k + 1 vertices, we define its k-
density as dk(H) := ek(H)−1

v(H)−k , where ek(H) is the number of edges of size k in H , and v(H)

denotes the number of vertices of H . We also define mk(H) := maxH′⊆H dk(H
′), where

the maximum is taken over all sub-k-complexes H ′ of H with at least k + 1 vertices.

Given a vertex set [N ], a k-partition with ℓ clusters V consists of a family of disjoint
subsets V{1}, . . . , V{ℓ} ⊆ [N ] called clusters, together with, for each integer 2 ≤ i ≤ k and
each subset E ⊆ [ℓ] of size i, a collection VE of subsets of [N ] of size i, called i-edges. These
VE must satisfy the following compatibility condition: for every e ∈ VE and every j ∈ E,
the set e intersects the cluster V{j} in exactly one element, and the remaining i− 1 elements
of e form an (i−1)-edge in VE\{j}. The supporting (i−1)-graph of VE is the (i−1)-uniform
hypergraph consisting of all (i− 1)-sets that arise in this way from some edge of VE .

Let E ⊆ [ℓ] with |E| = i ≥ 2, and suppose VE is given along with its supporting
(i− 1)-graphs W1, . . . ,Wi. For any subsets Q1 ⊆W1, . . . , Qi ⊆Wi, define R(Q1, . . . , Qi)

to be the collection of i-element subsets of [N ] that contain one element from each Qj . In
particular,R(W1, . . . ,Wi) contains VE . IfR(W1, . . . ,Wi) is nonempty, and given p ∈ (0, 1],
we define respectively the relative density of VE and the relative p-density of VE as follows:

d∗(VE) :=
|VE |

|R(W1, . . . ,Wi)|
and d∗p(VE) :=

|VE |
p · |R(W1, . . . ,Wi)|

.

Finally, for singleton sets, we define d∗(V{i}) := |V{i}|N−1.

Let E ⊆ [ℓ] be a set of size i, with 2 ≤ i ≤ k, and let p ∈ (0, 1]. Consider VE and let
W1, . . . ,Wi denote the supporting (i−1)-graphs of VE . We say that VE is (ε, r, p)-regular
with respect to its supporting (i−1)-graphs if the following holds. For any set R∗ of the form
R∗ =

⋃r
j=1R(Q

(j)
1 , . . . , Q

(j)
i ) whereQ(j)

i ⊆Wi, we have that if |R∗| ≥ ε|R(W1, . . . ,Wi)|,
then

|VE ∩R∗|
p|R∗|

= d∗p(VE)± ε.

If any of the parameters r, p, or both are omitted, they are understood to be equal to 1.

A k-partition is said to be (εk, ε, d1, . . . , dk, r, p)-regular if the following conditions hold:

• For each i ∈ [ℓ], we have |V{i}| ≥ d1N ;
• For every E ⊆ [ℓ] with 2 ≤ |E| ≤ k−1, the set VE is ε-regular with respect to its

supporting (|E| − 1)-graphs, and its relative density satisfies d∗(VE) ≥ d|E|;
• For every E ⊆ [ℓ] with |E| = k, the set VE is (εk, r, p)-regular with respect to its

supporting (k−1)-graphs, and its relative p-density satisfies d∗p(VE) ≥ dk .

Let H be a k-complex. An injective map ϕ : V (H)→ [ℓ] is called a k-complex homomor-
phism if for every edge e ∈ E(H), the image ϕ(e) has size |e|. That is, ϕ maps the vertices
of each edge to distinct cluster indices. Given a k-partition V with ℓ clusters over the vertex
set [N ], a map ψ : V (H)→ [N ] is said to be a ϕ-partite copy of H in V if ψ is injective and
for every edge e ∈ E(H), the image ψ(e) is an element of Vϕ(e).

We are finally ready to introduce the hypergraph counting result.
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Theorem 4.30 (Counting lemma for sparse hypergraphs). Given k ≥ 2, a fixed k-complex H ,
and δ > 0, there exists εk > 0 such that for any d2, . . . , dk > 0 (with 1/di ∈ N)5 there exist
ε > 0 and r ∈ N such that for any d1 > 0 there exists C∗ with the following property. Suppose
that N is sufficiently large, and p ≥ max

(
C∗N−1, C∗N−1/mk(H)

)
. With high probability,

the random k-uniform hypergraph Γ = G(k)(N, p) has the following property.
Given any k ≤ ℓ ≤ v(H) and (εk, ε, d1, . . . , dk, r, p)-regular k-partition V with ℓ clusters

on [N ], such that for each E ⊆ [ℓ] with |E| = k we have VE ⊆ Γ, and given any k-complex
homomorphism ϕ : v(H)→ [ℓ], the number of ϕ-partite copies of H in V is

(1± δ)Nv(H)
∏

e∈E(H)

d∗
(
Vϕ(e)

)
.

In the above theorem, we do allow for the possibility that some edges of H of uniformity
smaller than k are not contained in any k-edges of H ; that is, H need not be just the down-
closure of a k-uniform hypergraph. This turns out to be required in some applications for
k ≥ 3; for k = 2 this extra generality is not interesting.

The proof of Theorem 4.30 is conceptually divided in four steps. The first one, deals with
the special case where p = 1, H is the complete k-graph K(k)

v(H), and ℓ = v(H) is exactly
[Coo+09, Lemma 4]. The second step is to drop the assumption that H is the complete
k-graph K(k)

v(H) (keeping the assumptions p = 1, and ℓ = v(H)). This step requires only a
few lines of explanation, which we now provide. Indeed, what [Coo+09, Lemma 4] allows us
to do is to count ϕ-partite copies of the complete k-graph over v(H) in any given k-partition.
Imagine now we want to count ϕ-partite copies of H in the k-partition V for some H that is
not the complete graph. What we can do, is to form a new partition V ′ by adding all possible
supported edges to Vϕ(e) for each e /∈ E(H). That is, for each such e, we let Vϕ(e) in V ′

consist of all k-sets supported by the relevant lower-level graphs. Under this modification,
the number of ϕ-partite copies of H in V becomes equal to the number of ϕ-partite copies of
the complete k-graph K(k)

v(H) in V ′, which is counted precisely by [Coo+09, Lemma 4]. The
next step is to drop the condition ℓ = v(H), which requires a bit more care. The final step,
dropping the condition p = 1, is where we actually make use of our transference principle.

Proof of Theorem 4.30, p = 1. Let εk > 0 be small enough for the ℓ = v(H) case of Theo-
rem 4.30 with input 1

2δ (which is given by our previous step and [Coo+09, Lemma 4]). Given
d2, . . . , dk (such that 1/di ∈ N), let ε > 0 and r ∈ N be returned by the ℓ = v(H) case for
the same input. Suppose v(H)N is sufficiently large for this case with a final input 1

v(H)d1.
Given ℓ and V as in the statement of Theorem 4.30, let V ′ on vertex set [v(H)N ] be

obtained from V by, for each i ∈ [ℓ], taking
∣∣ϕ−1(i)

∣∣ copies of V{i} and adding all incident
edges between them. Note that the increased size of the vertex set is sufficient to contain all
these copies. Letting the clusters of V ′ be indexed by [v(H)], let ϕ′ : V (H)→ [v(H)] be an
injective map sending each x ∈ V (H) to a copy of V{ϕ(x)}.

Now, the ϕ-partite copies of H in V and ϕ′-partite copies of H in V ′ are almost in
one-to-one correspondence: the difference is that some ϕ′-partite copies of H in V ′ do not
correspond to injective maps to V . However, there can be at most

(
v(H)
2

)
(v(H)N)v(H)−1

such copies, so applying the known case of Theorem 4.30 we conclude that the number of
5This condition is not necessary for any reason besides formality. We insert this for completeness as we use in

the proof [Coo+09, Lemma 4]. Any similar result without this condition would extend to our setting.
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ϕ-partite copies of H in V is

(
1± 1

2δ
)
Nv(H)

∏
e∈E(H)

d∗
(
V ′
ϕ′e)

)
±
(
v(H)

2

)
(v(H)N)v(H)−1

= (1± δ)Nv(H)
∏

e∈E(H)

d∗
(
Vϕ(e)

)
.

as required, where the equality uses the fact that N is sufficiently large. The fact that
the vertex set of V ′ has size v(H)N is exactly cancelled by the corresponding decrease by a
factor v(H) in each d∗

(
{i}
)
.

Finally we use Theorem 4.3 to deduce the general case.

Proof of Theorem 4.30. The case ek(H) = 0 of Theorem 4.30 is precisely the p = 1 case
viewing H as a (k − 1)-complex.

The case ek(H) = 1 is standard and does not require Theorem 4.3. We give only a sketch.
Letting H ′ be the (k − 1)-complex H with the one k-edge removed. An application of the
Extension Lemma [Coo+09, Lemma 5] shows that all but a tiny fraction of k-sets supported
by any given V ′ a (k−1)-partition are in roughly the same number of ϕ-partite copies ofH ′,
and that the exceptional k-sets account for only a tiny fraction of all ϕ-partite copies of H ′.
A standard application of Chernoff’s inequality shows that with very high probability, when
G

(k)
N is revealed, there are very few edges on these exceptional k-sets and the number of

ϕ-partite H-copies they generate is tiny compared to those on typical k-sets. Critically, this
‘very high probability’ is sufficient for a union bound over choices of V ′ and ϕ. Supposing
now this likely event occurs, given any regular V , letting V ′ the the (k−1)-partition obtained
by removing the k layer, we see that (using the fact that εk is much smaller than dk) most
of the k-edges of V are on typical k-sets and a short calculation gives the desired count of
ϕ-partite H-copies.

Given H with ek(H) ≥ 2 and δ > 0, let 2εk > 0 be small enough for the p = 1 case of
Theorem 4.30 with input 1

2δ. Given d2, . . . , dk > 0, let ε and r be given by the p = 1 case of
Theorem 4.30 for input d2, . . . , dk−1,

1
2dk . Let finally d1 > 0 be given.

We set c = 2v(H)!, and apply Theorem 4.3 with input k = ek(H)6, c and error parameter

ε∗ =
δdkε

2
k

10v(H)!

∏
e∈E(H)

d|e| .

Let C be the constant returned by Theorem 4.3. Order arbitrarily the k-edges of H . Let
n =

(
N
k

)
enumerate the edges of K(k)

N , and let S consist of the ordered subsets of [n]
corresponding to ek(H)-sets in [N ] which form isomorphic copies of the k-uniform edges
of H , in the chosen order.

Let C∗ = 10rkCk!. We now verify the maximum degree condition on S holds for
p ≥ C∗n−1/mk(H). To begin with, we estimate e(S). Let q(H) be the number of vertices
of H which are not in any k-uniform edge of H . There are (1 + o(1))Nv(H)−q(H) injective
maps from the vertices of H which are in k-edges to [N ], each of which gives one element
of S, so e(S) = (1 + o(1))Nv(H)−q(H).

Given 1 ≤ ℓ ≤ ek(H), let x be a sequence of length ek(H) from [n] ∪ {∗} with exactly
ℓ entries not equal to ∗. For ℓ = 1, by symmetry we have degS(x) = e(S)

n , which is as
required. We now assume ℓ ≥ 2. Let W ⊆ [N ] be the vertices of K(k)

N which are contained
6This is bad notation, but k is only used in this proof as in the statement of Theorem 4.30, we have it here

k = ek(H) because k also has a meaning in Theorem 4.3.
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in some edge in x. By definition, if x has two identical non-∗-entries, then degS(x) = 0, so
we can assume that x has at least two distinct non-∗ entries, and hence |W | ≥ k + 1. By
definition of mk(H), we have

ℓ−1
|W |−k ≤ mk(H) , so |W | ≥ ℓ−1

mk(H) + k .

To obtain a member of S which agrees with x at the non-∗ coordinates, we can at most pick
a further v(H)− |W | − q(H) vertices in k-edges of H and one of the at most v(H)! maps
from the vertices of H in k-edges to the picked vertices together with W . Thus, we have

degS(x) ≤ Nv(H)−|W |−q(H)v(H)!

≤ 2v(H)!e(S)N−|W |

≤ 2v(H)!e(S)N
− ℓ−1

mk(H)−k

= 2v(H)! e(S)
Nk

(
N−1/mk(H)

)ℓ−1

≤ 2v(H)! e(S)
n

(
p/C∗)ℓ−1 ,

which is the required bound.
By construction, there are at most 2kNk−1 possible setsR(Q1, . . . , Qk) whereQ1, . . . , Qk

are disjoint subsets of
(
[N ]
k−1

)
. Let Σ consist of the indicator functions of the unions of any up

to r sets of the form R(Q1, . . . , Qk). Then we have

|Σ| ≤ 2 · 2rkN
k−1

≤ exp
(
pn
C

)
,

where the inequality uses p ≥ C∗N−1 and the choice of C∗.
For each k ≤ ℓ ≤ v(H), consider each choice of a k-partition V with ℓ clusters whose k

level is complete (i.e. each VE with |E| = k is equal to R(W1, . . . ,Wk) where W1, . . . ,Wk

are the supporting (k − 1)-graphs), and each ϕ : v(H) → [ℓ]. For each such (ℓ,V , ϕ) we
construct a subcount ω as follows. For each member s of S, we count the number w(s) of
ϕ-partite copies ψ of H in V such that the i-th edge of H is mapped to the i-th member of s,
for each 1 ≤ i ≤ ek(H). Observe that necessarily 0 ≤ w(s) ≤ (v(H))!Nq(H), where q(H)

is the number of vertices of H not in any k-edge of H . We define ω(s) = 1
(v(H))!Nq(H)w(s),

which is therefore in [0, 1]. We say this is the subcount corresponding to (ℓ,V ′′, ϕ) for any
choice V ′′ of a k-partition which is identical to V on any level except perhaps the k-th. We
now upper bound the size |Ω| of the set of all such subcounts. There are v(H) choices of ℓ,
and at most v(H)ℓ ≤ v(H)v(H) choices of ϕ. What remains is to estimate the number of
choices of V . Observe that V is defined by the choices of VE for 1 ≤ |E| ≤ k − 1. There are
at most Nv(H)+1 ways to choose the clusters, since the clusters are disjoint. Again since the
clusters are disjoint, to define VE for each 2 ≤ |E| ≤ k − 1 it suffices to choose a subset of
each of

(
[N ]
2

)
through

(
[N ]
k−1

)
, which can be done in at most 2N2 · · · 2Nk−1 ways. We conclude

|Ω| ≤ v(H)v(H)+1Nv(H)+12kN
k−1

≤ exp
(
pn
C

)
,

where as before the inequality uses p ≥ C∗N−1 and the choice of C∗, and this time also
that N is sufficiently large.

Suppose now that X = [n]p satisfies the likely event of Theorem 4.3 for this ε∗, S, Σ and
Ω. Let Γ be the corresponding instance of G(k)(N, p).

Given k ≤ ℓ ≤ v(H) and an (εk, ε, d1, . . . , dk, r, p)-regular k-partition V with ℓ clusters
on N , such that for each VE with |E| = k we have VE ⊆ Γ, let Y be the subset of X
consisting of elements in any VE with |E| = k. Let Z be the dense model guaranteed by
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the likely event of Theorem 4.3, and let V ′ be the k-partition with ℓ clusters on N obtained
by replacing each VE where |E| = k with V ′

E corresponding to the elements of Z that are
supported on the (k − 1)-graphs supporting VE .

We claim that V ′ is (2εk, ε, d1, . . . , dk−1,
1
2dk, r, 1)-regular and that the relative densities

of the top level are close to the relative p-densities of V . The regularity of the levels from 1

to k − 1 follows from the regularity of V , and what needs to be proved is that each V ′
E with

|E| = k is (2εk, r, 1)-regular with density d∗(V ′
E) =

(
1± δ

10ek(H)

)
d∗p(VE) ≥ 1

2dk .
To see this holds, fix E and let W1, . . . ,Wk be the supporting (k − 1)-graphs of VE (so

also of V ′
E ). LetR∗ be a union of at most r sets of the formR(Q1, . . . , Qk) (as defined where

we described the set Σ of similarity functions), with the extra condition Qi ⊆Wi for each
1 ≤ i ≤ k. Abusing notation slightly, we think of R∗ as both a subset of

(
[N ]
k

)
and of [n].

Because Z is a dense model of Y , using the similarity function σ which takes the value 1

precisely on R∗, we have

p−1|R∗ ∩ Y | = |R∗ ∩ Z| ± ε∗n .

Taking the particular case that R∗ is all k-sets supported by W1, . . . ,Wk , this immediately
says that

d∗(V ′
E) = d∗p(Ve)± ε∗nN−k

k−1∏
i=1

d
−(ki)
i =

(
1± δ

10ek(H)

)
d∗p(Ve) ≥ dk

2 ,

where the final equality is by choice of ε∗. Suppose now |R∗| contains at least an εk-fraction
of all k-edges supported by W1, . . . ,Wk . Because V is regular, we have

|R∗ ∩ Y | = |R∗ ∩ VE | = (1± εk)d∗(VE)|R∗| = (1± εk)pd∗p(VE)|R∗| .

Putting these bits together, we have

|R∗ ∩ Z| = (1± εk)d∗p(VE)|R∗| ± ε∗n
= (1± εk)

(
1± δ

10ek(H)

)
d∗(V ′

E)|R∗| ± ε∗n

= (1± 2εk)d
∗(V ′

E)

which verifies (2εk, r, 1)-regularity of V ′
E . Here again the final inequality is by choice of ε∗.

Applying the p = 1 case of Theorem 4.3 to V ’, we see that the number of ϕ-partite copies
of H in V ′ is (

1± 1
2δ
)
Nv(H)

∏
e∈E(H)

d∗
(
V ′
ϕ(e)

)
.

Letting ω be the subcount corresponding to (ℓ,V , ϕ), we have by definition of ω∑
s∈S

1(s ⊆ Z)ω(s)(v(H))!Nq(H) =
(
1± 1

2δ
)
Nv(H)

∏
e∈E(H)

d∗
(
V ′
ϕ(e)

)
=
(
1± 3

4δ
)
Nv(H)p−e(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
.

Where the final equality uses that d∗p(VE) = p−1d(VE) =
(
1± δ

8ek(H)

)
d∗(V ′

E) whenever
|E| = k.

Since Z is a dense model of Y , we have

p−ek(H)
∑
s∈S

1(s ⊆ Y )ω(s) =
∑
s∈S

1(s ⊆ Z)ω(s)± ε∗e(S) .
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We therefore get(
1± 3

4δ
)
Nv(H)p−ek(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
= p−ek(H)

∑
s∈S

1(s ⊆ Y )ω(s)(v(H))!Nq(H) ± ε∗e(S)(v(H))!Nq(H)

= p−ek(H)
∑
s∈S

1(s ⊆ Y )ω(s)(v(H))!Nq(H) ± ε∗Nv(H)(v(H))! ,

and so∑
s∈S

1(s ⊆ Y )ω(s)(v(H))!Nq(H) =
(
1± 3

4δ
)
Nv(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
± ε∗(v(H))!Nv(H)pek(H)

=
(
1± δ

)
Nv(H)

∏
e∈E(H)

d∗
(
Vϕ(e)

)
by choice of ε∗. Since the left-hand side of this is, by definition of ω, the number of ϕ-partite
copies of H in V , this completes the proof.



Part III

LEARNING TO PLAY



People who boast about their IQ are losers.

S. Hawking

5
Reinforcement Learning, Collusion, and the Folk
Theorem

In this Chapter, as standard in the Game Theory literature, we postpone formal proof of our
statements to the appendix.

Recent advances in Machine Learning and Artificial Intelligence have led to the deploy-
ment of learning algorithms in economic settings such as pricing, auctions, and advertising.
However, a growing body of literature shows that such algorithms may learn to collude
without explicit coordination, posing serious economic and regulatory concerns (see [ES16;
GIV20; HLZ24] and references therein). The potential for collusion among learning agents
was demonstrated in [Cal+20], where learning agents in a pricing game consistently selected
prices above competitive levels. Notably, in these simulations, a deviation by one agent
to competitive pricing temporarily induced others to follow, before all agents reverted to
higher, above-competitive prices. This pattern of alternating cooperation and punishment
phases resembles equilibrium strategies extensively studied in the context of repeated games.
According to the Folk Theorem (see [AS94; Rub94; FM86]), in repeated games sufficiently-
patient agents can sustain a wide range of payoff vectors, including collusive outcomes,
through strategies that reward and punish based on observed actions. In general, the ability
to react to others’ behaviour, via rewarding or sanctioning opponents based on their actions,
allows for the emergence of a variety of equilibrium payoffs. We show that the same happens
when learning agents in a repeated game are allowed to condition their strategies on the
history of the play.

