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Abstract

The Pentagon Conjecture [33] states that every cubic graph of suffi-
ciently high girth admits a homomorphism to the cycle of length 5.

In this thesis, we present some results related to the Pentagon Conjec-
ture; we exploit the study of this problem to introduce some interesting
methods such as the probabilistic method and local approaches, and to
provide insights on many areas of combinatorics such as the study of the
chromatic number.

The Pentagon Conjecture presents many similarities to some problems
which naturally arise in other areas of combinatorics such as the study
of gaps in the order ≺ restricted to cubic graphs. For this reason, in the
first sections of this thesis, we analyse the techniques that have recently
brought positive results for problems related to the Pentagon Conjecture.
We then use the obtained tools to approach some approximations of the
Pentagon Problem.

It is important to point out that our attention is mainly focused on ex-
panding the reader’s expertise on these topics and to present our attempt
at working with the Pentagon Conjecture.

Acknowledgement I would like to thank all the people who I felt near during
the writing of this thesis. In particular, my advisors Stefan and Prof. Sudakov
for their guidance and my relatives and friends who supported me in this time.
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1 Introduction

One interesting notion in graph theory is the concept of graph homomorphism.
Indeed, it underlines the strong link between combinatorics and algebra, pro-
vides a generalisation of the well-known concept of colouring, and proves itself a
useful tool in the study of many problems (edge reconstruction, density problem,
etc.).

Definition 1.1. Let G and H be graphs. A homomorphism between G and
H (sometimes called a H-colouring of G) is a map φ : V (G) → V (H) such
that if xy ∈ E(G), then φ(x)φ(y) ∈ E(H). We write G  H to denote that
there exists a homomorphism from G to H (and sometimes we say that G is
H-colourable).

As its name suggests, this notion is an immediate generalisation of the concept
of graph colouring. Indeed, observe that a graph G is k-colourable if and only
if G Kk; this follows by associating to each colour a distinct vertex of Kk.
Graph colouring received a lot of attention in graph theory, at least since the
famous result of Brook [9]. In the generalised context of H-colourings, for
some fixed graph H, we ask the nature of the set of graphs which admit a
homomorphism to H.
Because of the equivalence between colourings and graph homomorphisms to
complete graphs, and because the composition of graph homomorphisms is still
a homomorphism, it is natural to try to extend results known for colourings to
more general results about graph homomorphisms.
With this observation in mind, recall the aforementioned Brook’s result.

Theorem 1.2 (Brook’s Theorem, [9]). Let G is a connected graph other than
a cycle or a complete graph, then χ(G) ≤ ∆(G).

In the language of graph homomorphisms, for ∆ = 3, this theorem gives that
every cubic graph of girth at least 4 admit a homomorphism to C3 = K3.
Nešetřil [33] asked whether a similar statement holds also for larger cycles.

Conjecture 1.3 (Original Pentagon Problem). For every k ∈ N, there exists
gk ∈ N such that every cubic graph of girth at least gk admits a homomorphism
to C2k+1.

By Brook’s Theorem, this conjecture holds for k = 1; recently, Hatami [17]
modified a proof by Wanless and Wormald [40] to disprove the Pentagon Prob-
lem for k = 3 and therefore for every k ≥ 3 (the first result in this sense was
presented by Kostochka and Nešetřil [21]). Indeed, note that if k < k′, then
C2k′+1  C2k+1. Therefore, the current state of the conjecture is as follows.

Conjecture 1.4 (Pentagon Problem). Every cubic graph of high enough girth
admits a homomorphism to C5.

This conjecture also naturally arises when studying the density problem in the
class of cubic graphs with respect to the order given by the definition of graph
homomorphism. Slightly more in detail, we can define a quasiorder over the set
of graphs as follows: G � H if and only if G  H. Moreover, if we restrict
our attention to the family of the so-called core graphs (the quite rich family
of graphs for which every automorphism is an isomorphism), the quasiorder
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that we defined is also a partial order. This quasiorder, and more generally the
concept of graph homomorphism, is a useful tool for example in the study of
edge reconstruction [26], [33].
A pair of graphs (G1, G2) with G1 ≺ G2 is called a gap, if there is no graph G′