In this chapter, we show that the outcomes observed in [Cal+20] are not isolated incidents
but instead exemplify a broader class of behavioural phenomena. We focus on q-replicator
dynamics1, a family of learning dynamics that generalises replicator dynamics, projected
gradient dynamics, and log-barrier dynamics [Sak+23]. Using classical tools from the repeated
games literature, we characterise the set of strategy profiles and associated payoff vectors
that can arise under these dynamics. Our results enrich the Folk Theorem by demonstrating
how it applies in the context of players that learn to play in repeated games. In settings with
complete information and perfect monitoring, we prove the following Folk Theorem: any
feasible and individually-rational payoff vector corresponds to an equilibrium that is attracting
—meaning that if the initial strategy profile lies within a sufficiently small neighbourhood
of this equilibrium, the dynamics converge to it. In the language of dynamical systems, we
could say that these equilibria have a non-trivial basin of attraction. We further extend our
results to environments with incomplete information and imperfect monitoring, allowing

1Not to be confused with Q-Learning.
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comparisons with broader game-theoretic solution concepts.
By generalising specific instances of algorithmic collusion, we offer a broader understand-

ing of collusion as an outcome of repeated interactions in learning environments. Similarly,
by shifting from multi-agent learning to game-theoretic solution concepts, we gain a re-
newed perspective on these notions, many of which naturally align with, and acquire new
significance in, a learning framework.

Our Contribution - Technical Results

We consider a setting in which players simultaneously apply Reinforcement Learning (RL)
algorithms to optimise their strategies in a repeated game. Each player iteratively updates
their strategy to maximise rewards, guided by their learning algorithm. Since the game
unfolds through repeated interactions, players can condition their actions on the recent
history of play. In order to keep finite the set upon which players can condition, we impose
a finite-recall restriction on players. Our framework accommodates a range of monitoring
structures, i.e. perfect, public, and private, and applies to both complete and incomplete
information settings.

When players apply learning algorithms, they induce a dynamical system over the space
of strategies. Analysing these dynamics is particularly challenging, as each agent’s decisions
directly shape the environment in which the others learn. To establish that a strategy profile
is learnable (i.e., attracting from a non-zero measure of initial conditions) we formulate a
pair of variational inequalities that must be satisfied. These inequalities are typically derived
in the context of stochastic games, where players condition their actions on a common state
of the game. Our approach generalises, for the first time in the literature, these techniques
to settings in which players may condition their actions on private states or histories. We
then leverage recent advances in stochastic approximation theory to derive learning results
applicable under imperfect monitoring and incomplete information.

We further characterise the learnable strategy profiles and their associated payoff vectors,
ultimately proving a Folk Theorem result. Under perfect monitoring, the learnable payoff
vectors coincide with those that are feasible and individually rational. For imperfect moni-
toring, we characterise the strategy profiles that can be learnt, emphasising how monitoring
structures influence the outcomes of multi-agent learning.

Our Contribution - Implications

To the best of our knowledge, this is the first Folk Theorem for learning in general finite-player,
finite-action games, extending the literature in two distinct directions.

First, much of the existing work studies multi-agent RL through the lens of static games,
largely overlooking the phenomena unique to repeated games [San10; MS18]. This gap is
significant: transitioning from single-agent to multi-agent RL in the context of repeated
interactions introduces fundamentally different strategic possibilities. In single-agent RL, the
distinction between one-shot and repeated environments is minimal: the optimal strategy
is often to repeat the one-shot solution. In contrast, multi-agent RL in repeated settings
enables a richer set of equilibrium strategies, which allows more complex and cooperative
behaviours to develop.

The second extension is that we move beyond the better-studied potential games and
zero-sum games [LC03; DFG20; Per+21; Fox+22; Mgu+21], giving a broader view of what
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agents might learn, whether collusive, competitive, or otherwise.

For the RL literature, this chapter highlights how game theory provides a foundation for
understanding what RL agents can learn and under which conditions. Conversely, for the
game theory literature, our findings shed new light on well-established solution concepts.
We show that any strategy profile in which each player plays their strict best response over
a finite strategy set is learnable. This chapter focuses on players conditioning on a finite
set of histories, but this can be generalised to include a finite set of private states as well.
Consequently, (strict) perfect public equilibria based on finite recall are learnable by RL
methods. However, sequential equilibria require an infinite hierarchy of beliefs. As a result,
when such strategies cannot be expressed as distributions over a finite set, they are not
learnable by RL methods2. Additionally, strategy profiles outside the sequential equilibrium
framework can still emerge through RL, provided they satisfy certain criteria. Thus, RL
methods may replicate parts of classical solution concepts while also generating outcomes
beyond them. We explore this topic further in Section 5.4.

In summary, the link between RL and game theory stems from their shared aim of
understanding strategic interactions over time. While RL adapts to dynamic environments,
game theory offers the tools to formalise and analyse them, allowing machine learning
algorithms not only to adhere to, but also to extend, classical game-theoretic concepts, which
leads to a deeper understanding of strategic learning.

The remainder of this chapter is organised as follows. Section 5.1 introduces the
underlying model; Section 5.2 presents the relevant solution concepts; Section 5.3 introduces
the learning dynamics; Section 5.4 contains our results; and Section 5.5 outlines possible
directions for future research.

5.1 The Game Model

The aim of this section is to introduce our model of repeated games with imperfect monitoring
and to specify our solution concepts. We start by defining the concept of stage game, we
then introduce repeated games with imperfect monitoring, and we conclude by introducing
our solution concepts.

The Stage Game

A stage game (or one-shot game, or sometimes simply game) is an ordered triple G =

(N,A, (Ri)i∈N ) where:

• N is the finite set of players,

• A =
∏

i∈N Ai where Ai is the finite set of actions available to player i ∈ N ,

• Ri : A→ R is the reward function of player i ∈ N .

For a given stage game G, a round of G consists of an action profile a = (a1, . . . , a|N |) ∈
A and its corresponding reward vector r = (r1, . . . , r|N |) = (R1(a), . . . , R|N |(a)).

For any finite set B, we denote by ∆(B) the set of probability distributions over B (a
simplex of dimension |B| − 1).

In this context, for a fixed game G, we can define for each player i ∈ N their utility
function ui :

∏
j∈N ∆(Aj)→ R as the expected value of their reward from the mixed action

2Characterising the set of payoffs achievable via sequential equilibria with finite memory is an interesting
direction for future work, but lies beyond the scope of this chapter.



the game model 133

profile π ∈
∏

j∈N ∆(Aj). We have that each player j draws their actions independently
at random from the distribution πj , and so ui(π) = Ea∼π[Ri(a)]. With a slight abuse of
notation, we sometimes write π = (πi, π−i) to denote the combination of player i’s action
or strategy with the actions or strategies of their opponents.

The Repeated Game

Now that we have introduced the stage game, we consider a model in which players play a
stage game G repeatedly over an indefinite number of periods. In our setting, there is a small
fixed probability that the repeated game terminates at the end of each period. As known
from the literature, this is strategically equivalent to a repeated game with no probability of
termination after each period, but with future rewards being exponentially discounted.

The model we propose is notable for its treatment of the monitoring process, allowing full
generality regarding what each player observes at the end of each period. The observation
of each player is modelled as a random variable, called a private signal, whose distribution
depends upon the action profile played. We denote by q the function which maps the action
profile played to the joint distribution over signal realisations observed by the players. In
particular, the signals of the players may be correlated or independent. Public monitoring, in
which all players observe the same signal, and perfect monitoring, in which each player’s
signal reveals the whole action profile played, are specific cases of our model. Players
condition their actions upon their private history, which we assume is comprised of their
own actions and signal realisations. Furthermore, we assume that, in every period, each
player can deduce their reward from their individual action and signal realisations. We also
assume that each player has finite recall, a natural assumption in the context of RL.

Structure of the repeated game

Formally, we define a repeated game with imperfect monitoring as a process that unfolds as
follows: the starting information is:

• G = (N,A, (Ri)i∈N ) is a stage game,

• Z =
∏

i∈N Zi where Zi is the finite set of possible private signal realisations for
player i ∈ N ,

• q : A → ∆(Z) is the joint distribution over signal realisations, conditional on the
action profile played,

• δ is the discount factor, which we interpret as the termination probability of the game
at each period.

An episode of the repeated game with stage game G is a process of indefinite length
created as follows:

At the beginning of period t+ 1 the current history is given by:

• ht = (a1, z1, . . . , at, zt), where each ak is an element of A and each zk is in Z - the
history of the game up to and including period t (this is empty for t = 0). The set of all
possible histories of the game up to and including period t is denoted byHt = (A×Z)t.
The ith component of ht is denoted by hti and is called the private history of player i;
similarly, Ht

i = (Ai × Zi)
t is the set of all possible private histories of player i up to

and including period t.

During time t+ 1 the following are sampled:
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• at+1 = (at+1
1 , at+1

2 , . . . , a|N |
t+1) - the realised action profile at period t + 1. We

dedicate our next subsection to explain how each player i samples at+1
i .

• zt+1 = (zt+1
1 , zt+1

2 , . . . , z|N |
t+1) - the realised signal profile at period t+1 is sampled

from q(at+1),

• rt+1 = (rt+1
1 , rt+1

2 , . . . , rt+1
|N | ) - the realised rewards at period t + 1. We have that

rt+1
i = Ri(a

t+1).

At the end of period t + 1, a {0, 1} Bernoulli random variable St+1 with parameter δ
is sampled independently. If St+1 = 0, we terminate the game and return h := ht+1 as a
sample of the repeated game. Let τ(h) be the termination period. If St+1 = 1, we repeat
our last step. For a sampled history h, we can extend the notation just introduced. So, for
example, we write Ri(h) to denote the total reward of player i for the sampled history h.

Action Selection

We now explain how each player i selects at+1. Given:

• ĥli = (at−l+1
i , zt−l+1

i , . . . , ati, z
t
i) - the private history of player i of the last l periods,

called the l-recall history (the index t is omitted for readability). If t < l, then ĥli =
(a1i , z

1
i , . . . , a

t
i, z

t
i),

• Ĥ l
i = (Ai × Zi)

l - the set of l-recall histories of player i,

• Ĥℓ =
∏

i∈N Ĥℓi
i for some ℓ ∈ Z|N |

+ - the set of ℓ-recall histories,

• H∞ =
⋃

t∈N(A× Z)t - the set of all possible (finite) histories,

• h∞ = (a1, z1, a2, z2, . . . ) ∈ H∞ - a history, a play of the game.

We use the terms strategies (used in game theory literature) and policies (used in RL
literature) interchangeably. We consider strategies that can only condition upon finite
histories, so player i uses a strategy that conditions actions on ĥℓii : the private history of the
last ℓi periods.

The players use mixed strategies, where the strategy of player i is a distribution over
pure strategies. A pure strategy of player i plays deterministically after every private history,
hence the set of mixed strategies of player i, denoted Πℓi

i , is ∆
(
A

Ĥ
ℓi
i

i

)
.

A strategy profile π generates a distribution over the set H∞ of realisations of the
repeated game. Given a strategy profile π ∈ Πℓ, we denote the expected utility of a player
i ∈ N as:

Vi(π) := Eh∞∼π

τ(h∞)∑
t=0

Ri

(
a(t)
) .

5.2 Solution Concepts

We now introduce the solution concepts of the models presented in the previous section.
While we start by defining Nash equilibria for one-shot games, more attention is dedicated

to defining this concept in repeated games as this is a more nuanced setting.
To provide our results in greater generality, we defined repeated games as a highly

parameterised model with both the recall length of the players and the type of monitoring
being parameters.

In the game theory literature, specific solution concepts are defined for certain settings of
monitoring, recall and strategy types. The discussion of the correspondence of the solution
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concepts presented here to these specific equilibria (for example, sequential, subgame perfect
and perfect public equilibria) can be found in Section 5.2.

Eqilibrium in one-shot games

Given a one-shot game G, a Nash equilibrium (or simply an equilibrium) for G is a strategy
profile in which every player is best responding to their opponents’ strategies. Formally,

Definition (Nash equilibrium). A strategy profile π∗ ∈
∏

i∈N ∆(Ai) is a Nash equilibrium
for a one-shot game G if for any player i ∈ N and any possible strategy πi ∈ ∆(Ai), we
have ui(π∗

i , π
∗
−i) ≥ ui(πi, π∗

−i)

Furthermore, a strict Nash equilibrium is a Nash equilibrium in which every player’s
utility would be strictly smaller after any unilateral deviation. Thus,

Definition (Strict Nash equilibrium). A strategy profile π∗ ∈
∏

i∈N ∆(Ai) is a strict Nash
equilibrium for G if for any player i ∈ N and any possible strategy πi ∈ ∆(Ai) \ {π∗

i }, we
have ui(π∗

i , π
∗
−i) > ui(πi, π

∗
−i).

As discussed below, a strict Nash equilibrium must have each agent playing a pure
(non-mixed) strategy.

Eqilibrium in repeated games

In the setting of repeated games, similar definitions can be given. However, a typical
assumption of the game-theoretical literature is that the players can condition their strategies
on histories of unbounded length. This assumption clashes with computability considerations
that are a fundamental part of a RL analysis. In the remainder of the section, we therefore
introduce a concept of equilibrium for repeated games where each player is allowed a recall
of a fixed finite length.

Given a repeated game with stage game G and a vector of integers ℓ ∈ NN , a strategy
profile π∗ ∈ Πℓ :=

∏
i∈N Πℓi

i is an ℓ-recall equilibrium if no player i has a profitable
unilateral deviation to any ℓi-recall strategy.

Definition (ℓ-recall equilibrium). A strategy profile π∗ ∈ Πℓ is an ℓ-recall equilibrium if for
any player i ∈ N and any ℓi-recall strategy πi ∈ Πℓi

i , we have Vi(π∗) ≥ Vi(πi, π∗
−i).

When considering strict equilibria in the context of repeated games, a more subtle
definition than the one given for the one-shot game case is required. Indeed, a core property
of strict Nash equilibria in one-shot games is that no player can unilaterally deviate to any
other strategy while maintaining the same payoff. This is a desirable property of the concept
of strict Nash equilibrium that we would like to preserve in the repeated setting, which,
however, does not immediately translate to the repeated-game setting unless we are careful
with the definition.

Indeed, let π∗ be a pure strategy profile in the repeated game framework, and consider
some player i ∈ N . Because π∗

−i is pure, in general, some histories occur with probability
zero. In particular, there could be some history h′ ∈ Ĥℓ that cannot occur if the opponents
of i play π∗

−i. The key idea is the following: there is no difference in the expected reward for
player i between π∗

i and some other strategy πi that only behaves differently following h′.
Hence, if we base our definition of equilibrium on only expected rewards, as in the one-shot
setting, we cannot differentiate between two strategies that agree after all histories that
happen with non-zero probability, but that differ off-path.



solution concepts 136

Therefore, in this chapter, we say that π∗ is a strict equilibrium in the repeated setting if
it is a strategy profile for which any player i incurs a strictly positive loss whenever they
unilaterally deviate to a strategy that differs from π∗

i on a history that occurs with some
positive probability.

To formally define an ℓ-recall strict equilibrium in the repeated setting, we start by
considering the following equivalence relation on Πℓ: two strategy profiles π and π′ are
equivalent (we write π ∼ π′) if for every player i and any possible history ĥℓii ∈ Ĥ

ℓi
i we

have that either Pπ′(i observes ĥℓii ) and Pπ(i observes ĥℓii ) are both zero, or they are both
positive and the distribution over Ai that πi induces having observed history ĥℓii is the
same as the one induced by π′

i. We denote by S(π) the equivalence class of π under this
equivalence relation.

We are finally ready to define the following:

Definition (ℓ-recall strict equilibrium). A strategy profile π∗ ∈ Πℓ is an ℓ-recall strict
equilibrium if for any player i and any strategy πi ∈ Πℓi

i , we have Vi(π∗) > Vi(πi, π
∗
−i) or

(πi, π
∗
−i) ∈ S(π∗).

Similarly to the above, we can observe that any ℓ-recall strict equilibrium π∗ must be
deterministic on-path. Moreover, an ℓ-recall strict equilibrium is also an ℓ-recall equilibrium.

Eqivalence classes

As it is often the case when defining equivalence relations, strategy profiles in the same
equivalence class share interesting properties.

Remark. We have that π ∼ π′ if and only if we have that the distributions overH∞ generated
by the two strategy profiles are the same. This can be shown by induction on the length
of the history. Hence, for any player i, the expected payoffs of i for π and π′ are the same
(Vi(π) = Vi(π

′)).

This indicates that no player can distinguish two strategy profiles in the same equivalence
class based only on their individual observations. In particular, the reward that each player
obtains does not change unless the equivalence class of the strategy profile is changed as
well. However, even a basic characteristic of a strategy profile (being a Nash equilibrium) is
not respected under our equivalence relations. Explicitly,

Remark. For π∗, a Nash equilibrium, it may not be true that all elements of S(π∗) are also
Nash equilibria.

To see this, consider the repeated prisoners’ dilemma game, where the actions for each
player are either Cooperate (C) or Defect (D) and each player has one period recall and
perfect monitoring. Consider the following strategy: π∗

1 = π∗
2 is play D all the time. This is

a strict Nash equilibrium because if your opponent is playing D regardless of history, you
should be playing always D as well.

However, here is another strategy for player 2 that yields the same distribution over
outcomes as π∗

2 against π∗
1 : playD in the first period and then tit-for-tat (copy the opponent’s

action from the previous period) in subsequent periods. Let us call this strategy π′
2. The

strategy π′
2 is a best response to π∗

1 , however, π∗
1 is not a best response to π′

2, as playing C
forever yields a higher payoff to player 1. Therefore, while (π∗

1 , π
′
2) is in S(π∗) because they

agree on every history observed with non-zero probability, it is not an equilibrium because
there are profitable unilateral deviations for player 1.
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5.3 Learning dynamics

In previous sections, we introduced a formalism which allowed us to analyse the interaction
of players using fixed strategies in the setting of repeated games. In particular, we described
equilibria as strategy profiles with some stability against unilateral deviations, pointing out
the nuances that arise in the repeated setting.

In this section, we integrate these game-theoretical concepts within a learning framework.
In particular, we are interested in analysing how strategy profiles change when each player
independently modifies their strategy to improve their expected reward. To formalise this
scenario, we introduce an episodic framework. In this setting, each episode n is the repeated
version of a game G that is played until termination by each player i playing an ℓi-recall
strategy πn

i . At the end of each episode, each player modifies their strategy given what has
occurred in the episode just played. The goal of this section is to introduce such a framework
formally.

5.3.1 General q-replicator dynamics algorithm

In this subsection, we introduce the specific learning dynamics that we analyse in this
chapter.

As mentioned in the introduction of the game model, we model the strategy of our
players as mixed strategies. Formally, this means that for a player i with recall length ℓi and
with action space Ai, a strategy πi is a probability distribution over the set of possible pure
strategies for player i. A pure strategy is a map from the set Ĥℓi

i of possible histories observed
by player i, to the set of possible actions to take after a specific history is observed. When a
player plays according to a pure strategy, its action after any given history is deterministic.
A mixed strategy is a probability distribution over such pure strategies. Therefore, the set of
mixed strategies available to player i is naturally isomorphic to the simplex Πℓi

i of the space

R|Ai||Ĥ
ℓi
i

|
, and we can consider πi as an element of Πℓi

i .
For each player i, the learning dynamics that they follow therefore result in a sequence

π1
i , π

2
i , . . . of strategies, all of them in Πℓi

i . We consider a setting where each player modifies
their strategy at the end of an episode to improve their expected return. A well-studied
method to modify parameters to improve the output of a function is the gradient ascent
algorithm. In our setting, this would correspond to each player modifying slightly their
mixed strategy to follow the gradient of the expected reward function. However, when all
players modify their strategies at the end of each episode, a ‘moving target’ arises: as one
player optimises against their opponents’ strategies, those opponents are also adjusting
their strategies, causing a change in the optimal response. This non-stationarity can lead to
unpredictable trajectories where strategies cycle [ZGL05] or display chaotic behaviour [PY23]
instead of converging.

We also give some attention to the practical aspect of computing the gradient of the
expected reward function.

Definition of the q-gradient

We present here a more general version of the classical gradient.
As discussed, for each player i, a mixed strategy for i is an element of Πℓi

i . Therefore,
for a fixed strategy profile π−i ∈

∏
j∈N\{i} Π

ℓj
j of the opponents of i, the expected reward

function of player i against the strategy profile π−i is a function from Πℓi
i to R, which
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therefore has gradient in the same space as Πℓi
i , namely R|Ai||Ĥ

ℓi
i

|
. We define the following

generalisation of the definition of gradient for this expected reward function:

Definition (q-gradient). Let q ∈ R≥0, and fix a player i and a strategy profile π ∈
∏

j∈N Π
ℓj
j .

We define the q-gradient of the expected reward function Vi for player i at π as the vector vi
in R|Ai||Ĥ

ℓi
i

|
with components vi,α defined as follows:

vqi,α(πi, π−i) = πq
i,α

(
Vi(eα, π−i)−

∑
β π

q
i,βVi(eβ , π−i)∑

β π
q
i,β

)
.

Where eα is the pure strategy associated with the α-th component of πi.

We observe that the term in the parenthesis is the surplus of utility that the pure strategy
eα obtains over the weighted average of the other pure strategies. Furthermore, note that for
the case q = 0 we retrieve the standard definition of gradient minus a normalisation term.

Additionally, we denote player i’s q-gradient vector by vqi (π) = (vqi,α)
|Ai||Ĥ

ℓi
i

|

α=1 .

The q-replicator dynamics

The dynamic process we study in this chapter is the q-replicator dynamics, which generalises
the widely used gradient ascent. In gradient ascent, the strategy of player i is modified in the
direction of the gradient of the expected reward of player i. This gives rise to a process in
which every player modifies their strategy in a direction that improves their expected payoff,
given fixed opponents’ strategies.

In many environments, gradient ascent is known to converge to local maxima quickly,
and is the best-known algorithm to solve many large-scale problems, to the point that is the
most widely used algorithm for setting weights in Neural Networks [Rud17].

Below, we formally introduce the dynamics considered in this work.

Process 5.1. Let us fix a repeated game with stage game G and with recall profile ℓ. Let
π0 ∈ Πℓ be a policy profile, and let q ≥ 0 be a positive real parameter. For any player i ∈ N ,
let (γni )n∈N be a sequence of positive real numbers. We call q-replicator dynamics of G with
recall ℓ, with starting point π0, and with step sizes γni , the sequence in Πℓ of strategy profiles
π0, π1, . . . defined recursively as follows: given π0, π1, . . . , πn, for each player i, the policy
πn+1
i is calculated as

πn+1
i = proj

Π
ℓi
i

(πn
i + γni v

q
i (π

n)) ,

where proj
Π

ℓi
i

is the Euclidean projection to agent i’s policy space.

For q = 0, the dynamics described above correspond to a multi-agent extension of the
classical gradient-ascent algorithm. When q = 1 and q = 2, the dynamics reduce to discrete-
time variants of the replicator dynamics and log-barrier dynamics respectively [MS18].

Approximating the gradient: REINFORCE

In order to implement Process 5.1, each player needs to be able to compute vqi (πn), which
is the q-gradient of Vi at πn. However, in most practical cases it may not be reasonable to
assume that player i knows π−i, or even their own expected reward function.

This issue may be overcome by player i in episode n having access to an estimator, v̂ni ,
of their q-gradient vqi (πn). We show that any estimator satisfying certain decreasing bounds
on bias and variance is sufficient for our convergence results. One such estimator is the well-
studied algorithm REINFORCE, which allows each player to compute an unbiased estimation
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Algorithm 1 REINFORCE
1: Input: Ri(h), Λi(h), π̂i
2: ŵi ← Ri(h) · Λi(h)

3: v̂i ← π̂q
i,j

(
ŵi(ej)−

∑
k π̂

q
i,k

ŵi(ek)∑
k π̂

q
i,k

)
4: return v̂i

Algorithm 2 ε-GREEDY q-REPLICATOR
1: Input: π0 ∈ Πℓ, {γni }i∈N,n∈N, ε ∈ (0, 1)

2: for n = 1, 2, . . . do
3: π̂n ← (1− ε)πn + ε

4: Sample h ∼ π̂n

5: for i ∈ N do
6: Compute Ri(h),
7: Λi(h)←

∑τ(h)
t=0 ∇i(log(π̂i(a

t
i|h

ℓi
i )))

8: v̂ni ← REINFORCE(Ri(h),Λi(h), π̂
n
i )

9: πn+1
i ← projΠi

(πn
i + γni v̂

n
i )

Figure 5.1: Example of an ε-greedy q-replicator algorithm using REINFORCE.

of vqi (πn) only knowing their strategy πn
i and their realised reward Ri(h) associated to

history h. Interestingly, the version of q-replicator dynamics that uses the REINFORCE
approximation of vqi (πn) has similar convergence conditions to the one that assumes each
player can compute its true value.

In our setting, we have a history h sampled from players playing according to πn ∈ Πℓ.
Each player i knows their reward Ri(h) associated with history h and can calculate a value
Λi(h). This value can be interpreted as a measure of the probability of the actions taken by
player i that resulted in h being realised.

In this setting, presented also in Figure 5.1, REINFORCE is an algorithm that takes as
inputsRi(h) and Λi(h) and gives as output an estimate for vqi (πn). This estimate is unbiased
if, for every possible history h, we have that πn assigns to every possible action profile
a probability bounded away from zero. This is achieved using the ε-greedy q-replicator
dynamics as in Figure 5.1, which is an example of how REINFORCE can be used in practice
by players in the context of q-replicator dynamics. Here, (1 − ε)πn + ε is the strategy
profile where for each history h, each player i plays πn

i with probability 1− ε, and with the
remaining probability plays an action sampled uniformly from Ai.

5.4 Results

In this chapter, we focus on two aspects of the q-replicator dynamics. Firstly, we show that
strict Nash equilibria can be characterised by variation inequalities involving the q-gradient.
This holds for both the one-shot and the repeated game settings. Secondly, following the
proof of [Gia+22], we extend their methodology and analyse under which starting conditions
q-replicator dynamics converge to strict equilibria. We initially consider the theoretical
setting where each player has access to the value of their q-gradient. We then show how
similar results hold in the more realistic setting where each player only has access to their
private history.

Characterisation of eqilibria

In this section, we present results that connect variational inequalities involving the q-
gradient to solution concepts from game theory. Later, we use these variational inequalities
to prove our results for the learning dynamics.
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Lemma 5.2. Let G be a one-shot game as described above. For any q ≥ 0, a strategy profile
π∗ ∈

∏
i∈N ∆(Ai) is a strict Nash equilibrium if and only if the following two conditions are

satisfied:

(N1) For any strategy profile π ∈
∏

i∈N ∆(Ai), we have ⟨vq(π∗), π − π∗⟩ ≤ 0.

(N2) There is ε > 0 such that for any strategy profile π ∈
∏

i∈N ∆(Ai) \ {π∗} at distance at
most ε from π∗, we have ⟨vq(π), π − π∗⟩ < 0.

For q = 0, condition (N1) is equivalent to π∗ being a Nash equilibrium, but, for q > 0,
this property is equivalent to each player only randomising over actions between which
they are indifferent, which is referred to as a selection equilibrium in [Vio05]. Furthermore,
a strategy with property (N1) is sometimes known as first-order stationary policy, whereas a
strategy with both properties (N1) and (N2) is also known as stable.

A similar result to Lemma 5.2 can be obtained in the general setting of repeated games
with the necessary changes made for considering the equivalence classes of Nash equilibria.
In fact, this result is a private case of the following lemma, where the length of each player’s
histories is zero, and the set of histories is the empty set:

Lemma 5.3. Let G be an ℓ-recall repeated game as defined above. For any q ≥ 0, a strategy
profile π∗ ∈ Πℓ is a strict Nash equilibrium if and only if the following two conditions are
satisfied:

(O1) For any π ∈ Πℓ we have ⟨vq(π∗), π − π∗⟩ ≤ 0.

(O2) There exists ε > 0 such that for any π ∈ Πℓ \ S(π∗) at distance at most ε from π∗ we
have ⟨vq(π), π − π∗⟩ < 0.

The intuition behind this result is that the variational inequalities can be viewed as a sum
of the inner products of πi − π∗

i with vi(π∗) or vi(π) for each player i. If this inner product
is negative, it suggests that moving from πi towards π∗

i increases the weight on strategies
with higher payoffs, assuming the opponents’ strategies are fixed at π∗

−i or π−i. Thus, the
first condition indicates no profitable deviations from π∗

i , and the second condition suggests
that moving towards π∗

i improves the strategy when near π∗.

Main results: convergence of learning dynamics

We are interested in studying the trajectory and convergence of (πn)n∈N under certain
choices of q, π0 and γni .

The q parameter allows our model to generalise many well-studied dynamics. For example,
for q = 0, 1 and 2, the q-replicator dynamics are the gradient ascent dynamics, the replicator
dynamics and the log-barrier dynamics respectively. Our results are general in the sense
that they hold for any non-negative value of q.

The selection of the initial strategy profile π0 of our process is also of great impor-
tance. [Vio07] provides an example of a game with a unique Nash equilibrium, which is
also strict, where, outside of a small neighbourhood around the equilibrium, the continuous
replicator dynamics do not converge to this equilibrium. In simulations, it appears that
this occurs for some discrete q-replicator dynamics as well. We are currently researching
this example analytically in different discrete learning methods as a continuation research.
Nevertheless, global convergence does not seem to exist.

Finally, for the reader interested in dynamical systems, we point out that our selection of
γni = γi

(n+m)p indicates the strength of our result. By iteratively using the Euler method, one
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can see that for any starting point π0 close enough to π∗, there is a sequence of step sizes
γni such that the discrete process converges to π∗. By combining this with a compactness
argument, and noticing that the underlying dynamical process is Lipschitz for certain values
of q, it can also be proved that for a fixed repeated game G and π∗ as before, for any ε > 0

there is a fixed sequence γni such that the process converges for any point at distance at most
ε from π∗. These proofs however are intrinsically topological, and have no practical value, as
we cannot explicitly bound the values of these γni . By fixing the step sizes to γni = γi

(n+m)p ,
we provide a tool that can be used explicitly.

Our first result considers a monitoring and informational structure that allows all players
access to their q-gradient and thus allows them to follow the updates defined in Process 5.1.
Under this structure, we obtain that each ℓ-recall strict equilibrium π∗ has a basin of attraction.
By this, we mean that if the learning process begins with players playing a strategy profile
that is sufficiently close to π∗, the dynamics end up converging to S(π∗). Formally,

Theorem 5.4. Let π∗ ∈ Πℓ be an ℓ-recall strict equilibrium. There exists a neighbourhood
U of π∗ in Πℓ such that, for any given π0 ∈ U , any p ∈ ( 12 , 1], and any positive m, there
are (γi)i∈N small enough such that we have the following: if (πn)n∈N is the sequence of play
generated by q-replicator learning dynamics with step size γni = γi

(n+m)p and starting from π0,
then the sequence πn converges to S(π∗).

We prove a more general result (Theorem 5.5) from which Theorem 5.4 follows as a
special case. In our more general setting, we consider imperfect monitoring and incomplete
information frameworks, where player i may only have an estimator, v̂i, of their q-gradient
vqi .

This means that at the end of episode n, player i is not able to use the value vqi (πn) to
update their policy, but has to rely on v̂i(πn). In general, the estimator v̂i is not deterministic,
and so v̂i(πn) is a random variable. For sake of simplicity, we denote this random variable
as v̂ni := v̂i(π

n), and we say that v̂ni is an estimator for the q-gradient of i after episode n.
Because v̂ni is a random variable, in this setting the q-replicator dynamics πn is a stochastic

process. We write Fn := F(π0, . . . , πn) for the filtration of the probability space up to and
including episode n. We define

Un = v̂n − E[v̂n|Fn−1] and bn = E[v̂n|Fn−1]− vq(πn) .

We assume that Un and bn are bounded as follows:

E
[
∥Un∥2|Fn−1

]
≤ (σn)2 and E

[
∥bn∥|Fn−1

]
≤ Bn ,

where σn = O(nℓσ ) and Bn = O(n−ℓb) for ℓσ, ℓb > 0.
For estimators v̂ni that satisfy the above conditions, we obtain the following:

Theorem 5.5. Let π∗ ∈ Πℓ be an ℓ-recall strict equilibrium and q a non-negative real number.
Then, there exists a neighbourhood U of π∗ in Πℓ such that, for any η > 0, for any π0 ∈ U , any
p ∈ (12 , 1], and any positivem, there are (γi)i∈N small enough such that we have the following:
let (πn)n∈N be the sequence of play generated by q-replicator learning dynamics with step sizes
γni = γi

(n+m)p and q-replicator estimates v̂ni (π
n) such that p+ ℓb > 1 and p− ℓσ > 1/2. Then,

P (πn → S(π∗) as n→∞) ≥ 1− η .

When this happens, we say that π∗ has a basin of attraction for the standard stochastic
q-replicator dynamics.
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Corollaries and variations

Our next results build upon these theorems by combining them with the Folk Theorem for
repeated games. The first important implication is that, in a RL framework, the richness
of the set of equilibrium payoffs that the Folk Theorem guarantees can be recovered with
sufficiently long recall. The second important implication is that this richness is preserved
even when relaxing many assumptions regarding monitoring and information, as long as
each player is independently following q-gradient dynamics.

Folk Theorem with perfect monitoring

The study of repeated games often focuses on the correspondence between Nash equilibria
and the payoff vectors they generate. One aspect of this relationship is given by the celebrated
Folk Theorem. Two important assumptions of the Folk Theorem are perfect monitoring,
which is that each player’s signal precisely identifies the action profile played in each period,
and that the players have unbounded recall. Under these assumptions, the Folk Theorem
characterises the set of payoff vectors that correspond to Nash equilibria as the set of feasible
and individually-rational payoffs, shortly to be defined. However, [BCS16] establish that this
set of payoff vectors can be approximated by equilibrium payoff vectors when players are
restricted to have finite recall.

This work establishes a crucial connection between the Folk Theorem and our main
results. [BCS16] prove two theorems. The first considers any finite number of players but
restricts the players to using pure minmax strategies; the second considers only games
with three players or more but allows the players to use mixed minmax strategies. We
introduce here the implications of their second theorem to our framework, and elaborate on
the implications of the second theorem in the appendix. We consider Theorem 2 of [BCS16]
in the context of games with more than two players and consider Theorem 1 for two-player
games in the appendix.

To formally introduce the set of feasible and individually-rational payoffs, we start by
defining player i’s minmax value to be

ũi := min
σ−i∈Πj∈N\{i}∆(Aj)

max
σi∈∆(Ai)

ui(σi, σ−i) .

This is the value of the highest expected utility that a player can secure regardless of their
opponents’ strategies. Any payoff vector where each player’s payoff is at least their minmax
value is termed individually rational, as each player’s payoff is at least what they can obtain
unilaterally. A feasible payoff vector is a payoff vector that can be obtained as the expected
reward of a mixed strategy.

We denote the set of feasible and individually-rational payoffs as W̃ := {u ∈ conv{u(a) :
a ∈ A} : ui ≥ ũi ∀i ∈ N}, where conv{u(a) : a ∈ A} is the convex hull of the set
{u(a) : a ∈ A}.

Theorem 2 of [BCS16] guarantees that in games of more than two players, each payoff
in W̃ can be approximated by the payoffs vector of an M -recall equilibrium for some
M > 0. [BCS16] construction of such equilibria involves an equilibrium path, followed by
a punishment phase in the event of deviation, and then a ‘post-punishment’ equilibrium
path. While these equilibria are not strict, a detailed reading reveals that strictness can be
guaranteed by increasing the length of the punishment by one period.

Consequently, we can apply our Theorem 5.5 to this setting to obtain the following result:

Corollary 5.6. Let G = (N,A, (Ri)i∈N ) be a stage game with |N | > 2 such that the interior
of W̃ is not empty. For all ε > 0 there is δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1) and for the
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δ-discounted repeated game with stage game G and perfect monitoring, we have the following:
For every u ∈ W̃ , there exists M ∈ N and an M -recall strict equilibrium π∗ with a basin of
attraction for the standard stochastic q-replicator dynamics, such that the distance between u
and the vector of expected payoffs of π∗ is at most ε.

Hence, we have established that any individually-rational feasible payoff vector has a
basin of attraction, provided an appropriately selected recall length and perfect monitoring.

For a result for two-player games, which relies on Theorem 1 of [BCS16], and is stronger
as it uses the mixed minmax, see Section A.2.1 in the Appendix.

Imperfect Monitoring

In this subsection, we relax the assumption of perfect monitoring. Hence, instead of assuming
that players perfectly observe their opponents’ actions, we now assume that at the end of
each period, each player observes a (possibly non-deterministic) signal that depends on the
action profile played.

Imperfect monitoring can be categorised into two main types: public monitoring and
private monitoring. In the case of public monitoring, the signal is publicly observable and
identical for all players. Conversely, in private monitoring, each player privately observes an
individual signal.

When studying public monitoring, it is common practice to restrict players to conditioning
their actions solely on the history of observed public signals, rather than on their privately
known actions taken. If we denote by Z the set of public signals, restricting players to
strategies based only on public history means that the set of mixed strategies for each player
i is ∆

(
AZℓi

i

)
.

When strategies are conditioned exclusively on public history, the solution concept
typically considered is perfect public equilibria (PPE). These are strategy profiles where each
player is playing a best response that conditions only on public signals3.

The analysis of PPE has traditionally utilised dynamic programming methods, as shown
in works such as [APS90; FLT07; FM86]. This line of research has highlighted various
monitoring conditions necessary to achieve feasible payoffs surpassing either the minmax
level or the one-shot Nash equilibrium level through PPE. However, equilibria constructed in
this manner usually lack strictness and involve strategies conditioned on unbounded history.
Consequently, our findings do not extend to such equilibria.

[MM02] explore PPE that employ a punishment mechanism following any deviation
(grim-trigger). These equilibria, being strict and reliant on finite recall, exhibit, according to
our result, a basin of attraction under q-replicator RL.

Corollary 5.7. Let G be an N -player game with public monitoring. Let π∗ ∈ Πℓ be a perfect
public equilibrium that is strict and with bounded recall. Then π∗ has a basin of attraction for
the standard stochastic q-replicator dynamics.

In summary, any PPE that demonstrates strictness and relies on finite recall possesses a
basin of attraction when players utilise q-replicator dynamics.

When monitoring is public, allowing the players to condition their actions on privately
observed own actions (in addition to the publicly observed signals) increases the set of
equilibria payoffs that can be obtained (see, [KO06]). However, the common knowledge of
the relevant parts of the history is lost. A similar situation arises with private monitoring,
where each player observes a private signal. The type of equilibrium that is used in these

3There always exists such a strategy profile. For further readings see [FM86]
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cases is sequential equilibrium [KW82]. Sequential equilibrium requires tracking an infinite
hierarchy of beliefs, where each player updates their belief in a Bayesian manner after each
period, given the action played and signal observed. This Bayesian updating accumulates
over time, contrasting with finite recall, which requires players to ‘forget’ their observations
after a certain number of periods.

Therefore, it is unsurprising that the set of strict bounded recall strategy profiles with
basins of attraction is not comparable to the set of sequential equilibria. Specifically, there
exist sequential equilibria for which we cannot demonstrate a basin of attraction, and there
are strategy profiles with a basin of attraction that do not constitute sequential equilibria
(for a counterexample, see Appendix A.1.1). The set of strategy profiles that we prove have
a basin of attraction is the set of strategy profiles π∗ such that any unilateral deviation of
player i to a strategy in Πℓi

i \ Si(π
∗) induces a strict loss to player i. In other words, each

player is playing a best response from the set of strategies they are allowed to use. While
our results can be generalised to allow each player to condition their actions on any finite
set of states, it cannot allow for an infinite state space, and thus any sequential equilibrium
that requires conditioning on an infinite state space is not learnable.

Final Remarks

On the FolkTheorem. The wide range of equilibrium payoffs described by the Folk Theorem
is sometimes viewed as a drawback, as it diminishes the predictive power of the model in
determining the outcome of a game. However, a different perspective can be taken. The
fact that a strategy profile constitutes an equilibrium implies a certain degree of stability.
Thus, the existence of multiple stable strategy profiles suggests that if players are playing an
non-Pareto optimal equilibrium, there is a stable strategy profile that could be discovered
and adopted with higher payoffs for each of the players.

Consequences for Stochastic Games. We prove Theorem 5.5 extending the methodol-
ogy of [Gia+22]. A careful reading of our proof reveals that, when applied to the Stochastic
Games framework studied in [Gia+22], our extension ensures local convergence to strict
equilibria for a larger class of dynamics than the projected gradient dynamics that was the
sole focus of attention of [Gia+22].

From Finite Recall to Finite Memory. A careful read of the proof of Lemma 5.3 reveals
that, instead of having players condition their actions upon private histories with finite recall,
one can generalise to having players condition their actions upon any private state from a
finite set of states. This means that Theorem 5.5 can be stated in more general terms. That is,
with finite memory, rather than finite recall.

5.5 Possible directions for future work

In this chapter, we have demonstrated that local convergence to strict equilibria is achieved
under many dynamics, even with relaxed informational and monitoring assumptions. Addi-
tionally, we have related our findings to the classical Folk Theorem and game theoretical
solution concepts. In this section, we explore potential avenues for future research building
upon our results.

Behavioural Strategies

In this work, we have considered each player’s strategy to be a probability distribution

over their pure strategies. Hence, for player i ∈ N , a strategy has been πi ∈ ∆

(
A

Ĥ
ℓi
i

i

)
.
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However, an alternative is to consider behavioural strategies, which are functions that map
a player’s private history to a distribution over their actions. Explicitly, for player i ∈ N ,
a behavioural strategy would be of the form πi : Ĥ

ℓi
i → ∆(Ai). In a follow-up work, we

define a version of strict subgame perfect equilibrium and demonstrate that the dynamics,
under these changes, converge locally to such an equilibrium.

Coordination of parameters

Theorem 5.5 is significant as it does not require players to have identical step sizes or to use
the same estimator for their q-gradient. However, further generalisation might be possible.
For instance, we could consider a model in which each player may use a different value
of q. We conjecture that this generalisation would yield similar results to Theorem 5.5.
Furthermore, although we do not assume players use identical step sizes, we do assume their
step sizes are of the same magnitude. This assumption might also be subject to generalisation
in future work.

Basins of Attraction and Convergence Rates

Theorem 5.5 concerns local convergence, which is the optimal outcome possible outside of a
limited class of games. However, further research is warranted in this area. One research
direction is analysing the basin of attraction for locally attracting fixed points and examining
the geometrical attributes of these basins. Moreover, for a game with multiple equilibria, the
relative size of a basin of attraction of an equilibrium can be interpreted as the likelihood of
the learning dynamics to converge to this equilibrium. This, in turn, can be considered as a
selection mechanism. Understanding the factors that affect these sizes would be interesting.