such that G1 ≺ G′ ≺ G2. The problem of finding all the gaps for some given
(quasi)order is called the density problem, and it is a well-studied problem for
many different orders [27]. This problem has been completely solved for the
class of all graphs with respect to the quasiorder ≺ by Welzl [41] (the only two
gaps are (K0,K1) and (K1,K2)), but it remains open for the class of cubic
graphs. The Pentagon Problem arises when working to the Density Problem of
cubic graphs.
We mention one last point of view from which the Pentagon Conjecture is a rel-
evant problem (there are many more, for a reference see Nešetřil [33]). At least
since the study of the chromatic number of planar graphs and the Four Colour
Theorem, the study of colourings of minor-avoiding families is an active area
in graph theory, and many results have been obtained about the colourability
of sparse graphs (for a survey, Kostochka and Yancey [22]). The natural gen-
eralisation of this study to the language of graph homomorphisms has recently
received a lot of attention (Nešetřil and Zhu [35] and Borodin et al. [8]). The
Pentagon Problem is one example of conjecture about graph homomorphisms
from a sparse family of graphs and it is of particular interest because we already
know it does not hold for K2k+1 with k ≥ 3 but it holds for K3, therefore it
is the last piece in the study of graph homomorphisms from high-girth cubic
graphs (because high-girth cubic graphs are not generally bipartite, we have
that they are not C2k-colourable for any k ∈ N+).
With this examples in mind, in Section 4, we present another generalisation
of the concept of colourings, from which we can obtain a nice result about
colourability of minor-avoiding graphs of high girth.
The aim of this thesis is to present some results related to the Pentagon Problem;
because the goal is not the proof of one single theorem, we present various point
of view that we hope may help to understand the many facets of this problem.

Structure The thesis is organised as follows. In Section 2, we present a prob-
abilistic proof that the Original Pentagon Conjecture does not hold, and we
provide general tools to work with random regular graphs. In Section 3, we
look at a positive result about the existence of homomorphisms from the family
of cubic graphs of high girth to the Clebsch graph, which is equivalent to the
existence of cut-continuous maps from said family to C5. Following a similar
idea, in Section 4 we present the circular chromatic number, we discuss how
it is related to graph homomorphisms to cycles, and we explain in what sense
the family of graphs avoiding a fixed minor is almost bipartite. In Section 5
we present our own reasoning about the Pentagon Problem (inspired from the
positive result of Section 3), most importantly we introduce an approximation
of the problem, and we work on a bound on the error of this approximation.
One approach to the Problem raises a question about the chromatic number
of triangle-free graphs which we analyse in Section 6. Finally, in Section 7, we
present a generalisation of a recent result about 2-colourability of non-uniform
hypergraphs, which we encountered studying almost-bipartite graphs (as in Sec-
tion 4).
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2 Construction of random regular graphs and
homomorphisms to cycles

By Brook’s Theorem, every cubic graph with girth at least 4 is 3-colourable. We
can rewrite this result in the language of graph homomorphisms and state that
cubic graphs of high enough girth are C3-colourable. The Pentagon Problem
asks whether it is possible to generalise this result. In its earliest presentation
[33], this conjecture asked whether is it true that for every positive integer k,
every cubic graph with high enough girth is C2k+1-colourable. This conjecture
was proved false by Kostochka and Nešetřil [21] for k = 5 (and therefore for
every larger k). Since then, Wanless and Wormald [40] proved in 1999 that the
statement does not hold for k = 4 and finally, Hatami [17] proved in 2006 that
the conjecture fails also for k = 3. Currently, the Pentagon Conjecture reads as
follows.

Conjecture 2.1 (Pentagon Conjecture). Every cubic graph with high enough
girth is homomorphic to C5.

In this section, our goal is to prove the case k = 6 of the Pentagon Problem
using probabilistic means. In particular, we focus on how we can apply the
probabilistic method on the set of regular graphs.
In the first part of this section, we present a well-known model for random
regular graphs (i.e. a probability space over the set of regular graphs with a
given number of vertices) and we study how we can work with it; then we define
the independence ratio of a (regular) graph and we show how to use this notion
to prove the existence of a counterexample to the Pentagon Problem in the case
k = 6.