Another important aspect is studying convergence rates within these basins of attraction.
While establishing a bound for the convergence rate is beyond the scope of this chapter,
existing bounds for similar works (see [Gia+22]) could be insightful, though these results
rely on assumptions not directly applicable to repeated games.
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A.1 Examples

A.1.1 Local convergence and seqential eqilibria are incomparable

To demonstrate that the sets of payoffs corresponding to equilibria with basins of attraction
and sequential equilibria are not directly comparable, we provide two examples. First, we
present a sequential equilibrium that relies on unbounded recall, which therefore falls outside
the scope of our model and consequently lacks a basin of attraction. Second, we offer a
strategy profile that has a basin of attraction but is not a sequential equilibrium.

Seqential eqilibria

In this chapter, we have explored solution concepts that assume players have a finite recall
length. However, we now present an example of a strategy profile in the infinitely repeated
Prisoner’s Dilemma with perfect monitoring that relies on an infinite recall length.

Consider the strategy profile that gives the following on-path behaviour:

• play (D,D)

• play (C,C) once

• play (D,D)

• play (C,C) twice

• play (D,D)

• Continue this pattern: after each (D,D), increase the number of consecutive (C,C)

periods by one.

The off-path behaviour is given by ignoring deviations in periods where (D,D) is played
and if a player deviates in a period where (C,C) is played on-path, each player plays D in
the next two scheduled (C,C) periods.

It is straightforward to verify that this strategy constitutes a subgame perfect equilibrium4

for players who are sufficiently patient (i.e., with a high enough discount factor). However,
this equilibrium requires unbounded recall due to the increasing sequence of (C,C) plays.
Consequently, it cannot be represented in our model, which is based on finite recall length,
and therefore lacks a basin of attraction.

A strategy profile with a basin of attraction that is not a seqential eqilibrium

Consider the following variation of prisoners’ dilemma, with the actions indexed according
to the players:

C2 D2

C1 4, 4 0, 5

D1 5, 0 2, 2

Consider a simple one-recall (symmetric) strategy profile for each player i ∈ {1, 2}:
4A strategy profile that is optimal for every possible history, even ones which happen with probability zero.
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• Following the histories (C1, C2) or (D1, D2) or the empty history, play Ci,
• Following the history (D1, C2) or (C1, D2), play Di.

With perfect monitoring, this is a subgame perfect equilibrium for sufficiently patient
players. However, we consider a game with imperfect monitoring. To this end, let c1 and
d1 (c2 and d2) be the private signals for player 2 (player 1) regarding the actions taken be
player 1 (player 2). Suppose that these signals are accurate following the action profiles
(C1, D2), (D1, C2) and (D1, D2). That is, following a period when (C1, D2) was played,
player 1 observes the signal d2 with probability 1 (accurately reflecting the action of player 2),
and player 2 observes the signal c1 with probability 1. Similarly, the signal profile following
periods when (D1, C2) or (D1, D2) were played are with probability 1 (c2, d1) and (d1, d2)

respectively.
However, when (C1, C2) is played, there is some small probability of inaccurate private

signals. To be more specific, following a period when (C1, C2) was played, the distribution
of signals is:

q((C1, C2)) =


(c2, c1) : with probability 1− ε1 − ε2 − ε3
(d2, c1) : with probability ε1
(c2, d1) : with probability ε2
(d2, d1) : with probability ε3

.

Consider the one-recall strategy for player 1 that begins with playing C1 replies to the
action-signal combinations (C1, c2) and (D1, d2) with C1 and otherwise with D1. For a
range of small ε-s, this is the best response to a similar strategy played by player 2 among the
one-recall strategies. This is easily computed by considering each one-recall pure strategy
of player 1, combined with the strategy of player 2 as an MDP, and finding the stationary
distribution of the resulting MDP. Therefore, for this range of ε-s, this is a one-recall strict
equilibrium and thus has a basin of attraction.

To discuss sequential equilibrium, we should detail the Bayesian updating of beliefs.
Suppose player 1 played C1 and observes d2. This can be the result of three situations:

• Option 1 - player 2 deviated and played D2 when they should have played C2.
• Option 2 - player 2 conformed, played C2, but the signal was wrong.
• Option 3 - Player 2, before the previous period, played C2 observed d1 (correctly or

incorrectly). Therefore, player 2 is punishing player 1 by playing D2, as they should.

If Option 1 takes place, then the best response of player 1 is to play D1.
If Option 2 occurs, then the best response is to ignore the mistaken signal and play C1.
If Option 3 took place, player 2 played D2 as they should, and observed (c1, D2), then

they played D2 and the best response is to play D1.
Suppose player 1, during the first period of the game played C1 and observed d2. Giving

an initial probability of 1 to player 2 conforming to the equilibrium, Bayesian updating yields
that player 2 surely played C2 and the signal observed is just a monitoring error (Option 2).
The best response is to ignore this signal and play C1 in the next period.

However, if player 1 played D1 in the first period, and C1 in the second, and observed d2
in the second, then Bayesian updating gives that Option 3 is the likely one, hence the best
response for player 1 is to play D1 in the next period.

This means that this one-recall strategy profile is not a sequential equilibrium. Indeed,
computing the Bayesian probability of Option 3 requires more than one recall. While in
sequential equilibrium the Bayesian nature of the updating of beliefs aggregates information
as the play unfolds, it cannot be done with one-recall.
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A.2 Theoretical addenda

A.2.1 Approximating payoffs with two players

In the two-player setting, the individually rational payoffs are defined using the pure minmax.
Player i’s pure minmax is defined to be

ũi := min
a−i∈A−i

max
ai∈Ai

ui(a) .

We use the notation W̃ := {u ∈ conv{u(a) : a ∈ A} : ∀i ∈ N, ui ≥ ũi}, where
conv{u(a) : a ∈ A} denotes the convex hull of the set {u(a) : a ∈ A}.

Theorem 1 of [BCS16] guarantees that in a two-player game, each payoff in W̃ can be
approximated by an M -recall equilibrium for some M > 0. Consequently, we obtain the
following result:

Corollary A.8. Let G = (N,A, (Ri)i∈N ) be a stage game of our model such that |N | = 2

and payoffs satisfy the nonequivalent utilities condition5. For all ε > 0 there is δ∗ ∈ (0, 1) such
that for all δ ∈ (δ∗, 1) and for the δ-discounted repeated game with stage game G and perfect
monitoring, we have the following: For every u ∈ W̃ , there existsM ∈ N and anM -recall strict
equilibrium π∗ with a basin of attraction for the standard stochastic q-replicator dynamics,
such that the distance between u and the vector of expected payoffs of π∗ is at most ε.

A.3 Proofs

A.3.1 Proof of Lemma 5.3

In this section, we prove the equivalence between the two conditions for stability in replicator
dynamics and solution concepts. We restate the result for practicality.

Lemma 5.3. Let G be an ℓ-recall repeated game as defined above. For any q ≥ 0, a strategy
profile π∗ ∈ Πℓ is a strict Nash equilibrium if and only if the following two conditions are
satisfied:

(O1) For any π ∈ Πℓ we have ⟨vq(π∗), π − π∗⟩ ≤ 0.

(O2) There exists ε > 0 such that for any π ∈ Πℓ \ S(π∗) at distance at most ε from π∗ we
have ⟨vq(π), π − π∗⟩ < 0.

The proof is divided into two propositions; Proposition A.9 that proves the lemma for
q = 0, and Proposition A.10 that proves it for q > 0.

In the proofs of Propositions A.9 and A.10, we make use of the following definitions and
notation:

Let Ei be the set of pure strategies of player i, that is, the set of extremal points of Πℓi
i .

We index this set according to the order of the components in the vector πi, which is, we
denote with eα ∈ Ei the pure strategy associated with the α-th component of πi.

For eα ∈ Ei, let πi(eα) denote the α-th component of πi, which is the probability that
the strategy πi assigns to the pure strategy eα.

Proposition A.9. Lemma 5.3 holds in the case q = 0, which, with the notation of Lemma 5.3
is equivalent to the following:

5There does not exist constants c1, c2 ∈ R such that R1(a) = c1R2(a)+ c2 for all a ∈ A, and so the feasible
set is not one-dimensional.
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(P1) Condition (O1) is equivalent to π∗ being a Nash equilibrium.

(P2) The strategy profile π∗ being a strict equilibrium implies (O2).

(P3) An equilibrium satisfying (O2) is strict.

Proof. In the notation, when clear from context, we omit the history length for simplicity.
Proof of A.9(P1) Condition (O1) in the case q = 0 reads as follows: for every π ∈ Πℓ, we
have ⟨v0(π∗), π − π∗⟩ ≤ 0. In particular, by rearranging the terms and making the sum
explicit, we get that condition (O1) holds for q = 0 if and only if:∑

i∈N

∑
eα∈Ei

Vi(eα, π
∗
−i)πi(eα) ≤

∑
i∈N

∑
eα∈Ei

Vi(eα, π
∗
−i)π

∗
i (eα) .

By linearity of the rewards, this is equivalent to:∑
i∈N

Vi(πi, π
∗
−i) ≤

∑
i∈N

Vi(π
∗
i , π

∗
−i) .

If π∗ is an equilibrium then (by definition) no player has a profitable deviation, which is
for every i ∈ N , for every πi ∈ Πℓi

i , it holds that Vi(πi, π∗
−i) ≤ Vi(π∗), so (O1) holds if π∗

is an equilibrium.
We prove the other direction by contradiction. Assume that there is a π∗ ∈ Πℓ that is not

an equilibrium, yet for which (O1) holds. The strategy profile π∗ not being an equilibrium
implies that there exists (at least) one player j ∈ N that has a unilateral profitable deviation,
that is, there exists eβ ∈ Ej such that Vj(eβ , π∗

−j) > Vj(π
∗). The strategy profile π =

(eβ , π
∗
−j) gives a contradiction to (O1):∑

i∈N

Vi(πi, π
∗
−i) =

∑
i∈N\{j}

Vi(π
∗) + Vj(eβ , π

∗
−j)

>
∑

i∈N\{j}

Vi(π
∗) + Vj(π

∗)

=
∑
i∈N

Vi(π
∗) .

We conclude that for q = 0, (O1) holds if and only if π∗ is an equilibrium.

Proof of A.9(P2) Suppose π∗ is a strict equilibrium (and therefore each player plays a pure
strategy), let us denote with α∗(i) the index in the vector π∗

i of the pure strategy played
by player i in π∗. Moreover, let us denote by eα∗(i) the pure strategy that player i plays
according to π∗

i (the strategy with index α∗(i)).
To prove that (O2) holds, we need to show that for any π ∈ Πℓ \ S(π∗) close enough to

π∗ we have ⟨v(π), π − π∗⟩ < 0. As in part (P1), this is equivalent to showing that for any
such π the following holds:∑

i∈N

Vi(π
∗
i , π−i) >

∑
i∈N

Vi(πi, π−i) .

What makes the proof of this inequality non-trivial is that π may have several players
placing positive probability on deviations from π∗. Consider for example the case where,
according to π, player i and player j have a positive probability of playing outside of Si(π

∗)

and Sj(π
∗) respectively. Because π∗ is a strict equilibrium, player i incurs a strict loss from

their own deviations when all the other players play according to π∗
−i. However, it is possible

that if player j and player i both deviate simultaneously, one (or more) players gain a higher
reward than the one induced by π∗.
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The (rather tedious) computations of the bounds use the proximity of π to π∗ to show
that such simultaneous deviations are taking place with such a small probability that their
influence on the gradient of the expected reward is negligible.

As we mentioned, π being close to π∗ entails that, in π, every player plays according to
π∗ with high probability. For every player i, we denote with εi the probability according
to π that player i plays outside of e∗α(i). More concisely, εi = 1− πi(e∗α(i)). Note that the
quantification that states the closeness of π to π∗ can be translated to a bound for εi.

As we mentioned, the key to this part of the proof is to measure the effect of simultaneous
deviations. For this reason, we introduce notation to denote events where zero, one, or more
deviations occur at the same time. We denote with A the set of pure strategy profiles where
each player plays in S(π∗), which is, A = {e ∈

∏
i∈N Ei : ∀j ∈ N, ej ∈ Sj(π

∗)}. We
denote with Bj the set of pure strategy profiles where player j plays a pure strategy outside
of Sj(π

∗) while all the other players play according to π∗
−i, which is for a given player j ∈ N

we have Bj = {e ∈
∏

i∈N Ei : ej /∈ Sj(π
∗), and ∀k ∈ N \ {j}, ek = e∗α(k)}. Finally, we

denote with C all the other pure strategy profiles, where at least 2 players deviate from
S(π∗). We have, C = (

∏
i∈N Ei) \ (A ∪ (

⋃
j∈N Bj)).

Using the notation we just introduced, we are ready to rewrite Vi(π). As Vi(π) is the
expectation of reward for player i under policy π, and because of the linearity of expectations,
we can split Vi(π) as a sum according to A,Bj , C . To better understand the calculations
that follow, it is sometimes useful to remember that π is a vector (needed for example when
thinking about ⟨v(π), π−π∗⟩) but also a distribution of a random variable that might assume
variables in A,Bj or C (which comes in handy when dealing with Vi(π) = Eτ∼π[Vi(τ)]).
This also means that the pure strategy profiles in A,Bj or C can also be seen as events for
the probability distribution π where the realised sample x from π either has no, one, or more
deviations respectively. We have

Vi(π) = Ex∼π[Vi(x)|x ∈ A] · P(A) +
∑
j∈N

Ex∼π[Vi(x)|x ∈ Bj ] · P(Bj)

+ Ex∼π[Vi(x)|x ∈ C] · P(C) .

Which we now expand one at a time. For A we have:

Ex∼π[Vi(x)|x ∈ A] · P(A) = Vi(π
∗)
∏
j∈N

1−
∑

eα∈Ej\Sj(π∗)

πj(eα)


For Bj we have:∑

j∈N

Ex∼π[Vi(x)|x ∈ Bj ] · P(Bj) =
∑
j∈N

∑
eα∈Ej\Sj(π∗)

Vi(eα, π
∗
−j)

πj(eα)∑
eα∈Ej\Sj(π∗)

πj(eα)

·

 ∑
eα∈Ej\Sj(π∗)

πj(eα)

∏
k ̸=j

(1− εk) .

While for C we can use the bound:

Ex∼π[Vi(x)|x ∈ C] · P(C) = O

∑
j ̸=k

εjεk

 .
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We can sum these equalities to obtain

Vi(π) = Vi(π
∗)
∏
j∈N

(
1−

∑
eα∈Ej\Sj(π∗)

πj(eα)
)

+
∑
j∈N

∑
eα∈Ej\Sj(π∗)

Vi(eα, π
∗
−j)πj(eα)

∏
k ̸=j

(1− εk)

+O

∑
j ̸=k

εjεk

 .

Note that for any player j in N , for any pure strategy eα in Ej \ Sj(π
∗), we have that

πj(eα) < εj . Hence,

Vi(π)= Vi(π
∗)

1−
∑
j∈N

∑
eα∈Ej\Sj(π∗)

πj(eα)

+
∑
j∈N

∑
eα∈Ej\Sj(π∗)

Vi(eα, π
∗
−j)πj(eα)

+O

∑
j ̸=k

εjεk


= Vi(π

∗) +
∑
j∈N

∑
eα∈Ej\Sj(π∗)

(Vi(eα, π
∗
−j)− Vi(π∗))πj(eα) +O

∑
j ̸=k

εjεk

 .

Analogously,

Vi(π
∗
i , π−i) = Vi(π

∗) +
∑
j ̸=i

∑
eα∈Ej\Sj(π∗)

(Vi(eα, π
∗
−j)− Vi(π∗))πj(eα) +O

∑
j ̸=k

εjεk

 .

Hence,

Vi(π
∗
i , π−i)− Vi(π) = Vi(π

∗) +
∑
j ̸=i

∑
eα∈Ej\Sj(π∗)

(Vi(eα, π
∗
−j)− Vi(π∗))πj(eα)− Vi(π∗)

−
∑
j∈N

∑
eα∈Ej\Sj(π∗)

(Vi(eα, π
∗
−j)− Vi(π∗))πj(eα)

+O

∑
j ̸=k

εjεk


= −

∑
eα∈Ei\Si(π∗)

(Vi(eα, π
∗
−i)− Vi(π∗))πi(eα) +O

∑
j ̸=k

εjεk


> 0 .

Proof ofA.9(P3)The proof relies on similar ideas as those of A.9(P1). Suppose the equilibrium
satisfies (O2). Consider a unilateral deviation of player i to πi /∈ Si(π

∗). Denote with π′(ε)

the deviation from π∗ where player i plays πi with probability ε, and π∗ with remaining
probability, while the other players always play π∗

i . Which is, let us use the notation
π′(ε) = (επi+(1− ε)(π∗

i , π
∗
−i)). For small enough ε, we have that π′(ε) is sufficiently close

to π∗. From (O2), we have ⟨v(π′), π′⟩. This implies that the deviation to πi results in a strict
loss for player i.

Proposition A.10. Lemma 5.3 holds in the case q > 0. This, with the notation of Lemma 5.3,
is equivalent to the following:
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(Q1) Condition (O1) is equivalent to the following condition: for all i ∈ N , for all eα in the
support of π∗, we have Vi(eα, π∗

−i) = Vi(π
∗),

(Q2) The strategy profile π∗ being a strict equilibrium implies (O2),

(Q3) A strategy profile π∗ satisfying both (O1) and (O2) is a strict equilibrium.

Proof. In the notation, when clear from context, we omit the history length for simplicity.
Proof of A.10(Q1) Recall that a strategy profile π′ satisfies condition (O1) if for any policy
profile π ∈ Πℓ, we have ⟨vq(π′), π−π′⟩ ≤ 0. This is equivalent to having that for all π ∈ Πℓ∑

i∈N

∑
eα∈Ei

vqi,α(π
′)πi,α ≤

∑
i∈N

∑
eα∈Ei

vqi,α(π
′)π′

i,α

or, by making explicit the value of vqi,α(π′), this is equivalent to:

∑
i∈N

∑
eα∈Ei

(
π′q
i,α

(
Vi(eα, π

′
−i)−

∑
eβ∈Ei

π′q
i,βVi(eβ , π

′
−i)∑

eβ∈Ei
π′q
i,β

))
πi,α

≤
∑
i∈N

∑
eα∈Ei

(
π′q
i,α

(
Vi(eα, π

′
−i)−

∑
eβ∈Ei

π′q
i,βVi(eβ , π

′
−i)∑

eβ∈Ei
π′q
i,β

))
π′
i,α .

Note however that the expression
∑

eβ∈Ei
π′q
i,βVi(eβ ,π

′
−i)∑

eβ∈Ei
π′q
i,β

does not depend on the index α of

the pure strategy eα, and so we denote this expression by Mi(π
′).

Using this notation, for the policy profile π∗ we have that (O1) is equivalent to having
that for all π ∈ Πℓ,∑

i∈N

∑
eα∈Ei

(
π∗q
i,α

(
Vi(eα, π

∗
−i)−Mi(π

∗)
))
πi,α

≤
∑
i∈N

∑
eα∈Ei

(
π∗q
i,α

(
Vi(eα, π

∗
−i)−Mi(π

∗)
))
π∗
i,α . (A.1)

In order to prove A.10(Q1), we therefore can show that this new formulation of (O1), is
equivalent to have that for all i ∈ N , for all eα in the support of π∗, we have Vi(eα, π∗

−i) =

Vi(π
∗).

To do this, we first assume that for all pure strategies eα in the support of π∗ we have
Vi(eα, π

∗
−i) = Vi(π

∗). Because the expression Mi(π
∗) is a weighted average of such payoffs

(which all have the same value), in this case we have Mi(π
∗) = Vi(π

∗). Therefore,∑
i∈N

∑
eα∈Ei

(
π∗q
i,α(Vi(eα, π

∗
−i)−Mi(π

∗))
)
πi,α

=
∑
i∈N

∑
eα∈Ei,

π∗(eα)>0

(
π∗q
i,α(Vi(π

∗)− Vi(π∗))
)
πi,α = 0

and ∑
i∈N

∑
eα∈Ei

(
π∗q
i,α(Vi(eα, π

∗
−i)−Mi(π

∗))
)
π∗
i,α

=
∑
i∈N

∑
eα∈Ei,

π∗(eα)>0

(
π∗q
i,α(Vi(π

∗)− Vi(π∗))
)
π∗
i,α = 0 .

Therefore, both sides of Ineq. (A.1) are zero, and the inequality holds.
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For the other direction, suppose that a strategy profile π∗ satisfies (O1), but, for contradic-
tion, there is some player i ∈ N and some pure strategies eα ∈ Ei in the support of π∗

i , such
that Vi(eα, π∗

−i) ̸= Vi(π
∗). Because Mi(π

∗) is a weighted average of the payoffs of all pure
strategies in the support of π∗

i , without loss of generality, there exists eβ in the support of π∗
i

such that Vi(eβ , π∗
−i) < Mi(π

∗) < Vi(eα, π
∗
−i). For η small enough, πi := π∗ − ηeβ + ηeα

is a strategy for player i. The strategy π := (πi, π
∗
−i) gives a contradiction to Ineq. (A.1).

We conclude that Condition (O1) is equivalent to the following condition: for all i ∈ N ,
for all eα in the support of π∗, we have Vi(eα, π∗

−i) = Vi(π
∗).

Proof of A.10(Q2)

Suppose a strategy profile π∗ is a strict equilibrium. We prove that there exists ε > 0

such that for any π ∈ Πℓ \S(π∗) at distance at most ε from π∗ we have ⟨vq(π), π−π∗⟩ < 0.
That is, we want to show that if π∗ is a strict equilibrium then there exists ε > 0 such that
for any π ∈ Πℓ \ S(π∗) at distance at most ε from π∗, it holds that:∑

i

∑
eα∈Ei

vqi,α(π)πi,α <
∑
i

∑
eα∈Ei

vqi,α(π)π
∗
i,α .

We prove the above inequality by obtaining, for each player i, a lower bound for the
right-hand side (RHS), an upper bound for the left-hand side (LHS), and then comparing the
bounds. We therefore fix now an i and show that for this i it holds∑

eα∈Ei

vqi,α(π)πi,α <
∑

eα∈Ei

vqi,α(π)π
∗
i,α .

Before proceeding, we warn the reader that this proof is quite technical, in the sense
that we expand and re-elaborate equations in non-intuitive ways. To facilitate this op-
eration to the reader, we often name recurrent terms of our equations, we thus define
B

(1)
i (π), B

(2)
i (π), . . . , T

(1)
i (π), . . . and similar notation.

Lower bound for RHS:

Recall that the policy π∗
i gives probability 1 to player i playing e∗α(i) and probability 0

otherwise. Therefore, for player i,∑
eα∈Ei

vqi,α(π)π
∗
i,α =

∑
eα∈Ei

(
πq
i,α (Vi(eα, π−i)−Mi(π))

)
π∗
i,α

= πq
i,α(i)(Vi(e

∗
α(i), π−i)−Mi(π)) . (A.2)

We want to lower bound the reward of player i in the case they play π∗
i , knowing only

that the strategy profile π−i is close to π∗
−i. We consider different scenarios for π−i and use

linearity of expectation to get our lower bound. We first consider how likely each scenario is.
We first want to know with what probability, π−i is a policy profile in S−i(π

∗). Let us
denote with Qj the probability that player j plays a pure strategy that is outside of Sj(π

∗),
namely Qj =

∑
eα∈Ej\Sj(π∗) πj(eα). Therefore, with probability

∏
j ̸=i(1 −Qj) we have

that player i receives reward Vi(π∗) as π−i is contained in S−i(π
∗). In this scenario, the

reward of player i is Vi(π∗) by definition of S−i(π
∗) and therefore the contribution to the

expected reward from this scenario is

Vi(π
∗) ·
∏
j ̸=i

(1−Qj) = Vi(π
∗)

1−
∑
j

Qj +O
(∑

j,k

QjQk

) .
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A different case of interest is when exactly one player j plays a strategy outside of Sj(π
∗),

while others conform to π∗. This happens with probability Qj

∏
k∈N\{i,j}(1− εk). While

we do know this case is not ideal for player j, we do not know what happens to the reward
of player i in this scenario; we know though with what probability (and therefore weight)
this event influences the final result.

To calculate the effect of this factor on the RHS, we introduce the following notation: we
denote by Di,j(π) the conditional change of reward for player i conditioning on player j
playing a pure strategy outside Sj(π

∗) when playing πj . Formally, for Qj > 0:

Di,j(π) = Vi(π
∗)−

∑
eα∈Ej\Sj(π∗)

[
πj(eα)Vi(eα, π

∗
−j)
]

Qj
.

Note that, if Qi > 0, Di,i(π) is lower bounded by a strictly positive constant.
Therefore, the contribution to the expected reward from this scenario is∑

j

(Vi(π
∗)−Di,j(π)) ·Qj

∏
k∈N\{i,j}

(1− εk)

= Vi(π
∗)
∑
j

Qj −
∑
j ̸=i

QjDi,j(π) +O

∑
j,k

Qjεk

 .

The remaining case happens with the extremely small probability of 1 −
∏

j ̸=i(1 −
Qj)−

∑
j ̸=iQj

∏
k∈N\{i,j}(1− εk). While the strictness condition of π∗ doesn’t give us

any information about Vi(π) in this case either, the order of magnitude of the probability
is enough for our calculations because the size of the game is bounded and therefore we
have a constant bound on the best (and worst) possible rewards for player i. As both lower
and upper bounds are constant, this factor only accounts for O(

∑
j,kQjεk) in the total sum.

Thus:

Vi(π
∗)−

∑
j ̸=i

QjDi,j(π) +O

∑
j,k

Qjεk

 = Vi(e
∗
α(i), π−i) .

The left-hand side of this equation is a value that we use explicitly in the lower bound
of
∑

i

∑
eα∈Ei

vqi,α(π)π
∗
i,α but also in the upper bound of

∑
i

∑
eα∈Ei

vqi,α(π)πi,α. The
comparison of these two bounds is the largest part of this proof. To make the reading easier,
we denote by B(1)

i (π) the value Vi(π∗)−
∑

j ̸=iQjDi,j(π)+O
(∑

j,kQjεk

)
(this notation

is introduce to better analyse the upper bound for the LHS). We hope the reader appreciates
the readability of the proof over the explicitness of the factors.

Now, rewriting A.2, factoring in this last inequality, we obtain:(
B

(1)
i (π)−Mi(π)

)
(1− εi)q ≤

∑
ej

(
πq
i,j (Vi(ej , π−i)−Mi(π))

)
π∗
i,j .

Where we remind the reader B(1)
i (π) = Vi(π

∗)−
∑

j ̸=iQjDi,j(π) +O
(∑

j,kQjεk

)
.

Upper bound for LHS:

We want to bound the value∑
eα∈Ei

vqi,α(π)πi,α =
∑

eα∈Ei

πq+1
i,α (Vi(eα, π−i)−Mi(π)) . (A.3)

Once more we adopt the strategy we followed during the lower bound: we divide the
possible values attained by π in cases, and we consider with what probability each might
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happen, knowing that π is close in distribution to π∗. When all players conform to strategy
profile π, the following cases can happen:

Player i plays e∗α(i). This happens with probability (1−εi). This case was already consid-
ered while doing the lower bound for the RHS, and we know that Vi(π∗)−

∑
j ̸=iQjDi,j(π)+

O(
∑

j,kQjεk) is the value of Vi(π) in this case. Let us denote by B(1)
i (π) = Vi(π

∗) −∑
j ̸=iQjDi,j(π) + O(

∑
j,kQjεk) this first value of Vi(π) which holds with probability

(1− εi).
Player i plays a pure strategy in Si(π

∗)\e∗α(i); this happens with probability (εi−Qi).
If we condition ourselves to this case, with probability

∏
j ̸=i(1 − Qj), the opponents are

playing an action profile in S−i(π
∗) and the payoff to player i is Vi(π∗). The case where

at least one player in −i plays outside of S−i(π
∗) is bound in probability by

∑
j ̸=iQj ;

remember that the maximum and minimum reward possible for player i are both considered
constants as they are fixed beforehand; therefore the expected reward in this sub-case is
O(
∑

j Qj). Therefore, we can give an upper bound to the reward of player i given that
player i plays a pure strategy in Si(π

∗) \ e∗α(i). This upper bound is:

E
[
Vi(π)|πi ∈ Si(π

∗) \ e∗α(i)
]
=
∏
j ̸=i

(1−Qj)Vi(π
∗) +O(

∑
j

Qj)

= (1−
∑
j ̸=i

Qj)Vi(π
∗) +O(

∑
j

Qj) .

Let us denote by B(2)
i (π) = (1−

∑
j ̸=iQj)Vi(π

∗) +O(
∑

j Qj) this second bound of value
of Vi(π) which holds with probability (εi −Qi).

Player i plays outside of Si(π
∗); this happens with probability Qi. This case can be

further split considering that with probability
∏

j ̸=i(1− εj), the opponents play π∗
−i. In this

case player i obtains a reward of Vi(π∗)−Di,i(π). If the other players do not play according
to π∗, we have no specific bound for this case, but we should always remember that since
the game is finite, the general bound for every reward is constant. Restricting ourselves
to the case that player i plays outside of Si(π

∗), the expected reward for player i can be
upper-bounded considering that with probability 1−

∑
j ̸=i εj , the reward for player i has

upper bound (Vi(π
∗)−Di,i(π)), and considering that the remaining cases can influence the

expectation by at most O(
∑

j εj). Therefore, we denote by

B
(3)
i (π) = (1−

∑
j ̸=i

εj)(Vi(π
∗)−Di,i(π)) +O(

∑
j

εj)

the probabilistic bound of value of Vi(π) in the case that player i plays outside of Si(π
∗).

Summing up the probabilities of these scenarios and their expected return for player i
and substituting them in Eq A.3, we obtain:

∑
eα∈Ei

πq+1
i,α (Vi(eα, π−i)−Mi(π)) <

T
(1)
i (π)︷ ︸︸ ︷

(1− εi)q+1
[
B

(1)
i (π)−Mi(π)

]

+

T
(2)
i (π)︷ ︸︸ ︷[

B
(2)
i (π)−Mi(π)

]
·
∑

eβ∈Si(π∗)\e∗
α(i)

πq+1
i,β

+

T
(3)
i (π)︷ ︸︸ ︷[

B
(3)
i (π)−Mi(π)

]
·

∑
eβ /∈Si(π∗)

πq+1
i,β .
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We now have to analyse and bound T (1)
i (π), T

(2)
i (π) and T (3)

i (π). We recall:

B
(1)
i (π) = Vi(π

∗)−
∑
j ̸=i

QjDi,j(π) +O(
∑
j,k

Qjεk),

B
(2)
i (π) = (1−

∑
j ̸=i

Qj)Vi(π
∗) +O(

∑
j

Qj),

B
(3)
i (π) = (1−

∑
j ̸=i

εj)(Vi(π
∗)−Di,i(π)) +O(

∑
j

εj) .

Let us first consider the term T
(1)
i (π). For now, we just notice that we can approximate

its factor using Taylor expansion, i.e. (1− εi)q+1 = 1− (q + 1)εi +O(εi
2).

Let us find an upper bound for the term T
(2)
i (π). The expressionB(2)

i (π)−Mi(π) can
be either positive or negative. Whether it is positive or negative and whether q ≥ 1 or q < 1

determines whether the upper bound is obtained by concentrating all probability on one pure
strategy, thus obtaining weight (εi−Qi)

q+1 or evenly distributing it among the relevant pure
strategies obtaining the weight (|Si(π

∗) ∩Ei| − 1)
(

εi−Qi

|Si(π∗)∩Ei|−1

)q+1

= (εi−Qi)
q+1

(|Si(π∗)∩Ei|−1)q ,
but in either case, the term attains its extrema either by putting all the weight in one action,
or by distributing it equally as per Jensen’s inequality. As these are the only two options, we
use the bound

K(εi −Qi)
q+1

[
B

(2)
i (π)−Mi(π)

]
.

which works for both cases, for some K ∈ (0, 1].
Let us find an upper bound for the term T

(3)
i (π). We observe that for small enough∑

j∈N εj , the third reward, B(3)
i (π) is the smallest one amongst B(1)

i (π), B(2)
i (π) and

B
(3)
i (π), as Di,i(π) is lower bounded by a strictly positive constant. Because B(3)

i (π) is the
smallest of these rewards, and because Mi(π) is a weighted average of them, we have that
for small enough

∑
j∈N εj , we have that T (3)

i (π) is a sum of negative values. We can also
consider that

∑
eβ /∈Si(π∗) πi,β = Qi, and therefore by Jensen’s inequality, an upper bound

of T (3)
i (π) is by letting all summands have the highest reward of pure strategies in Si(π

∗),
and evenly distribute the probability Qi among them. This gives the bound:

T
(3)
i (π) ≤ |Ei \ Si(π

∗)|
(

Qi

|Ei \ Si(π∗)|

)q+1 [
B

(3)
i (π)−Mi(π)

]
=

(Qi)
q+1

|Ei \ Si(π∗)|q
[
B

(3)
i (π)−Mi(π)

]
.

Taking all these cases together, the upper bound for the LHS is, then,(
1− (q + 1)εi +O(εi

2)
) [
B

(1)
i (π)−Mi(π)

]
+K(εi −Qi)

q+1
[
B

(2)
i (π)−Mi(π)

]
+ (Qi)

q+1

|Ei\Si(π∗)|q

[
B

(3)
i (π)−Mi(π)

]
.

Comparing the bounds:

Putting together the upper bound of the LHS and the lower bound of the RHS that we
obtained so far, we have that we need to prove the following inequality:(

1− (q + 1)εi +O(εi
2)
) [
B

(1)
i (π)−Mi(π)

]
+K(εi −Qi)

q+1
[
B

(2)
i (π)−Mi(π)

]
+ (Qi)

q+1

|Ei\Si(π∗)|q

[
B

(3)
i (π)−Mi(π)

]
<
(
B

(1)
i (π)−Mi(π)

)
(1− εi)q .



proofs 157

We now move to the RHS the
(
B

(1)
i (π)−Mi(π)

)
factor in the LHS, to obtain that what we

need is equivalent to proving that:

K(εi −Qi)
q+1

[
B

(2)
i (π)−Mi(π)

]
+ (Qi)

q+1

|Ei\Si(π∗)|q

[
B

(3)
i (π)−Mi(π)

]
<
(
B

(1)
i (π)−Mi(π)

) (
εi +O(εi

2)
)
.

We now divide both sides by εi to obtain that what we need is equivalent to proving that:

K (1−Qi/εi)(εi −Qi)
q
[
B

(2)
i (π)−Mi(π)

]
+ (Qi/εi)

Qq
i

|Πℓ\S(π∗)|q

[
B

(3)
i (π)−Mi(π)

]
< (1 +O(εi))

[
B

(1)
i (π)−Mi(π)

]
.

Because the LHS is vanishingly small for small enough
∑

i εi, we have that if 0 <

B
(1)
i (π) −Mi(π), we get our desired inequality. We now expand Mi(π), we see that it

remains to show:

B
(1)
i (π) >

∑
β π

q
i,βVi(eβ , π−i)∑

β π
q
i,β

. (A.4)

To prove the inequality, we start by finding an upper bound to
∑

β πq
i,βVi(eβ ,π−i)∑

β πq
i,β

. We
start by splitting the events as before and obtaining, by linearity of expectation applied to Vi:∑

β π
q
i,βVi(eβ , π−i)∑

β π
q
i,β

≤ 1∑
β π

q
i,β

{
(1− εi)q

[
B

(1)
i (π)

]
+

∑
eβ∈Si(π∗)\e∗

α(i)

πq
i,β

[
B

(2)
i (π)

]

+
∑

eβ /∈Si(π∗)

πq
i,β

[
B

(3)
i (π)

] .

(A.5)

This is a weighted average of the rewards for the different pure strategies, where the
sum is split according to the three events of i either playing according to π∗, or an action in
Si(π

∗), or outside Si(π
∗). To find an upper bound for this weighted average, we consider

how the various components of πi influence the whole average, one event at a time.
Let us start with the event of i not playing in Si(π

∗). For
∑

j εj small enough, we
showed that B(3)

i (π) is the smallest reward. Taking the derivative of the RHS of (A.5) with
respect to

∑
eβ /∈Si(π∗) π

q
i,β , we see that to obtain an upper bound for the RHS of (A.5) we

need to minimise
∑

eβ /∈Si(π∗) π
q
i,β . For q ≥ 1, by Jensen’s inequality, this is obtained by

placing all the probability on one pure strategy, that is
∑

eβ /∈Si(π∗) π
q
i,β ≤ (Qi)

q . For q < 1,
also by Jensen’s inequality, the upper bound is by dividing the probability equally between
all relevant pure strategies:

∑
eβ /∈Si(π∗) π

q
i,β ≤

(
Qi

|Ei\Si(π∗)|

)q
. We denote whichever bound

is relevant by KQi

3 .
For the event of i playing in Si(π

∗) but not π∗
i , we now take the derivative of the

RHS of (A.5) with respect to
∑

eβ∈Si(π∗)\e∗
α(i)

πq
i,β . We have that B(2)

i (π) can be either
above or below the weighted average of the other rewards. Whether it is above or below
that average and whether q ≥ 1 or q < 1 determines whether the upper bound is obtained
by concentrating all probability on one pure strategy or evenly distributing it among the
relevant pure strategies, but in either case, the RHS of (A.5) attains its extrema either by
putting all the weight in one action, or by distributing it equally as per Jensen’s inequality.
As these are the only two options, we can argue as above and denote the upper bound by
KQi

2 , where KQi

2 can either be (εi −Qi)
q or

(
(εi−Qi)

q

|Ei∩Si(π∗)|−1

)q
.
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If we substitute KQi

3 and KQi

2 as factors in Ineq. (A.4) and if we rearrange the terms, we
obtain that proving our result is equivalent to prove the following:

[(1− εi)q +KQi

2 +KQi

3 ][B
(1)
i (π)]

> (1− εi)q
[
B

(1)
i (π)

]
+KQi

2

[
B

(2)
i (π)

]
+KQi

3

[
B

(3)
i (π)

]
.

Cancelling (1− εi)q(B(1)
i (π)), we get that it suffices to show:

[KQi

2 +KQi

3 ][B
(1)
i (π)] > KQi

2

[
B

(2)
i (π)

]
+KQi

3

[
B

(3)
i (π)

]
.

Taking
∑

j εj to zero, and making explicit the values of B(1)
i (π), B

(2)
i (π) and B(3)

i (π)

the inequality becomes:

[KQi

3 +KQi

2 ]Vi(π
∗) > KQi

2 Vi(π
∗) +KQi

3 (Vi(π
∗)−Di,i(π)) .

Which holds since Di,i(π) > 0. This concludes the proof.
Proof of A.10(Q3) Suppose a strategy profile π∗ satisfies (O1) and (O2). By contradiction,
suppose π∗ is not a strict equilibrium. That is, there is at least one layer, player i, and at least
one pure strategy for player i, π′

i ̸∈ Si(π
∗), such that Vi(π′

i, π
∗
−i) ≥ Vi(π

∗). The strategy
profile π = (π′

i, π
∗
−i) gives ⟨vq(π), π − π∗⟩ ≥ 0, a contradiction to C ′(ii).

A.3.2 Proof of Theorem 5.5

The idea of our proof is taken from [Gia+22]. We report it here for completeness, but only
minor modifications were needed to adapt it to our setting.

Theorem 5.5. Let π∗ ∈ Πℓ be an ℓ-recall strict equilibrium and q a non-negative real number.
Then, there exists a neighbourhood U of π∗ in Πℓ such that, for any η > 0, for any π0 ∈ U , any
p ∈ (12 , 1], and any positivem, there are (γi)i∈N small enough such that we have the following:
let (πn)n∈N be the sequence of play generated by q-replicator learning dynamics with step sizes
γni = γi

(n+m)p and q-replicator estimates v̂ni (π
n) such that p+ ℓb > 1 and p− ℓσ > 1/2. Then,

P (πn → S(π∗) as n→∞) ≥ 1− η .

Fix some ℓ-recall strict equilibrium π∗ ∈ Πℓ. For π ∈ Πℓ we define

D(π) =
1

2
∥π − π∗∥2 .

Lemma A.11. Let Dn := D (πn). Then, for all n = 1, 2, . . ., we have

Dn+1 ≤ Dn + γn ⟨v (πn) , πn − π∗⟩+ γnξn + γnχn + γ2nψ
2
n (A.6)

where the error terms ξn, χn, and ψn are given by

ξn = ⟨Un, πn − π∗⟩ , χn = ∥Πℓ∥Bn and ψ2
n =

1

2
∥v̂n∥2 .

with ∥Πℓ∥ := maxπ,π′∈Πℓ ∥π − π′∥.
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Proof. By the definition of the iterates of the policy gradient method, we have:

Dn+1 =
1

2
∥πn+1 − π∗∥2 =

1

2
∥projΠℓ (πn + γnv̂n)− projΠℓ (π∗)∥2

≤ 1

2
∥πn + γnv̂n − π∗∥2

=
1

2
∥πn − π∗∥2 + γn ⟨v̂n, πn − π∗⟩+ 1

2
γ2n ∥v̂n∥

2

= Dn + γn ⟨v (πn) + Un + bn, πn − π∗⟩+ 1

2
γ2n ∥v̂n∥

2

≤ Dn + γn ⟨v (πn) , πn − π∗⟩+ γnξn + γnχn + γ2nψ
2
n

where we used the Cauchy-Schwarz inequality to bound the bias term as ⟨bn, πn − π∗⟩ ≤
∥bn∥ · ∥πn − π∗∥ ≤ ∥Πℓ∥Bn = χn.

Let B =
{
π ∈ Πℓ : ∥π − π∗∥ ≤ ϱ

}
be a ball of radius ϱ and centre π∗ in Πℓ so that for

all π ∈ B \ S(π∗) we have ⟨v(π), π − π∗⟩ < 0 (without loss of generality, we can assume
that B is near maximal in that regard). We then examine the event that the aggregation of
the error terms in (A.6) is not sufficient to drive πn to escape from B. To that end, we begin
by aggregating the errors in (A.6) as

Mn =

n∑
k=1

γkξk and Sn =

n∑
k=1

[
γkχk + γ2kψ

2
k

]
.