2.1 Models of random regular graphs

In this section, all graphs are labelled graphs, unless it is explicitly stated oth-
erwise; moreover, we assume that n and d are such that the set of d-regular
graphs on n vertices is not empty.
The goal of this subsection is to analyse how we may apply the probabilistic
method to study d-regular graphs on n vertices (for a deeper analysis, Wormald
[42]). Let us denote with Ωn,d the set of d-regular graphs on n vertices; to
apply the probabilistic method, we have to study how to define a probability
space over Ωn,d. The first probability measure that comes into mind is the
uniform one. Let us denote with Gn,d the uniform probability space over Ωn,d.
This probability space is easy to define and to understand (any result over this
model has a natural interpretation), but it is not easy to work with it directly.
For this reason, we introduce a different model for Ωn,d, and in particular we
present Gn,d as the image probability of a random variable from an easier-to-
study probability space.

2.1.1 Bollobás pairing model

Historically, the first model for random regular graphs is the pairing model,
or configuration model, due to Bollobás [5]. While in its most general form
this model provides a probability space over the graphs with a specific degree
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sequence, we only present the particular instance of regular graphs as the gen-
eralised form does not provide any further insight.
The idea behind this model is to exploit the possibility to associate to each per-
fect matching over n · d vertices a d-regular multigraph by contracting together
d-sets of vertices. A more formal construction is as follows.
Let Wn,d be the union of n pairwise disjoint sets of vertices W1∪ . . . ∪Wn, each
of size exactly d; let φ be the map that associates to every graph P over Wn,d,
the multigraph φ(P ) over the vertex set {w1, . . . , wn} as follows: for any edge
xy ∈ P with x ∈ Wi and y ∈ Wj we define an edge wiwj in φ(G) (note that
this might cause loops or multiple edges, and therefore in general φ(G) is not
simple). We say that φ(P ) is obtained from P by contracting the sets Wi into
distinct vertices.

Remark 2.2. If P is a perfect matching over Wn,d, then φ(P ) is a d-regular
multigraph. Because we want to study Ωn,d, let Sn,d be φ−1(Ωn,d) which is the
set of perfect matchings P over Wn,d such that φ(P ) is simple. We show how
to obtain results over Sn,d by studying the set of perfect matchings over Wn,d.

Let Pn,d be the uniform probability space over the set of perfect matchings
over Wn,d; note that Sn,d is a well defined event in Pn,d of positive probability
(because of our assumptions on n and d). In order to define a random variable
from Sn,d to Ωn,d let us denote with PSn,d

the conditional probability of Pn,d
with respect to Sn,d (PSn,d

is again a uniform probability).

Remark 2.3. It is of great interest for our application that Gn,d = φ(PSn,d
),

which in our case is equivalent to say that every graph in Ωn,d has a preimage
of the same cardinality (because PSn,d

and Gn,d are both uniform probability

spaces). Let G in Ωn,d; then
∣∣φ−1(G)

∣∣ = (d!)n. Indeed, if P,Q are two perfect
matchings obtained by permuting the vertices of Wn,d in such a way that each
Wi goes in itself, then φ(P ) = φ(Q); moreover, if this is not the case we have
φ(P ) 6= φ(Q) (remember that we are working with labelled graphs), and there
are exactly (d!)n of said permutations.

The following remark warns us that what we said is not yet enough to show
that we can effectively use this model to study Ωn,d.

Remark 2.4. Suppose to have a sequence (Bn)n∈N of probability spaces and a
sequence of subspaces (An)n∈N with An ⊆ Bn; moreover, let us assume that
An has positive probability in Bn. This is not sufficient to translate an asymp-
totic result obtained in Bn to an asymptotic result in An. E.g. assume that
Pn is a property that holds asymptotically almost surely in Bn (which means
limn→∞ PBn

[Pn] = 1, from now on denoted as a.a.s.); it is possible that no ele-
ment in An has the property Pn. As an example, take the case with Bn = U[0,1]

and An = [0, 2−n] and Pn = (2−n, 1], then Pn holds a.a.s. in Bn, but its inter-
section with An is always empty, even if An has always positive probability in
Bn.
Observe that if we have limn→∞ PBn

[An] > 0, then this is not the case and any
result holding a.a.s. on Bn holds also a.a.s. on An. We state this last remark
as an independent lemma, because of its wide applicability (we do not present
a proof, which can be obtained by contradiction).