Since E [ξn | Fn−1] = E [⟨v̂n − E[v̂n|Fn−1], πn − π∗⟩ | Fn−1] = 0, it also holds that
E [Mn | Fn−1] =Mn−1, so Mn is a martingale; likewise, E [Sn | Fn−1] ≥ Sn−1, so Sn is a
submartingale. Then, we also consider the mean square error process

Wn =M2
n + Sn

and the associated indicator events En = {πk ∈ B for all k = 1, 2, . . . , n} and Hn =

{Wk ≤ a for all k = 1, 2, . . . , n}, where the error tolerance level a > 0 is such that 2a +√
a < ϱ, and we are employing the convention E0 = H0 = Ω (since every statement is true

for the elements of the empty set). We then assume that π1 is initialised in a ball of radius√
2a centred at π∗, namely,

U = {π ∈ Πℓ : D(π) ≤ a} =
{
π ∈ Πℓ : ∥π − π∗∥2 /2 ≤ a

}
.

LemmaA.12. Let πn be the sequence of play generated by policy gradient initialised at π1 ∈ U .
We then have:

1. En+1 ⊆ En and Hn+1 ⊆ Hn for all n = 1, 2, . . .

2. Hn−1 ⊆ En for all n = 1, 2, . . .

3. Consider the bad realisation event:

H̃n := Hn−1\Hn = {Wk ≤ a for k = 1, 2, . . . , n− 1 and Wn > a} ,

and let W̃n =Wn1Hn−1 be the cumulative error subject to the noise being small. Then
we have:

E
[
W̃n

]
≤ E

[
W̃n−1

]
+ γn∥Πℓ∥Bn + γ2n∥Πℓ∥2σ2

n

+
3

2
γ2n
(
G2 +B2

n + σ2
n

)
− aP

(
H̃n−1

)
(A.7)

where, by convention, H̃0 = ∅ and W̃0 = 0.
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Proof. The first claim of the lemma is obvious. For the second, we proceed inductively:

1. For the base case n = 1, we have E1 = {π1 ∈ B} ⊇ {π1 ∈ U} = Ω (recall that π1 is
initialised in U ⊆ B). Since H0 = Ω, our claim follows.

2. Inductively, assume that Hn−1 ⊆ En for some n ≥ 1. To show that Hn ⊆ En+1,
suppose that Wk ≤ a for all k = 1, 2, . . . , n. Since Hn ⊆ Hn−1, this implies that
En also occurs, i.e., πk ∈ B for all k = 1, 2, . . . , n; as such, it suffices to show that
πn+1 ∈ B. To do so, given that πk ∈ B for all k = 1, 2, . . . n, we readily obtain

Dk+1 ≤ Dk + γkξk + γkχk + γ2kψ
2
k, for all k = 1, 2, . . . n ,

and hence, after telescoping over k = 1, 2, . . . , n, we get

Dn+1 ≤ D1 +Mn + Sn ≤ D1 +
√
Wn +Wn ≤ a+

√
a+ a = 2a+

√
a .

We conclude that D (πn+1) ≤ 2a+
√
a, i.e., πn+1 ∈ B, as required for the induction.

For our third claim, note first that

Wn = (Mn−1 + γnξn)
2
+ Sn−1 + γn

=Wn−1 + 2γnξnMn−1 + γ2nξ
2
n + γnχn + γ2nψ

2
n. (A.8)

After taking expectations, we get

E [Wn | Fn−1] =Wn−1 + 2Mn−1γnE [ξn | Fn−1] + E
[
γ2nξ

2
n + γnχn + γ2nψ

2
n | Fn−1

]
≥Wn−1

as E [ξn | Fn−1] = 0 and E
[
γ2nξ

2
n + γnχn + γ2nψ

2
n | Fn−1

]
≥ 0. Hence, Wn is a sub-

martingale. To proceed, let W̃n =Wn1Hn−1 so

W̃n =Wn1Hn−1
=Wn−11Hn−1

+ (Wn −Wn−1)1Hn−1

=Wn−11Hn−2
−Wn−11H̃n−1

+ (Wn −Wn−1)1Hn−1

= W̃n−1 + (Wn −Wn−1)1Hn−1 −Wn−11H̃n−1
, (A.9)

where we used the fact that Hn−1 = Hn−2\H̃n−1 so 1Hn−1 = 1Hn−2 − 1H̃n−1
( since

Hn−1 ⊆ Hn−2). Then, (A.8) yields

Wn −Wn−1 = 2Mn−1γnξn + γ2nξ
2
n + γnχn + γ2nψ

2
n

and hence, given that Hn−1 is Fn−1-measurable, we get:

E
[
(Wn −Wn−1)1Hn−1

]
= 2E

[
γnMn−1ξn1Hn−1

]
(A.10)

+ E
[
γ2nξ

2
n1Hn−1

]
(A.11)

+ E
[(
γnχn + γ2nψ

2
n

)
1Hn−1

]
(A.12)

However, since Hn−1 and Mn−1 are both Fn−1-measurable, we have the following
estimates:

1. For the noise term in (A.10), we have:

E
[
Mn−1ξn1Hn−1

]
= E

[
Mn−11Hn−1

E [ξn | Fn−1]
]
= 0 .
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2. The term (A.11) is where the reduction to Hn−1 kicks in; indeed, we have:

E
[
ξ2n1Hn−1

]
= E

[
1Hn−1

E
[
|⟨πn − π∗, Un⟩|2 | Fn−1

]]
≤ E

[
1Hn−1

∥πn − π∗∥2 E
[
∥Un∥2 | Fn−1

]]
#by Cauchy-Schwarz

≤ ∥Πℓ∥2σ2
n .

3. Finally, for the term (A.12), we have:

E
[
ψ2
n1Hn−1

]
≤ 3

2

[
G2 +B2

n + σ2
n

]
(A.13)

where we used the bound ∥v(π)∥ ≤ G. Likewise, χn1Hn−1
≤ ∥Πℓ∥Bn, so

(A.12) ≤ γn∥Πℓ∥Bn +
3

2
γ2n
(
G2 +B2

n + σ2
n

)
(A.14)

Thus, putting together all of the above, we obtain:

E
[
(Wn −Wn−1)1Hn−1

]
≤ γn∥Πℓ∥Bn + γ2n∥Πℓ∥2σ2

n +
3

2
γ2n
(
G2 +B2

n + σ2
n

)
Going back to (A.9), we have Wn−1 > a if H̃n−1 occurs, so the last term becomes

E
[
Wn−11H̃n−1

]
≥ aE

[
1H̃n−1

]
= aP

(
H̃n−1

)
(A.15)

Our claim then follows by combining Eqs. (A.9), (A.13), (A.14) and (A.15).

Proposition A.13. Fix some confidence threshold δ > 0 and let πn be the sequence of play
generated by the policy gradient method with step-size and policy gradient estimates as per
Theorem 5.5. We then have:

P (Hn | π1 ∈ U) ≥ 1− δ for all n = 1, 2, . . .

provided that γ is small enough (or m large enough) relative to δ.

Proof. We begin by bounding the probability of the bad realisation event H̃n = Hn−1\Hn.
Indeed, if π1 ∈ U , we have:

P
(
H̃n

)
= P (Hn−1\Hn) = E

[
1Hn−1 × 1 {Wn > a}

]
≤ E

[
1Hn−1 × (Wn/a)

]
= E

[
W̃n

]
/a . (A.16)

Where, in the penultimate step, we used the fact that Wn ≥ 0 (so 1 {Wn > a} ≤Wn/a).
Telescoping (A.7) then yields

E
[
W̃n

]
≤ E

[
W̃0

]
+ ∥Πℓ∥

n∑
k=1

γkBk +

n∑
k=1

γ2kϱ
2
k − a

n∑
k=1

P
(
H̃k−1

)
, (A.17)

where we set
ϱ2n = ∥Πℓ∥2σ2

n +
3

2

(
G2 +B2

n + σ2
n

)
.

Hence, combining (A.16) and (A.17) and invoking our stated assumptions for γn, Bn and σn,
we get

n∑
k=1

P
(
H̃k

)
≤ 1

a

n∑
k=1

[
γkBk∥Πℓ∥+ γ2kϱ

2
k

]
≤ C

a
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for some C ≡ C(γ,m) > 0 with limγ→0+ C(γ,m) = limm→∞ C(γ,m) = 0 (since γn =

γ/(n+m)p and p > 0)

Now, by choosing γ sufficiently small (orm sufficiently large), we can ensure that C/a <
δ; thus, given that the events H̃k are disjoint for all k = 1, 2, . . ., we get P

(⋃n
k=1 H̃k

)
=∑n

k=1 P
(
H̃k

)
≤ δ. In turn, this implies that P (Hn) = P

(
H̃c

1 ∩ · · · ∩ H̃c
n

)
≥ 1 − δ, and

our assertion follows.

Our next step is to show that any realisation πn of the policy gradient method that is
contained in B admits a subsequence πnk

converging to π∗.

Proposition A.14. Let πn be the sequence of play generated by the policy gradient method
with step-size and policy gradient estimates as per Theorem 5.5. We then have that πn admits
a subsequence πnk

that converges to S(π∗) with probability 1 on the event E =
⋂

n En =

{πn ∈ B for all n = 1, 2, . . .}.

Proof. Let Q = {πn ∈ B for all n} ∩ {lim infn ∥πn − S(π∗)∥ > 0} denote the event that
πn is contained in B but the sequence πn does not admit a subsequence converging to S(π∗).
We show that P(Q) = 0.

Indeed, assume for sake of contradiction that P(Q) > 0. Hence, with probability
1 on Q, there exists some positive constant c > 0 (again, possibly random) such that
⟨v (πn) , πn − π∗⟩ ≤ −c < 0 for all n. Thus, using the definition of Dn, we get

Dn+1 ≤ Dn − γnc+ γnξn + γnχn + γ2nψ
2
n .

So if we let τn =
∑n

k=1 γk and telescope the above, we obtain the bound

Dn+1 ≤ D1 − τn
[
c− Mn

τn
− Sn

τn

]
. (A.18)

Also, the bound on σn readily gives

∞∑
n=1

E
[
γ2nξ

2
n | Fn

]
≤

∞∑
n=1

γ2nE
[
∥πn − π∗∥2 ∥Un∥2 | Fn

]
≤ ∥Πℓ∥2

∞∑
n=1

γ2nσ
2
n <∞ .

By the strong law of large numbers for martingale difference sequences [HH80, Theorem
2.18], we conclude that Mn/τn converges to 0 with probability 1. In a similar vein, for the
sub-martingale Sn we have

E [Sn] =

n∑
k=1

γkχk +

n∑
k=1

γ2kE
[
ψ2
k

]
≤ ∥Πℓ∥

n∑
k=1

γkBk +
3

2

n∑
k=1

γ2k
[
G2 +B2

k + σ2
k

]
.

By the bounds on Bn and σn and the stated conditions for the method’s step-size and
bias/noise parameters, it follows that Sn is bounded in L1. Therefore, by Doob’s sub-
martingale convergence theorem [HH80, Theorem 2.5], we further deduce that Sn converges
with probability 1 to some (finite) random variable S∞.

Going back to (A.18) and letting n → ∞, the above shows that Dn → −∞ with
probability 1 on Q. Since D is nonnegative by construction and P(Q) > 0 by assumption,
we obtain a contradiction and our proof is complete.

Our last auxiliary result concerns the convergence of the values of the dual energy
function D. We encode this as follows.
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Proposition A.15. If policy gradient is run with assumptions as in Theorem 5.5, there exists a
finite random variable D∞ such that

P (Dn → D∞ as n→∞ | πn ∈ B for all n) = 1 .

Proof. Let En = {πk ∈ B for all k = 1, 2, . . . , n} be defined as before, and let D̃n = 1EnDn.
Then, by the definition of Dn and the fact that En+1 ⊆ En, we get

D̃n+1 = 1En+1
Dn+1 ≤ 1EnDn+1

≤ 1EnDn + 1Enγn ⟨v (πn) , πn − π∗⟩+
(
γnξn + γnχn + γ2nψ

2
n

)
1En

≤ D̃n + γn1Enξn +
(
γnχn + γ2nψ

2
n

)
1En ,

where we used the fact that that ⟨v (πk) , πk − π∗⟩ ≤ 0 for all k = 1, 2, . . . , n if En
occurs. Since En is Fn−1-measurable, conditioning on Fn−1 and taking expectations yields

E
[
D̃n+1 | Fn−1

]
≤ D̃n + γn1EnE [ξn | Fn−1] + 1Enγnχn + 1EnE

[
γ2nψ

2
n | Fn−1

]
≤ D̃n + γn∥Πℓ∥Bn + γnχn + E

[
γ2nψ

2
n | Fn−1

]
≤ D̃n + γn∥Πℓ∥Bn +

3

2

[
G2 +B2

n + σ2
n

]
.

By our step-size assumptions, we have
∑

n γ
2
n

(
1 +B2

n + σ2
n

)
<∞ and

∑
n γnBn <∞,

which means that D̃n is an almost supermartingale with almost surely summable increments,
i.e.,

∞∑
n=1

[
E
[
D̃n+1 | Fn

]
− D̃n

]
<∞ with probability 1

Therefore, by Gladyshev’s lemma, we conclude that D̃n converges almost surely to some
(finite) random variable D∞. Since 1En = 1 for all n if and only if πn ∈ B for all n, we
conclude that P(Dn converges | πn ∈ B for all n) = P(D̃n converges ) = 1, and our claim
follows.

We are now in a position to prove Theorem 5.5.

Proof. Let E =
⋂

n En = {πn ∈ B for all n} denote the event that πn lies in B for all
n. By Proposition A.13, if π1 is initialised within the neighborhood U as defined, we
have P (E | π1 ∈ U) ≥ 1 − a, noting also that the neighborhood U is independent of
the required confidence level a. Then, by Propositions A.14 and A.15, it follows that a)
lim infn ∥πn − S(π∗)∥ = 0; and b) Dn converges, both events occurring with probability 1
on the set E ∩ {π1 ∈ U}. We thus conclude that limn→∞Dn = 0 and hence

P (πn → S(π∗) | π1 ∈ U) ≥ P (E ∩ {πn → S(π∗)} | π1 ∈ U)
= P (πn → S(π∗) | π1 ∈ U , E)× P (E | π1 ∈ U) ≥ 1− δ ,

which concludes our proof.



The crickets sang in the grasses. They sang the song of
summer’s ending, a sad, monotonous song. [. . . ]. The
crickets felt it was their duty to warn everybody that
summertime cannot last forever. Even on the most
beautiful days in the whole year-the days when summer
is changing into fall-the crickets spread the rumor of
sadness and change.

E.B. White6
Simultaneous Best-Response Dynamics in Random
Potential Games

In this Chapter, as standard in the Game Theory literature, we postpone formal proof of our
statements to the appendix.

Strategic interactions between agents are typically modelled as games, with the Nash
equilibrium (NE) serving as the central solution concept. However, this concept requires
strong assumptions, including player rationality and, in the presence of multiple equilibria, a
principled method for equilibrium selection [AB95; HS88]. Moreover, computing a NE often
requires knowledge of the opponents’ payoffs. These requirements are rarely met in practice,
where often solutions are instead found heuristically.

The increasing use of learning agents to address complex optimisation problems raises
a central question in game theory and multi-agent learning: do learning agents interacting
repeatedly converge to a NE? Such agents adapt their strategies through learning rules
designed to improve individual rewards, thereby generating a dynamic process over the
space of strategy profiles. These dynamics are called learning dynamics or adaptive dynamics.

A particularly intuitive and widely studied class of learning dynamics is the best-response
dynamics (see, e.g. [SMK18]), in which players update their strategies to their best response
against the current strategy profile of their opponents. There are two primary variants. In
the sequential variant, players revise their strategies one at a time, either in a fixed order or
according to a stochastic rule [SMK18]. In contrast, the simultaneous variant (from now on
SBRD) has all players updating their strategies simultaneously, and is the focus of this chapter.
While the sequential variant requires coordination on the update order, the simultaneous
version does not.

Moreover, SBRD is a deterministic uncoupled dynamic, meaning that each player deter-
ministically updates their strategy based solely on their own payoffs, without knowledge
of others’ payoffs or any need for coordination or randomisation. While it is known that
dynamics of this family do not always converge to NE in general games [HM13], this chapter
investigates the behaviour of SBRD in the specific context of random potential games.

Potential games have been extensively employed to model a variety of strategic environ-
ments, including congestion games [Voo+99; San10], Cournot Competition [DLP12], and they
have applications in theoretical computer science [NRT07], wireless communication [LT11]
and evolutionary biology [HS03], among others. Potential games, introduced by [Ros73a]
and further developed by [MS96] and [Voo00], are games in which there exists a common
potential function, mapping action profiles to real or ordinal values, such that each player’s
optimisation aligns with the optimisation of this global function. In other words, all players
effectively aim to maximise the same objective. In order to estimate typical behaviour, we

164



simultaneous best-response dynamics in random potential games 165

consider random potential games, i.e. we sample randomly the potential game in which the
dynamic occurs.

The simplicity of SBRD, coupled with the broad applicability of potential games, motivates
our central question:

If all players in a potential game follow a simultaneous best-response rule,
is the resulting dynamic likely to converge to a Nash equilibrium?

Our results indicate that this is the case for three or more players. However, interestingly,
we prove that this is not the case for two-player games. Moreover, we show that the same
phenomena occur if the potential game assumption is weakened.

Our goal is to estimate the probability with which SBRD converges to a NE in random
potential games. The model relies on two assumptions: (i) the values of the potential function
are sampled independently for each action profile from a common distribution. We use
the normal distribution in our experiments, although our theoretical results only require
sampling from any continuous distribution; and (ii) all players have the same number of
actions. This assumption is made purely for notational convenience and computational
simplicity, rather than necessity.

Under these conditions, the resulting probability distribution over best-response tra-
jectories is equivalent to that induced by uniformly sampling an ordering of the action
profiles [Col+25]. This equivalence allows us to study convergence behaviour within the
broader framework of random ordinal potential games (see again [Col+25] for further dis-
cussion).

Chapter outline and summary of results We obtain results in three directions. First, we
characterise the limiting behaviour of SBRD in random potential games as the number of
actions per player increases. We do so by providing a formal proof for the two-player case
and by giving strong numerical evidence for the cases with three or more players. To our
knowledge, ours is the first theoretical result of its kind. Second, we verify the robustness of
our results by numerically testing whether similar behaviour holds in games that are ‘close’
to potential games —specifically, games with highly correlated payoffs. Third, we compare
SBRD with the widely used and well-understood [Zha+22] softmax policy gradient dynamic,
examining both convergence rates and the quality of the resulting payoffs. We now elaborate
further.

Firstly, in Section 6.2.1, we reveal an interesting difference between games with two
players and games with at least three players. We prove, for random potential games with
two players, that with high probability SBRD ends up cycling over a cycle of length two, and
thus, not converging to a NE. To the best of our knowledge, no theoretical result analysing
convergence of SBRD has been obtained before ours. Furthermore, the convergence to
the cycle takes place within a constant number of steps, with a small proportion of the
action-profiles being played. This two-cycle consists of two action-profiles (a, b) and (a′, b′)

such that both (a, b′) and (a′, b) are NE. These results are presented in Section 6.2.1 and
experiments in Section 6.3.2. For random potential games with at least three players, we find
in Section 6.3.3 that as the number of actions increases, the probability with which SBRD
converges to a NE increases to one.

Secondly, throughout Section 6.3, we numerically test the robustness of our results to the
assumption of the game being a potential game. We simulate random games with various
levels of correlation for the payoffs of the players, and find that, in the highly-correlated
regime, the results obtained for potential games still hold. With this, we provide strong
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evidence that highly correlated games behave similarly to potential games with respect to
SBRD.

Thirdly, also in Section 6.3.4, we compare SBRD to the softmax policy gradient dynamic
(SPGD). We choose SPGD as our benchmark due to its desirable combination of properties:
it updates in the direction of the best response while introducing smoothness to the learning
dynamics, enjoys strong theoretical convergence guarantees, is well-suited for practical
model-free implementation, and incorporates inherent exploration. These features have
led to the widespread adoption of softmax policy gradient methods, and their variants,
in contemporary reinforcement learning [Mei+20; KWD24; Ber+25; CZD22; SSW19]. We
observe that, for three or more players near-potential games, SBRD converges significantly
quicker to an equilibrium and scales better to large action sets. We also find that, while SPGD
tends to converge to equilibria with moderately higher payoffs, the average payoff along the
dynamics is higher for SBRD. The case of three or more players is presented in Section 6.3.

In summary, we show that SBRD cycles around two NE in the case of two players, and
converges to a NE in the case of three or more players. We show that this happens quickly,
and is robust, meaning that the same holds for games with highly correlated payoffs. Hence,
SBRD is a quick and highly-rewarding learning method.

Related work Our research is closely related to two branches of research: learning dynam-
ics in potential games, and learning dynamics in games with random payoffs.