Lemma 2.5. Let (Bn)n∈N be a sequence of probability spaces, and let (An)n∈N be
a sequence of sets such that An ⊆ Bn and PBn

[An] > 0. Let us denote with PAn

the conditional probability of Bn with respect to An. If limn→∞ PBn [An] > 0,
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then any sequence of events holding a.a.s. on Bn also holds a.a.s. with respect
to PAn

.

In our particular case, this means that we have to do some remarks before
translating results obtained in Pn,d to results in Sn,d and therefore in Ωn,d. In
particular, in order to exploit our previous construction, we need to prove that,
for fixed d, we have

PPn,d
[Sn,d]

n→∞−−−−→ cd > 0.

We prove the following statement.

Proposition 2.6. Let d be a fixed positive integer. Then we have

PPn,d
[Sn,d] := P[φ(P ) simple, with P ∈ Pn,d]

n→∞−−−−→ e−
d2−1

4 .

By Lemma 2.5, this proposition has an immediate corollary, which is of great
interest for us.

Corollary 2.7. If a sequence of events holds a.a.s. for Pn,d, then its φ-
corresponding sequence holds a.a.s. in Gn,d.

We need to conclude this subsection with a final remark. Remember that the
Pentagon Problem is about d-regular graphs with high girth. In the spirit of the
above remark, it could be the case that studying Ωn,d is not enough to study
d-regular graphs with high girth (it could be the case that these are rare in
Ωn,d). This is not the case (see, [5] for a reference).

Proposition 2.8. Let g and d be fixed. The proportion of pairings in Pn,d
which yield graphs of girth at least g goes (for n→∞) asymptotically to

exp

(
−
g−1∑
k=1

(d− 1)k

2k

)
.

The variation of this proposition that we need is as follows.

Corollary 2.9. For g and d fixed, if a sequence of events holds a.a.s. for Pn,d
then it also holds a.a.s. for graphs in Gn,d of girth at least g.

2.2 The Poisson Paradigm and Brun’s Sieve

In this subsection, we present two methods that have wide application in Com-
binatorics in general and can be applied to obtain some of the results of last
subsection (Propositions 2.6, 2.8): the Poisson Paradigm and Brun’s Sieve. For
a deeper analysis of the Poisson Paradigm, we refer to the Alon and Spencer
book [3, Chapter 8] (everything that we present here about these methods can
be found there).
It is well known that if we have a sequence of random variables Xn such that Xn

is the sum of n i.i.d. Bernoulli variables of parameter pn, and if limn→∞ npn =
λ, then the distribution of Xn tends to the distribution of a Poisson random
variable of parameter λ. This result is called Poisson Limit Theorem.
The Poisson Paradigm allows us to obtain similar results even when the random
variables that constitute Xn are not i.i.d., but are “mostly independent” in some
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sense. In particular, many results follow from the fact that, under hypothesis
to be specified, we can say that P[Xn = 0] ' e−E[Xn] for n large enough.
Poisson Paradigm is not the name of a specific theorem but is the name of the
approach in which we try to write a sequence of combinatorial random variables
as the sum of almost independent indicator random variables, and we try to
deduce the behaviour of the limit.
The most widely applied use of the Poisson Paradigm is called Brun’s Sieve.

2.2.1 Brun’s Sieve

Let (Ωn,Pn)n∈N be probability spaces; for each n, let B1, . . . , Bm(n) be events

in Ωn, and let Xn =
∑m(n)
i=1 1Bi

be the random variable that counts the number
of Bi that hold. Moreover, for any given positive integer r, let

S(r)
n =

∑
{i1 6=...6=ir}⊆[m(n)]

Pn[Bi1 ∧ . . . ∧Bir ],

be the sum over all subsets A of [m(n)] of size r of the probability that each
event Bi with i ∈ A holds simultaneously. Finally, let

X(r)
n = Xn(Xn − 1) . . . (Xn − r + 1).