Learning dynamics in potential games In recent years, learning dynamics in potential
games, and their Markovian extensions, have been extensively studied. Convergence guar-
antees are of interest: for instance, [Sak+24] analyse q-replicator dynamics, [HCM17] prove
convergence under no-regret learning with the exponential weights algorithm and minimal
information, and [Fox+22] show convergence for natural policy gradient learning. Other
works focus on the complexity of these dynamics: [Leo+21] study projected gradient dynam-
ics, [CCC22] analyse softmax policy gradient descent with entropy regularisation, [Zha+22]
examine gradient and natural gradient with log-barrier regularisation, [Din+22] consider
projected gradient under various informational assumptions, and [Sun+23] investigate nat-
ural policy gradient descent methods. More recent contributions include [DWY24], who
analyse a variant of the Frank-Wolfe algorithm, and [ABH24], who study independent policy
mirror descent.

Learning dynamics in games with random payoffs The behaviour of learning dynamics
in games with randomly generated payoffs has been the subject of increasing interest. In the
two-player setting, [GF13] show that experience-weighted attraction learning can lead to a
range of outcomes, from convergence to fixed points to complex chaotic behaviour. [Cha+25]
generalises these results in the many player limit. Assuming the ability for players to
coordinate, [MQS24] demonstrate that, under payoff correlation and a growing number of
actions, sequential best-response dynamics converge to a pure NE with high probability. In a
similar setting, [Col+25] study two-player random potential games and show that the basin
of attraction of each equilibrium is effectively determined by the identity of the player that
first updates their strategy.

In games with many players or actions, structural properties of the dynamics are nu-
anced. [Ami+21] examine large-player games where each player has two actions and payoffs
are randomly drawn with a small probability of ties; they show that sequential best-response
dynamics typically reach a pure NE as the number of players grows. [ACH21] contrast best
and better-response dynamics in two-player games with many actions, finding that while
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better-response dynamics (with randomly selected updating players) reliably converge to
equilibrium when one exists, best-response dynamics tend to enter cycles. This sensitivity to
update rules is further emphasised by [Hei+23], who show that sequential best-response
dynamics converge only under random turn-taking; cyclic update orders generally fail to
reach equilibrium. Finally, [Joh+24] prove that in large random games, any non-equilibrium
action profile can be connected via a best-response path to a pure equilibrium, if one exists,
with high probability as the action space grows.

6.1 The setup

An n-player normal-form game is a triple (N, (Ai)i∈N , (ui)i∈N ), where N = {1, . . . , n} is
a finite set of players, each Ai is the finite action set of player i, and ui :

∏
j∈N Aj → R is

the payoff function of player i. For ease of exposition, we assume that all players have the
same number m of actions, i.e. for all players i ∈ N and some m ∈ N, we have |Ai| = m.
Let A =

∏
i∈N Ai denote the set of action profiles, and, for i ∈ N , let A−i :=

∏
j∈N\{i}Aj .

Players may randomise over their actions by playing a strategy xi ∈ ∆(Ai), where ∆(Ai)

is the simplex over the set Ai. It is standard to extend the payoff function ui to strategy
profiles. And so, for x = (x1, . . . , xn) ∈

∏
i∈N ∆(Ai), the expected payoff to player i is

ui(x) =
∑
a∈A

ui(a)

n∏
j=1

xj,aj . (6.1)

With a slight abuse of notation, we sometimes write a = (ai, a−i) and x = (xi, x−i) to
denote the combination of player i’s action or strategy with the actions or strategies of their
opponents. A strategy profile x∗ ∈

∏
i∈N ∆(Ai) is a NE if there are no profitable unilateral

deviations from x∗, namely, if for any player i ∈ N and any strategy xi ∈ ∆(Ai) of this
player, it holds that ui(x∗i , x∗−i) ≥ ui(xi, x

∗
−i). A strategy profile x is pure if each player

plays one action with probability 1. In this case, we often refer to it as an action profile.

6.1.1 Potential Games

A game is a potential game if there exists a single function Ψ: A→ R (‘the potential’) that
captures the players’ incentives. Formally,

Definition. A normal-form game (N, (Ai)i∈N , (ui)i∈N ) is a potential game if there is a
function Ψ : A→ R such that for each player i ∈ N and each possible action profile of the
opponents a−i ∈

∏
j ̸=iAj , there is a constant ci(a−i) ∈ R such that, for every ai ∈ Ai, we

have,

ui(ai, a−i) = Ψ(ai, a−i) + ci(a−i) ,

When all ci are equal to zero, we simply write (N, (Ai)i∈N ,Ψ).

This is equivalent to the classical definition of a potential game (see [MS96]).
Thus, a change in player i’s payoff from switching actions exactly equals the change in

the global potential. Consequently, in a potential game, an action profile is a NE if and only
if it is a local maximum of the potential function Ψ.

Without loss of generality, here and in the following we assume all the ci are equal to 0.
This is not restrictive in our setting as in SBRD players only consider pairwise comparisons
of rewards.
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Random Potential Games

To study typical behaviour, we introduce the notion of random potential game with n players
and m actions.

Definition. Let F be a continuous real-valued distribution, and n and m positive integers.
An n-player m-actions F -random potential game is a potential game G = (N, (Ai)i∈N ,Ψ)

in which |N | = n, and |Ai| = m, and moreover we have that for each a ∈ A, the value Ψ(a)

is sampled independently at random from F .
When N,A and F are clear from context, we just refer to G as a random potential game.

6.1.2 The simultaneous best response algorithm

One of the simplest learning dynamics is the simultaneous best response dynamic (SBRD).
Given a game, starting from an initial action profile a0 ∈ A, the SBRD proceeds as follows:
at each round t ≥ 1 every player i ∈ N myopically best-responds to the previous action
profile at−1. Formally,

ati = arg maxai∈Ai
ui(ai, a

t−1
−i ) .

If, at some time t, we have at = at+1, then every player must be playing a best-response to
their opponents’ strategies, which means at is a NE.

We can assume without loss of generality that a0 is some arbitrary fixed action profile,
up to reordering. Once a0 is fixed, since best-response updates depend only on the realised
potential function Ψ, the sequence (at)t≥0 is a random process.

6.2 Results

In this section, we present our main findings on the convergence of SBRD in random potential
games. We begin by establishing a theoretical result for two-player games. We show that,
for large enough number of actions, SBRD almost surely reaches a two-cycle in a constant
number of steps. This two-cycle consists of two action-profiles (a, b) and (a′, b′) such that
(a, b′) and (a′, b) are both NE. We then consider the case of three players or more. Here, we
demonstrate via simulations that SBRD converges to a pure NE with probability tending to
one as A tends to infinity.

6.2.1 Two Players

Our main theoretical result is that, in two-player games with sufficiently large action sets,
SBRD almost surely converges to a two-cycle in a constant number of steps.

Theorem 6.1. Let ε ∈ (0, 1), F be a continuous real distribution, and G be a two-player
m-actions F -random potential game. If m is large enough, then SBRD converges to a two-cycle
in at most log ε

log(3/4) steps with probability at least 1− ε.

The proof of Theorem 6.1 works by comparing the SBRD to another dynamic that con-
verges to a two-cycle, and showing that these two processes coincide up to the termination
time with high probability. All lemmas are proved in Appendix B.1.

We view the SBRD as a random process over the set of action profiles, where only the
payoffs needed are sampled at each time. In this sense, the SBRD for two players proceeds as
follows:
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• At period 0, the initial action profile (a0, b0) ∈ A is arbitrarily chosen. Also, the
following payoffs are sampled (i.i.d. from F ): Ψ(a0, b0), Ψ(a, b0) for a ∈ A1 \ {a0},
and Ψ(a0, b) for b ∈ A2 \ {b0}.

• At period 1, the action profile is (a1, b1) ∈ Awhere a1 := arg maxa∈A1
Ψ(a, b0), b1 :=

arg maxb∈A2
Ψ(a0, b). As the realised potential values are drawn from a continuous

distribution, ties occur with probability zero, and best responses are almost surely
unique. Furthermore, the following payoffs are sampled independently from F (if they
have not already been sampled): Ψ(a1, b1), Ψ(a, b1) for a ∈ A1 \ {a1}, and Ψ(a1, b)

for b ∈ A2 \ {b1}.
• In general, at period t, the current action profile is (at, bt) ∈ A, where, similarly

as above, we have at := arg maxa∈A1
Ψ(a, bt−1), and bt := arg maxb∈A2

Ψ(at−1, b).
Additionally, the following payoffs are sampled independently from F (if they have
not already been sampled before): Ψ(at, bt), Ψ(a, bt) for a ∈ A1 \ {at}, and Ψ(at, b)

for b ∈ A2 \ {bt}.
• This process terminates when there is a repetition, i.e. if at some time T there exists

some earlier time s < T such that (aT , bT ) = (as, bs), then the process terminates at
time T in a cycle of length T − s. Since the action space is finite, the process must
eventually cycle and thus terminate.

The first step of our proof is to observe that no cycle of length greater than two can occur.

Lemma 6.2. With probability one, the SBRD process terminates at a cycle of length one or two.

We can further characterise the two-cycle as follows:

Remark 6.3. Suppose that the SBRD process does not converge to a NE. By Lemma 6.2, there
exists some time T , such that (aT−2, bT−2) = (aT , bT ). Consider the two action profiles
(aT−1, bT ) and (aT , bT−1). As bT = bT−2, we have that aT−1 is a best response of player
one to bT , and clearly bT is a best-response of player two to aT−1. Hence, (aT−1, bT ) is a
NE. Similarly, (aT , bT−1) is also a NE.

The rest of the proof works by comparing the SBRD with a restricted version of our
dynamic, which we call the Independent Dynamic (INDD). In INDD, at each time t, players
do not necessarily move to the current best response but rather select the best response
amongst the actions they have not yet played, or the action they played in the previous
period. While counter-intuitive, because m is large and INDD quickly converges, the set of
actions excluded is insignificant compared to the whole set of available actions and therefore
the dynamics behave in the same way with high probability.

The reason we consider INDD is that, in this dynamic, at each time t, each player’s next
action is chosen as the maximiser of a set of potential values that are either independent
of the history of the process or whose dependence can be carefully controlled. In contrast,
under SBRD, any previously sampled payoff that was not the maximiser at the time it was
observed becomes less likely to be the maximiser at a later time. This introduces a form of
path dependence, thereby breaking the independence structure of the process.

Formally, the INDD is defined as follows.

• At time 0, the initial action profile is (a0, b0), and the following payoffs are sampled
(i.i.d. from F ):{

Ψ(a, b0) : a ∈ A1 \ {a0}
}

and
{
Ψ(a0, b) : b ∈ A2 \ {b0}

}
.

Note that the value Ψ(a0, b0) is not sampled.
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• At time 1, the action profile is (a1, b1) where:

a1 := arg maxa∈A1\{a0}Ψ
(
a, b0

)
and b1 := arg maxb∈A2\{b0}Ψ

(
a0, b

)
.

Furthermore, all payoffs of the form Ψ(a, b1) and Ψ(a1, b) that are not known yet are
sampled, besides Ψ(a1, b1). Note that the set of payoffs for player one that need to be
sampled is R1

1 := {Ψ(a, b1), a ̸∈ {aτ , τ < 1}} = {Ψ(a, b1), a ̸= a0} and likewise for
player two it is R1

2 := {Ψ(a1, b), b ̸∈ {bτ , τ < 1}} = {Ψ(a1, b), b ̸= b0}.

• At time t ≥ 2, the action profile is (at, bt) where

at = arg maxa∈{at−2}∪(A1\{aτ :τ<t})Ψ(a, bt−1) ,

bt = arg maxb∈{bt−2}∪(A2\{bτ :τ<t})Ψ(at−1, b) .

Additionally, all payoffs of the form Ψ(a, bt) and Ψ(at, b) that are not known yet
are sampled, besides Ψ(at, bt). The set of payoffs for player one that need to be
sampled is Rt

1 := {Ψ(a, bt), a ̸∈ {aτ , τ < t}} and likewise for player two it is
Rt

2 := {Ψ(at, b), b ̸∈ {bτ , τ < t}}.

• We define this process to terminate when there is a repetition, i.e. if at some time T
there exists some earlier time s < T such that (aT , bT ) = (as, bs). Then we say that
the process terminates at time T in a cycle of length T − s. Since the action space is
finite, the process must eventually terminate.

In formal statements, we refer to this process as a two-player m-actions F -INDD.
Since, at time t, each player can only play the action that was played at time t− 2 or one

of the actions that they have not played before, the only cycles that can occur are of length
two. As the set of action profiles is finite, INDD must cycle, and thus INDD must converge
to a cycle of length two.

The dynamics INDD and SBRD are different only if in SBRD one of the players plays at
time t an action that they already played at time s with s ̸= t− 2.

We argue that this occurs with small probability. To this end, we prove first that the
INDD process terminates quickly with a high probability.

Lemma 6.4. Let ε ∈ (0, 1), and F a continuous real-valued distribution. Let us consider a
two-player m-actions F -INDD. If m is large enough, then the probability that the INDD process
has not terminated by period log ε

log(3/4) is at most ε.

We then show that the probability that INDD and SBRD differ at any step tends to zero
as m→∞. A difference between SBRD and INDD can only appear if, for some time t, the
best response of player one to bt−1 is either at−1 or aτ for some τ < t− 2 or the analogous
happens for player two. The following two lemmas bound the probability of any of these
events occurring.

Lemma 6.5. Let ε ∈ (0, 1), and let T be a positive integer. Consider a two-player m-actions
F -SBRD. If m is large enough, with probability at least 1 − ε

2 there is no t ≤ T with either
at ∈ {a0, . . . , at−3} or bt ∈ {b0, . . . , bt−3}.

Lemma 6.6. Let ε ∈ (0, 1), and let T be a positive integer. Consider a two-player m-actions
F -SBRD. If m is large enough, with probability at least 1 − ε

2 there is no t ≤ T with either
at = at−1 or bt = bt−1.
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(a) Probability of converging to a two-cycle.
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(b) Number of steps to convergence.

Figure 6.1: SBRD in a two-player 50-actions game. 10000 samples were drawn. Runtime: 22 seconds.

Combining Lemmas 6.5 and 6.6, we conclude that for any ε > 0, for any fixed T , there
exists m̄ such that whenever m ≥ m̄,

P
(
INDD and SBRD coincide up to time T

)
≥ 1− ε .

Using this result, and that INDD converges quickly to a two-cycle, we obtain Theorem 6.1.

6.3 Experimental Results

We run extensive simulations for random potential and near-potential games with up to four
players.

Key findings. (i) In 6.3.2, we show that the behaviour proved in Theorem 6.1 persists even
in games where player payoffs are highly correlated but not identical. (ii) In 6.3.3 we show
that, in the three-player settings, SBRD converges to a Nash equilibrium quickly and with
high probability. (iii) In 6.3.4, we give evidence that SBRD is considerably faster than SPGD,
while obtaining comparable rewards.

Technical details. All experiments were executed locally on an Apple MacBook Air with
M3 chip with 16 GB RAM with no use of GPU. Code and data are publicly available [Mer25].
Metrics on continuous-valued variables are plotted with ±2 standard errors (SE); binomial
metrics are presented with 99.5% Clopper–Pearson confidence intervals.

6.3.1 Numerical Setup

Let n denote the number of players, m the number of actions, s the number of samples,
and λ ∈ [0, 1] the correlation parameter. For each experiment, we generate s independent
n-player m-action games. For each action profile a ∈ A, the payoff ui(a) is drawn from a
standard normal distribution with pairwise correlation λ between any two players i ̸= j.
Samples are taken independently for each a. As in [GF13], we argue that this is the natural
choice because, given the first and second degree moments, it is entropy maximising.

We vary λ with steps of size 0.05 to cover the full [0, 1] range, and with steps of size
0.025 over the interval [0.85, 1] to test robustness to the potential game assumption. While
a finer discretisation is possible, we found these values sufficient to illustrate the trends. The
choice of m and n are described for each experiment.

6.3.2 SBRD in two-player games

Our first experiments, presented in Figure 6.1, are to support Theorem 6.1 and show its
robustness with respect to the assumption of the game being a potential game. Figure 6.1a
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Figure 6.2: SBRD in a three-player 50-actions game. 1000 samples were drawn. Runtime: 20 minutes.

illustrates the findings regarding two-player 50-actions games, and shows that, for high
values of correlation λ, SBRD is likely to quickly converge to a two-cycle. For λ = 1 we
rediscover the statement of our Theorem 6.1. Figure 6.1b also shows that the number of steps
to convergence diminishes drastically with higher values of λ.

We address the assumption m = 50 in Appendix B.2.1, where we show that the same
behaviour occurs for m = 500 (and hence the case m = 50 is representative).

6.3.3 SBRD in three (or more)-player Games

Figure 6.2a provides strong empirical evidence that, in contrast to the two-player case, SBRD
is likely to converge to a NE in three-player random potential games. This behaviour is not
only prevalent in potential games, but also persists in games with sufficiently high payoff
correlation λ. As for the two-player case, Figure 6.2b shows that convergence happens in a
number of steps that diminishes for higher values of correlation λ.

As before, we postpone to Appendix B.2.2 to show that the assumption m = 50 is not
reductive, and that similar behaviour occurs for m = 100.

In Appendix B.2.3, we address the case with four players, showing for the case n = 4,
m = 50 that the same behaviour occurs in this setting as well. We conjecture that this trend
extends to games with more than four players. However, we did not pursue this direction
further, as we believe that the three- and four-player cases already provide strong evidence
that convergence to a NE is the behaviour to be expected in SBRD in random potential games
with at least three players.

6.3.4 Comparison of SBRD and SPGD in three-player near-potential games

We now consider near-potential games with λ ≥ 0.85 and compare SBRD with SPGD. As
previously discussed in the Chapter outline, we selected SPGD as a natural baseline due to
its smooth best-response updates, convergence guarantees, and model-free applicability.

As in the previous section, we focus on three-player games with 50 actions. Figure 6.3a
shows that SBRD converges drastically faster than SPGD. Empirically, the time from start to
convergence under SBRD is roughly three orders of magnitude lower than for SPGD.

In terms of achieved payoffs, SPGD tends to attain marginally higher equilibrium payoffs,
but the difference remains small (Figure 6.3b). Crucially, as shown in Section B.2.4, SPGD
often requires several thousand iterations to converge, and during its trajectory, the average
payoff is much lower. On the other hand, as shown above in Figure 6.2b, SBRD consistently
converges in under 100 iterations when λ ≥ 0.9. In Section B.2.4 we quantify precisely the
number of steps needed on average for SPGD to converge, and the average payoff of SPGD
compared to the equilibrium value attained by SBRD. This speed advantage and the payoff
comparison persist in the 100-actions setting as shown in Section B.2.5. We thus claim that
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Figure 6.3: Comparison of SPGD and SBRD in a three-player 50-actions game. 1000 samples were drawn. Runtime:
80 minutes.

SBRD provides a favourable trade-off, especially in online settings, delivering comparable
payoffs at a small fraction of the computational cost.

6.4 Discussion and Limitations

In this work, we have analysed Simultaneous Best Response Dynamics (SBRD) in the setting
of random potential games. In contrast to sequential best response dynamics, SBRD requires
no centralised coordination on the order of updates: at each round, every player updates
their action to a best response against the joint profile of their opponents. This feature causes
SBRD to be a more plausible model of strategic adaptation in decentralised multi-agent
systems.

Our findings exhibit an interesting dependence on the number of players. In the two-
player case, SBRD enters a two-cycle with high probability in games with highly correlated
payoffs. In particular, the players alternate between two action profiles involving mismatched
actions from two distinct Nash equilibria. Although such oscillatory behaviour prevents
convergence, introducing a small random perturbation to each best-response update would
break the cycle and restore convergence to a Nash Equilibrium (NE). By contrast, in games
with three or four players, our simulations suggest that SBRD tends to converge very quickly
to a NE. Moreover, when benchmarking against Softmax Policy Gradient Dynamics (SPGD),
we observe that SBRD achieves higher learning-phase payoffs, even if SPGD tends to perform
slightly better in terms of final payoffs at convergence. We conjecture that this also holds for
n-player potential games where n ≥ 5.

Moreover, since best-response updates depend solely on the ordinal ranking of payoffs, all
results carry over to ordinal potential games in the sense of [MS96]. We further demonstrate
empirically that our conclusions are robust when the payoff-correlation assumption is relaxed:
games with highly correlated payoffs exhibit the same convergence behaviours.

Assumptions and Limitations Our theoretical analysis focuses on two-player random po-
tential games, hence we assume a perfectly correlated payoff structure. Although exact payoff
alignment is uncommon in practical settings, the potential-game framework encompasses a
broad class of models, and our empirical investigations indicate that the core convergence
behaviour persists when payoffs are merely highly, rather than perfectly, correlated.

All experimental findings are derived from simulations in which payoff entries are drawn
from a normal distribution. As previously argued, this is the natural entropy-maximising
choice. However, this choice may not capture the diversity of strategic environments;
exploring alternative distributions (e.g. uniform, heavy-tailed or bimodal) could reveal new
phenomena.
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At present, a rigorous proof of convergence for n ≥ 3 players remains outstanding,
and we view the extension of our theoretical guarantees to games with more players as
an important avenue for future work. Likewise, while we benchmark SBRD only against
SPGD. Other adaptive schemes, such as Q-learning, replicator dynamics or fictitious play,
may exhibit different performance characteristics and merit systematic comparison.

Finally, our model assumes that each player has complete knowledge of their own payoffs
and full observability of opponents’ actions. Relaxing these assumptions to allow for partial
observability or payoff estimation through exploration would make the model more realistic,
but at the cost of substantially greater analytical complexity. We defer the study of such
extensions to future research.

Summary The Simultaneous Best-Response Dynamic is a simple yet powerful learning rule,
with provable convergence behaviour in two-player potential games and promising empirical
performance in potential and near-potential games with more players. Its key limitation is
the current gap between numerical conjectures and formal proofs for games with more than
two-players. Addressing this challenge would deepen our theoretical understanding and
broaden the applicability of SBRD.



Appendix

B.1 Theoretical Appendix

In this appendix, we provide the proofs of section 6.2.1.

B.1.1 Observations regarding INDD

We start from some observations regarding INDD:

• Since, at time t, each player can only play the action that was played at time t− 2 or
one of the actions that they have not played before, the only cycles that can occur are
of length two. As the set of action profiles is finite, INDD must cycle, and thus INDD
must converge to a cycle of length two.

• At each time t, we have Ψ(at, bt−1) = max(Ψ(at−2, bt−1),maxRt−1
1 ) and, similarly,

Ψ(at−1, bt) = max(Ψ(at−1, bt−2),maxRt−1
2 ).

• Once either player repeats their previous but one action, there is always one player
repeating their previous but one action, in an alternating manner. For example, suppose
that at period t, Player 1 chooses at = at−2, then at period t + 1 Player 2 chooses
bt+1 = bt−1.

We are now ready to introduce our proofs.

B.1.2 Proof of Lemma 6.2

Proof. Define two sequences (Mℓ) and (Nℓ) for ℓ = 1, 2, . . . by:

Mℓ =

Ψ(aℓ, bℓ−1) if ℓ is odd
Ψ(aℓ−1, bℓ) if ℓ is even

,

Nℓ =

Ψ(aℓ−1, bℓ) if ℓ is odd
Ψ(aℓ, bℓ−1) if ℓ is even

.

Hence,

(Mℓ)ℓ≥1 = (Ψ(a1, b0),Ψ(a1, b2),Ψ(a3, b2), . . . )

(Nℓ)ℓ≥1 = (Ψ(a0, b1),Ψ(a2, b1),Ψ(a2, b3), . . . ) .

Observe that each transition Mℓ → Mℓ+1 is a best-response transition by one of the
players, so almost surely Mℓ+1 > Mℓ, unless the opponent’s action does not change (i.e.
bℓ = bℓ+2 when ℓ is even, or aℓ = aℓ+2 when ℓ is odd). But note that, if bℓ = bℓ+2 for some
even ℓ, then one obtains

aℓ+1 = aℓ+3, bℓ+2 = bℓ+4, . . .

and the same holds if aℓ = aℓ+2 when ℓ is odd, which makes (Mℓ) a one-cycle. So, with
probability one, either M1 < M2 < . . . indefinitely, or (Mℓ) converges to a one-cycle.

An identical argument applies to (Nℓ), which gives us that both players’ actions have
period at most 2. Therefore, with probability one, no cycle of length greater than 2 can occur
in SBRD.

175
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Since the space is finite, neither of the sequences can increase indefinitely, and therefore
eventually cycle (i.e. converge to a cycle of length at most two).

B.1.3 Proof of Lemma 6.4

Proof. We split the argument into two parts.
Fix ε > 0 and a horizon T ∈ N. The first part is to show that for all periods t ≤ T , the

probability that at least one player repeats their action from period t − 2 is at least 1/2,
provided m large enough. Equivalently, at each t, at least one of the events

Et−1
1 : Ψ

(
at−2, bt−1

)
> maxR t−1

1 ,

Et−1
2 : Ψ

(
at−1, bt−2

)
> maxR t−1

2 ,

occurs with probability at least 1/2.
The second part is to show that for large enough m, if exactly one of these events takes

place, then from that period on, the probability that both events happen is at least 1
2 .

Once these parts are done, for m large enough to satisfy both conditions, it holds that
for T ≥ log ε

log(3/4) , the probability that INDD lasts more than T periods is less than ε.
For the first part, we focus on path of comparisons through the space of action profiles,

where:

• Player 1 chooses a1 to maximise Ψ(a, b0).

• Player 2 compares Ψ(a1, b0) to the newly revealed values to choose b2.

• Player 1 compares Ψ(a1, b2) to the newly revealed values to choose a3.

• And so on . . .

The choice of starting with Player 1 is arbitrary. There is an equivalent path that begins
with Player 2 choosing b1.

In the first step of the path, Player 1 selects

a1 = argmax
a̸=a0

Ψ(a, b0) ,

so that

Ψ(a1, b0) = max
{
Ψ(a, b0) : a ∈ A1 \ {a0}

}
,

is the maximum of m− 1 independent draws from F .
In the second step of the path, Player 2 only knows Ψ(a1, b0) and draws m − 2 new

payoffs

R1
2 = {Ψ(a1, b) : b ∈ A2 \ {b0, b1}} .

and they return to playing b0 precisely if

Ψ(a1, b0) > maxR1
2 .

By symmetry of i.i.d. sampled from F ,

P(Ψ(a1, b0) > maxR1
2) =

m− 1

(m− 1) + (m− 2)
>

1

2
(for m ≥ 3) .

Hence, the event E1
2 occurs with probability at least 1/2.
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In the event that E1
2 does not occur, then at period 2 Player 2 is playing b2, and Ψ

(
a1, b2

)
is the maximum of 2m− 3 i.i.d. sampled from F . Then, m− 3 new payoffs are randomised,
and by the same symmetry argument, we have

P(E2
1) = P(Ψ

(
a1, b2

)
> maxR 2

1 ) =
2m− 3

(2m− 3) + (m− 3)
>

1

2
.

In general, consider period t. If t is odd, then, in the event that E1
2 , E

2
1 , E

3
2 , . . . , E

t−1
1 all did

not occur, then Player 1 is playing at, and Ψ
(
at, bt−1

)
is the maximum of

∑t−1
τ=1(m− τ) =

(t− 1)m− t(t−1)
2 i.i.d. from F . The realisations of m− t variables are observed, and hence:

P(Et
2) = P(Ψ(at, bt−1) > maxRt

2) =
(t− 1)m− t(t−1)

2

tm− t(t+1)
2

>
1

2
.

For t even, analogously we can show that P(Et
1) >

1
2 . Then, for m large enough, this holds

for all t < T .
For the second part, we suppose that at some period t exactly one of the events E t−1

1 or
E t−1

2 occurs; without loss of generality assume

E t−1
1 : Ψ

(
at−2, bt−1

)
> maxR t−1

1 and ¬E t−1
2 : Ψ

(
at−1, bt−2

)
≤ maxR t−1

2 .

Then Player 1 re-plays action at−2, so at = at−2, while Player 2 plays a new action bt ̸= bt−2.
Hence, the action profile at time t is

(at, bt) =
(
at−2, bt

)
.

We show that the probability that the process terminates in the next period is at least
1/2, provided m large enough.

At period t+ 1, Player 1 compares the known value Ψ(at−1, bt) (which is the maximum
of at least m− 1 independent draws from F ) to the maximum of the newly realised payoffs
in Rt

1, which contains at most m− 1 new samples from F . Meanwhile, Player 2 compares
the known value Ψ(at, bt−1) = Ψ(at−2, bt−1) to no newly generated values (since at−2 was
just re-played), and so replays bt−1.

Thus, at period t + 1, by the same symmetry argument as before, the probability that
Player 1 repeats at−1 again is at least:

m− 1

(m− 1) + (m− 1)
=

1

2
.

Hence, with probability at least 1/2, the action profile (at−1, bt−1) is repeated, and so the
process terminates at period t+ 1.

Putting the two parts together: choose m0 large enough that in each period t ≤ T both

P
(
E t

1 ∪ E t
2

)
≥ 1

2
and P

(
termination | exactly one of E t−1

1 , E t−1
2

)
≥ 1

2
.

Then the probability the process survives beyond T is bounded above by(
1− 1

2 ·
1
2

)T
=
(
3
4

)T
,

and for T ≥ log ε
log(3/4) this is at most ε.
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B.1.4 Proof of Lemma 6.5

Proof. Fix any horizon T . For t = 3, . . . , T , let E1
t be the event that

max
t′<t−2

Ψ(at
′
, bt−1) > Ψ(at−2, bt−1) .

Using the same argument as in the previous proposition, Ψ(at−2, bt−1)must be the maximum
of (t − 1)m − t(t−1)

2 i.i.d samples from F . Therefore, if E1
t occurs then one of the t − 2

payoffs {Ψ(at
′
, bt−1) : t′ < t− 2} must exceed this maximum. By symmetry, for each fixed

t

P(E1
t ) ≤

t− 2

(t− 1)m− t(t−1)
2

≤ t− 2

m− 1
.

Hence, by the union bound,

P
( T⋃
t=3

E1
t

)
≤

T∑
t=3

t− 2

m− 1
=

(T − 2)(T − 1)/2

m− 1
,

which can be made below ε/4 by choosing m large. One can define E2
t to be the analogous

event for player two, and achieve that P
(⋃T

t=3E
2
t

)
≤ ε/4 by the same argument. This

bounds the probability that SBRD differs from INDD on account of any ‘old’ action-payoff
comparison.

B.1.5 Proof of Lemma 6.6

Proof. Again fix horizon T . At each period t = 1, . . . , T , SBRD additionally compares the
single value Ψ(at−1, bt−1) against at least m− t− 1 fresh samples of the distribution F . By
symmetry, the chance it is the maximum is

1

(m− t− 1) + 1
=

1

m− t
.

Over T periods, a union-bound gives

P
(
∃ t ≤ T : SBRD uses Ψ(at−1, bt−1)

)
≤

T∑
t=1

1

m− T
=

T

m− T
,

which is below ε/2 for all m ≥ T (1+ε/2)
ε/2 .

B.1.6 Proof of Theorem 6.1

Proof. Fix ε > 0. We show that for sufficiently large m three events each occur with
probability at least 1− ε

3 , and hence by the union bound the SBRD process converges to a
2-cycle with probability at least 1− ε.

Firstly, by Lemma 6.4, there exist an integer m0 such that whenever m ≥ m0 the INDD
process terminates by period T = log(ε/3)

log(3/4) with probability at least 1− ε
3 .

As mentioned in B.1.1, INDD cannot terminate in a 1-cycle and cannot cycle with length
> 2. Hence, on termination it must enter a 2-cycle with probability one (and so at least
1− ε

3 ).
By Lemmas 6.5 and 6.6, there exists m1 such that whenever m ≥ m1 the probability that

INDD and SBRD differ at some period t ≤ T is at most ε
3 . Equivalently, with probability at

least 1− ε
3 they coincide up to time T .
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Figure B.4: SBRD in a two-player 500-actions game. 1000 samples were drawn. Runtime: 127 seconds

Therefore, if m ≥ max{m0,m1}, then each of the three events has probability at least
1− ε

3 , so by the union bound all three occur simultaneously with probability at least

1− 3 · ε3 = 1− ε .

In that event, SBRD follows the same path as INDD up to period T , INDD terminates in
a two-cycle by T , and hence SBRD too converges to that same two-cycle. Therefore,

P
(
SBRD converges to a two-cycle by time T

)
≥ 1− ε ,

as required.

B.2 Experimental Appendix

B.2.1 Robustness to Number of Actions for Section 6.3.2

We now complement the experimental findings of Section 6.3.2 by showing that the results
are robust with respect to the number of actions. In particular, Figure B.4 shows that two-
player random games with 500 actions exhibit the same behaviour as in the 50-action case:
the probability of convergence to a two-cycle varies similarly with λ, and the number of steps
required to converge in highly correlated games remains of the same order of magnitude.

To achieve a convergence probability of at least 90%, values of λ ≥ 0.9 were needed for
m = 50, whereas for m = 500, values of λ ≥ 0.75 were sufficient. This suggests that the
behaviour predicted by Theorem 6.1 extends to larger games and can emerge even at lower
levels of correlation.

These findings strongly support the claim made in Section 6.3.2 that in two-player highly
correlated random games, SBRD quickly converges to a two-cycle.

The experiment shown in Figure B.4 ran in 127 seconds.

B.2.2 Robustness to Number of Actions for Section 6.3.3

We now show with Figure B.5 that the number of actions does not affect the outcomes
reported in Section 6.3.3. Specifically, we run experiments on three-player random games
with 100 actions across various levels of correlation λ. The results closely mirror those
observed in the 50-action case. For high values of λ, the probability that SBRD converges
to a Nash equilibrium approaches one, and this behaviour appears smoothly as correlation
increases. In other words, in highly correlated games, SBRD is very likely to converge to a
Nash equilibrium.

We also observe that the number of steps required for convergence remains of the same
order of magnitude across both settings when λ is large.
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Figure B.5: SBRD in a three-player 100-actions game. 1000 samples were drawn. Runtime: 14 minutes.
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Figure B.6: SBRD in a four-player 50-actions game. 1000 samples were drawn. Runtime: 142 minutes.

This new evidence reinforces the claim made in Section 6.3.3 that in highly correlated
three-player games, SBRD tends to quickly converge to a Nash equilibrium.

The experiment shown in Figure B.5 ran in 14 minutes.

B.2.3 Robustness to Number of Players for Section 6.3.3

Having shown that the number of actions does not influence the behaviour of SBRD across
different levels of λ, we now see if the behaviour is influenced by the number of players. As
previously mentioned, we believe that the convergence to a two-cycle (and thus not to a NE)
observed in the two-player setting is a special case, and that for games with three or more
players and high payoff correlation, SBRD is likely to converge to a Nash equilibrium.

Figure B.6 confirms that SBRD behaves in the four-player case as it does in the three-
player setting. Specifically, the probability of convergence to a NE is very high for large
values of λ, and the number of steps required to converge decreases sharply as correlation
increases.

While we do not experimentally test games with more than four players, nor provide a
formal proof, ongoing research is aimed at establishing this behaviour theoretically.

The experiment shown in Figure B.6 ran in 142 minutes.

B.2.4 Complement to Section 6.3.4

We now justify our claim that SBRD provides a viable alternative to SPGD when the correla-
tion is high, especially in online settings. We do this by examining the trade-off between
convergence speed and final payoff. As shown in Section 6.3.4, SBRD typically reaches
slightly lower equilibrium payoffs than SPGD. However, Figure B.7a demonstrates that SBRD
converges in significantly fewer steps, allowing agents to begin benefitting from equilibrium
payoffs much earlier.

When comparing the average payoff of SPGD along its learning trajectory with the
final payoff obtained by SBRD (as shown in Figure B.7b), we find that SPGD accumulates
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Figure B.7: Comparison of SPGD and SBRD in a three-player 50-actions game. 1000 samples were drawn. Runtime:
80 minutes.
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Figure B.8: Comparison of SPGD and SBRD in a three-player 100-actions game. 1000 samples were drawn.
Runtime: 585 minutes.

substantially lower rewards during training. This suggests that in online settings, or in
environments where short to medium time horizons are critical, SBRD may be the preferable
choice.

In the next section we show that these differences become even more pronounced when
the number of actions increases.

The experiment shown in Figure B.7 ran in 80 minutes.

B.2.5 Robustness to Number of Actions for Section 6.3.4

Finally, we present further evidence that highly correlated three-player random games with
100 actions exhibit behaviour consistent with the 50-action case discussed earlier. The
findings of this section can all be found in Figure B.8.

In particular, the findings show that SBRD converges to a Nash equilibrium significantly
faster than SPGD (three to four orders of magnitude faster). This confirms the scalability of
SBRD’s performance as the size of the action space increases.

Moreover, we can see that the payoffs attained by both algorithms at equilibrium are
closely comparable in magnitude. Notably, for relatively lower values of correlation, SBRD
on average achieves better equilibrium values than SPGD. This highlights that SBRD’s faster
convergence does not come at a substantial cost in reward quality.
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As with the 50-action experiments, we also find that SBRD requires far fewer steps to
reach convergence. This reinforces our claim that SBRD is particularly well suited for online
or time-sensitive environments. In such settings, agents often benefit more from earlier
access to high-value strategies than from long-term optimality alone. Since the average
payoff collected by SPGD along its learning trajectory is consistently lower than the payoff
achieved at equilibrium by SBRD, the latter emerges as a competitive alternative in scenarios
with limited time horizons.

The experiment shown in Figure B.8 ran in 585 minutes.
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[ABH11] P. Allen, J. Böttcher, and J. Hladký. “Filling the gap between Turán’s theorem
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[BT] S. Brandt and S. Thomassé. “Dense triangle-free graphs are four-colourable: A
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[BE83] S. A. Burr and P. Erdős. “Generalizations of a Ramsey-theoretic result of Chvátal”.
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[ES66] P. Erdős and M. Simonovits. “A limit theorem in graph theory”. In: Studia Sci.
Math. Hungar. 1 (1966), pp. 51–57.
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Budapest. Eötvös Sect. Math. 10 (1967), pp. 167–170.

[Gia+22] A. Giannou, K. Lotidis, P. Mertikopoulos, and E.-V. Vlatakis-Gkaragkounis. “On
the convergence of policy gradient methods to Nash equilibria in general stochas-
tic games”. In: NeurIPS. Vol. 35. 2022, pp. 7128–7141.

[GL11] W. Goddard and J. Lyle. “Dense graphs with small clique number”. In: J. Graph
Theory 66.4 (2011), pp. 319–331.
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théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Vol. 260.
Colloq. Internat. CNRS. CNRS, Paris, 1978, pp. 399–401.

[Tho07] C. Thomassen. “On the chromatic number of pentagon-free graphs of large
minimum degree”. In: Combinatorica 27.2 (2007), pp. 241–243.

[Tur41] P. Turán. “Eine Extremalaufgabe aus der Graphentheorie”. In: Mat. Fiz. Lapok
48 (1941), pp. 436–452.

[VT95] N. Van Ngoc and Z. Tuza. “4-chromatic graphs with large odd girth”. In: vol. 138.
1-3. 1995, pp. 387–392.

[Ver18] R. Vershynin. High-dimensional probability. Vol. 47. Cambridge Series in Statis-
tical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
2018, pp. xiv+284.

[Vio05] Y. Viossat. “Correlated equilibria, evolutionary games and population dynamics”.
Theses. Ecole Polytechnique X, Dec. 2005.

[Vio07] Y. Viossat. “The replicator dynamics does not lead to correlated equilibria”. In:
Games Econom. Behav. 59.2 (2007), pp. 397–407.

[Voo00] M. Voorneveld. “Best-response potential games”. In: Econom. Lett. 66.3 (2000),
pp. 289–295.

[Voo+99] M. Voorneveld, P. Borm, F. van Megen, S. Tijs, and G. Facchini. “Congestion
games and potentials reconsidered”. In: Int. Game Theory Rev. 1.3-4 (1999),
pp. 283–299.

[Whi73] E. G. Whitehead Jr. “The Ramsey number N(3, 3, 3, 3; 2)”. In: Discrete Math. 4
(1973), pp. 389–396.

http://arxiv.org/abs/1909.03198


bibliography 191

[Zha+22] R. Zhang, J. Mei, B. Dai, D. Schuurmans, and N. Li. “On the Global Convergence
Rates of Decentralized Softmax Gradient Play in Markov Potential Games”. In:
NeurIPS. Vol. 35. 2022, pp. 1923–1935.

[ZGL05] M. Zinkevich, A. Greenwald, and M. Littman. “Cyclic Equilibria in Markov
Games”. In: NeurIPS. Vol. 18. 2005.



bibliography 192


	Introduction
	Prologue
	On the Shoulders of Giants
	Learning to Play

	A Mathematician Colouring
	On Product Schur Triples in the Integers
	Product Schur in deterministic sets
	Product Schur triples in random sets
	Product Schur triples in randomly perturbed sets
	Concluding remarks

	The Ramsey Numbers of Squares of Paths and Cycles
	Notation, main lemmas and organisation
	Preliminary lemmas
	General setting
	First upper bounds on the component size
	Colours and connection, and the sharp upper bound
	The colours of edges
	Regularity Method: proofs of Lemma 2.4 and Theorem 2.2
	Proof of Theorem 2.1


	On the Shoulders of Giants
	Graphs With Large Minimum Degree and No Short Odd Cycles Are 3-Colourable
	Notation and overview of the proof
	Proof of the main result
	Finding and combining weighted bipartite sets
	Cycles of odd weight have large neighbourhoods
	Proof of the main technical lemma

	A Transference Principle and a Counting Lemma for Sparse Hypergraphs
	A General Transference Principle and its applications
	Tools
	Main technical theorem
	Integer dense models
	Reduction to anti-correlation
	A linear approximation
	More independence, less vertices
	The final probabilistic estimate
	Moment estimates
	Deletion method
	A sparse counting lemma


	Learning to Play
	Reinforcement Learning, Collusion, and the Folk Theorem
	The Game Model
	Solution Concepts
	Learning dynamics
	Results
	Possible directions for future work

	Appendix
	Examples
	Theoretical addenda
	Proofs

	Simultaneous Best-Response Dynamics in Random Potential Games
	The setup
	Results
	Experimental Results
	Discussion and Limitations

	Appendix
	Theoretical Appendix
	Experimental Appendix

	Bibliography