Theorem 2.10 (Brun’s Sieve, [3]). Suppose that, in the context just exposed,

there exists a constant λ such that E[Xn] = S(1) n→∞−−−−→ λ and such that, for
every fixed positive integer r,

E

[
X

(r)
n

r!

]
= S(r)

n
n→∞−−−−→ λr

r!
.

Then we have Pn[Xn = 0]
n→∞−−−−→ e−λ and, more generally,

Pn[Xn = t]
n→∞−−−−→ λt

t!
e−λ.

2.2.2 Some applications

We now give an idea on how to prove some propositions stated previously in
this section using Brun’s Sieve.

• Proposition 2.6. Recall the construction procedure for the pairing model
Pn,d. For two vertices x ∈ Wi and y ∈ Wj , let Bi,jx,y be the event of the
graphs in Pn,d containing the edge xy. For any distinct i, j ∈ [n], we
define the random variables Zi =

∑
x 6=y;x,y∈Wi

1Bi,i
x,y

, which counts the

loops in the i-th vertex, and Zi,j =
∑
xi 6=yi∈Wi,xj 6=yj∈Wj

1Bi,j
xi,xj

1Bi,j
yi,yj

,

which counts the number of pairs of multiple edges between Wi and Wj .
We also define,

Xn =
∑
i∈[n]

Zi, Yn =
∑

1≤i<j≤n

Zi,j .

Note that Yn(P ) = 0 if and only if φ(P ) has no multiple edge; and
Xn(P ) = 0 if and only if φ(P ) has no loop. Moreover, both these random
variables are nonnegative.
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We want to apply Brun’s Sieve Theorem; in particular, we are interested
in finding P[Xn + Yn = 0] which, for what we just observed, equals the
probability that P ∈ Pn,d is such that φ(P ) is a simple graph (i.e. P[Sn,d]).
We just show how to obtain E[Xn + Yn] and that the result is coherent
with Proposition 2.6.

- Calculate E[Xn]. Let us fix i ∈ [n], and x, y ∈ Wi two distinct
vertices. The probability of the event {P ∈ Pn,d : xy ∈ E(P )} is 1

nd−1
(it holds more generally for any two fixed vertices in Wn,d). Observe

that we can select a couple of vertices in Wi in
(
d
2

)
distinct ways. By

linearity of expectation we get E[Zi] =
(
d
2

)
1

nd−1 and also

E[Xn] = n ·
(
d

2

)
1

(nd− 1)
' d− 1

2
.

- Calculate E[Yn]. Let i 6= j; given two pairs (ui, uj) and (vi, vj) such
that ui, vi ∈ Wi and uj , vj ∈ Wj , we have that the probability that
both uiuj and vivj are edges is exactly 1/(nd− 1)(nd− 3). We can

choose these pairs in 2
(
d
2

)2
ways, and we can choose i and j in

(
n
2

)
ways. Therefore we have:

E[Yn] = 2

(
n

2

)(
d

2

)2
1

(nd− 1)(nd− 3)
' (d− 1)2

4
.

We should then proceed by calculating the factorial moments of the ran-
dom variable Xn + Yn (for explicit calculations, see the original article in
which Bollobás introduced the pairing model [5]).

• Proposition 2.8. In this example, we work over 2n vertices. An `-cycle for a
configuration P ∈ P2n,d is a set of ` edges of P such that the corresponding
edges in φ(P ) form a cycle. For some given `-cycle C over W2n,d (set
formed by ` pairs of vertices –edges– which form an `-cycle in the image
with respect to φ), let BC be the set of matchings in P2n,d that contain
these edges. To apply Brun’s Sieve, we need to study the expectation of
Z`(P ) =

∑
C 1BC

(P ), the random variable which counts the `-cycles of
P .

Let us define the function N(k) =
(2k

2 )(2k−2
2 )·...·(2

2)
k! that counts the configu-

rations over 2k vertices, and let C be a given `-cycle over W2n,d; there are
exactly N(dn− `) configurations that contain C (indeed, once determined
those ` edges, we have to determine just dn − ` others). Moreover, there

are (2n)(2n−1)...(2n−`)
2` cycles of length ` over the 2n vertices {w1, . . . , w2n}.

Let C ′ be any one of those; then there are (d(d− 1))` cycles in W2n,d that
are mapped into C ′ by φ.

Therefore, we have,

E[Z`] =
1

N(dn)

(2n)(2n− 1) . . . (2n− `)
2`

(d(d− 1))`N(dn− `)

n→∞−−−−→ (d− 1)`

2`
.
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From which it follows the expectation of the random variable which counts
the cycles of length at most g. For the details of the complete proof, see
Bollobás [5].

2.3 A first use of the independence ratio

In this subsection, we present a first approach to the study of the existence of
homomorphisms to odd cycles. In particular, we define the independence ratio
of a graph, which gives an immediate upper bound to the length of the cycles
this graph can be mapped into. We also present a result due to Bollobás [6]
and one of its refinements due to McKay [29] which allow us to obtain explicit
results in the spirit of the original Pentagon Conjecture.

2.3.1 The independence ratio of regular graphs

Definition 2.11. Let G be a graph, we denote with α(G) its independence

number. The independence ratio i(G) of G is defined as i(G) = α(G)
|V (G)| .

The importance of this definition in our context derives from a Lemma found
in Albertson and Collins [1] that we prove just for odd cycles.

Lemma 2.12. Let H be a vertex-transitive graph and G a graph such that
G H, then i(G) ≥ i(H).

Proof. As we said, we assume H = C2k+1 (over the vertex set {v0, . . . , v2k}
with the natural edges); note that i(H) = k

2k+1 . If we let n = |V (G)|,
then without loss of generality we have

∣∣f−1(v0)
∣∣ ≤ n

2k+1 ; let us denote U =

f−1({v1, v3, . . . , v2k−1}) and V = f−1({v2, v4, . . . , v2k}). Because f is an homo-
morphism, both U and V are independent sets. Because we have |U | + |V | ≥
n − n

2k+1 , at least one between U and V has to have cardinality at least kn
2k+1

(without loss of generality, it is U). Hence, the independence ratio of G is at

least |U |n ≥
k

2k+1 .

Therefore, if the Pentagon Conjecture were true in its original form, the in-
dependence ratio of every random cubic graph of high enough girth would be
bigger than any number arbitrarily near to 1

2 . As the following theorem shows,
this is not the case.

Theorem 2.13 (McKay, [29]). There are cubic graphs of arbitrarily high girth
with independence ratio less than 0.4554. Something stronger holds: the se-
quence of events An in Gn,3 of cubic graphs with independence ratio smaller
than 0.4554 holds a.a.s.

There is an immediate corollary of these two results.

Corollary 2.14. There are cubic graphs of arbitrarily high girth without homo-
morphisms to C13.

We now prove an earlier version of Theorem 2.13, due to Bollobás [6] (which is
enough to prove the above corollary for C2k+1 for some larger k). The sharpened
bound stated above, due to McKay [29], can be obtained using very similar
methods but a more sophisticated analysis.
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Theorem 2.15 (Bollobás [6]). There exists a function f : N≥3 → (0, 1) with

f(d) ≤ 4 log(d)
d such that for any natural integer d ≥ 3 a.a.s. every d-regular

graph G in Pn,d is such that

i(G) ≤ f(d)

2
.

Proof. We use the pairing model to show that for d fixed and 2n large, almost
every d-regular graphs on 2n vertices has independent number at most 2f(d)n−
2
√
n for some function f yet to be determined.

Recall that we denoted with N(dn) the number of possible configurations over
2dn vertices:

N(dn) =

(
2dn

2

)(
2dn−2

2

)
. . .
(

2
2

)
(dn)!

=
(2dn)!

2dn(dn)!
.

Let s = s(n) = b2f(d)n−
√

2nc and β(n) such that s(n) = β(n)n (observe that
β(n)→ f(d)); for P ∈ P2n,d, we denote with S(P ) the number of ds(n)-subsets
of W2n,d of the form U = Wi1 ∪ . . . ∪ Wis such that U spans no edge. We
compute the expectation for S.
If U spans no edge in P , all the sd vertices of U are paired with one of the 2nd−sd
vertices not in U . This can be done in (2nd−sd)(2nd−sd−1) . . . (2nd−2sd+1)
ways. Moreover, the remaining vertices can be paired in N(d(n − s)) ways.
Therefore, the number R of configurations for which U spans no edge is:

R = (2nd− sd)(2nd− sd− 1) . . . (2nd− 2sd+ 1)N(d(n− s)).

Also, we can choose U in
(

2n
s

)
ways (the value of R does not depend on U but

on its size, which we fixed). Therefore by linearity of expectation we have:

E[S] =

(
2n

s

)
· R

N(dn)
=

(2n)!

s!(2n− s)!
((2n− s)d)!

((n− s)d)!

(nd)!

(2nd)!
2sd.

By applying Stirling’s Formula for factorial numbers, we obtain

E[S] < Cn−1/2Y (n, f(d)),

where Y is a function that is strictly smaller than 1 if n is large enough and f is

small enough. We can take f to be f(d) = 4 log(d)
d (which works well for d larger

than 20); but in particular, we can choose f(3) = 12/13. The explicit results of
the calculations are as follows.

E[S] < Cn−1/22−((2−β)d−2)nβ−βn(1− β)(β−1)dn(2− β)(2−β)(d−1)n.

For f as mentioned above, we have that E[S] < Cn−1/2 and therefore it holds

P[S > 1]
n→∞−−−−→ 0.

We explicitly enunciate the version of this theorem for graphs with high girth,
even if it is implied by Proposition 2.8.

Corollary 2.16. Let i(d, g) be the infimum over the independence ratio of every

d-regular graph of girth at least g. We have i(d, g) ≤ f(d)
2 for every g.
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Proof. Let us fix g and d; by the proof of Proposition 2.8, we have that almost
every configuration in Pn,d has fewer than log(n) cycles of length smaller than
g and contains at most βn = bf(d)n −

√
nc independent vertices. Let G0 be

one of these graphs and let G1 be a graph obtained from G0 by removing an
edge from each cycle of length at most g. We have that G1 has independent
number at most bf(d)n −

√
nc + log(n) < f(d)n. Finally, by joining together

two or more copies of G1 so that the resulting graph is d-regular, we obtain the
desired graph.
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3 High-girth cubic graphs are homomorphic to
the Clebsch graph

In the previous section, we showed one probabilistic proof that general high-
girth cubic graphs do not map to C13. In this section, we present one positive
homomorphism result due to Devos and Šámal [10]; our goal is to study a
method to prove the existence of homomorphisms from a family to a specific
graph.
More in detail, we show that if G is a (sub)cubic graph of girth at least 17,
then there exists a homomorphism from G to the Clebsch graph PQ4 (the
4-dimensional projective cube, explicit definition follows). This result is inter-
esting also because homomorphisms to PQ2k have been the object of multiple
studies and conjectures (see Naserasr [32], Seymour [38]). Also relevant for our
approach is the fact that homomorphisms to PQ2k can be analysed by studying
the existence of pairwise disjoint cut complements; problems strictly linked to
the latter have received great attention (see Bondy and Locke [7], Zýka [44]).
In the first subsection, we present some notations and definitions, and we un-
derline the link between the existence of pairwise disjoint cut complements and
homomorphisms to projective cubes. In the last subsection, we present the main
theorem and we prove it.

3.1 Cut complements and homomorphisms to projective
cubes

The key to the success of Devos and Šámal’s approach is the fact that homo-
morphisms to PQ4 can be studied locally. This is possible by an equivalence
between the existence of homomorphisms from G to PQ4 and cut complements.
We need to introduce some notation before studying this equivalence.

Definition 3.1 (Cuts and cut complements). Let G be a graph; we call cut
a set of edges of the form δ(U) = {xy ∈ E(G) : x ∈ U, y 6∈ U} for some U ⊆
V (G). A set of edges of the form C = E(G) \ δ(U) is called a cut complement.
Equivalently, C ⊆ E(G) is a cut complement if there exists U ⊆ V (G) such that
C = E(G

∣∣
U
∪G∣∣

V (G)\U
).

For a given graph G, it is an interesting and well-studied problem to determine
the maximum size of a cut in G; this value is denoted by MAXCUT(G) (among
the people that studied this problem, Bondy and Locke [7], Zýka [44]).
Finally, a map f : E(G) → E(H) is called cut-continuous if the preimage of
every cut in H is a cut in G.

The study of MAXCUT(G) is equivalent to the study of minimal cut comple-
ments.

Definition 3.2 (Cube graph). Let {0, 1}n be the set of n-tuples of elements in
the set {0, 1}. We call n-dimensional cube graph the graph Qn over the vertex
set {0, 1}n in which two vectors are adjacent if and only if they differ in exactly
one coordinate. We can notice that, in particular, Qn is an n-regular graph over
2n vectors.

A way of defining new graphs from some given graph is by contraction. Given
a graph G and x, y ∈ V (G), the graph obtained from G by contracting x and y

13



Figure 1: The Clebsch graph PQ4.

is the graph over V (G)\{x, y}∪{∗} such that for all z in V (G)\{x, y} we have
that z is adjacent to ∗ in the contracted graph if and only if z is adjacent in G
to at least one between x and y. This definition can be extended to a family
of pairs of vertices or a family of sets of vertices. It is now time to define the
projective cubes PQn.

Definition 3.3 (Projective cube graph). We define the n-dimensional projective
cube PQn, as the graph obtained from Qn+1 by contracting all the pairs of
antipodal vertices. It is not difficult to observe that PQn is an n + 1-regular
graph over 2n vertices.

The study of minimal cut complements can be linked with the problem of finding
many disjoint cut complements. This latter problem is strictly linked with
the study of homomorphisms to PQ2k. In particular, it holds the following
equivalence.

Proposition 3.4. Let G be a graph and k a positive integer. The following are
equivalent.

a) There are 2k pairwise disjoint cut complements,

b) There exists a homomorphism between G and PQ2k,

c) There exists a cut-continuous mapping between E(G) and E(C2k+1).

Before proceeding to the proof of this proposition, let us just point out that
there is a strong relation between cut-continuous maps and homomorphisms.

Remark 3.5. Every graph homomorphism h from V (G) to V (H) naturally
generates a cut-continuous mapping φ, which is given by φ(xy) = h(x)h(y).
Therefore, the concept of graph homomorphism is stronger than the one of
cut-continuous mapping. However, it has been shown that the existence of cut-
continuous maps often implies the existence of homomorphisms between graphs
(Nešetřil and Šámal [34]).
This provides yet another link between the result presented in this section and
the Pentagon Conjecture. Even if it does not seem likely that the methods used
in [34] can be applied in this case, the strong bond between homomorphisms to
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PQ4 and cut-continuous maps is interesting to examine. Indeed, we prove that
cubic graphs of high girth admit homomorphisms to PQ4 and hence they admit
cut-continuous maps to C5.

Proof of Proposition 3.4. We show that a) =⇒ b) =⇒ c) =⇒ a).

Firstly, let us denote with H2k+1 the graph over {0, 1}2k+1
with any two vertices

x, y adjacent if and only if they coincide in just one coordinate. We may notice
that H2k+1 has two connected components (vectors with even or odd number
of 0′s) both isomorphic to PQ2k (they are isomorphic among themselves by
symmetry, i.e. by sending each vector to its complementary; and they are both
isomorphic with PQ2k by taking the identity map in Q2k+1).

a)→ b) We show that if a) holds, then G admits a homomorphism to H2k+1, which
suffices.

Let S1, . . . , S2k be the pairwise disjoint cut complements, and S2k+1 =
E(G) \

⋃
Si their complement. Let also Ui ⊆ V (G) be such that Si is

the complement of the cut induced by Ui. Note that S1, . . . , S2k+1 form
a partition of E(G) (and that also S2k+1 is a cut complement, by taking
the symmetric difference of all the Ui).

Let γ the map that sends a vertex v to the vector xv ∈ {0, 1}2k+1
such

that (xv)i = 1v∈Ui
. Then γ is a homomorphism to H2k+1 because if two

vertices are adjacent, the edge which connects them is in exactly one of
the Si.

b)→ c) Since being cut-continuous is closed with respect to functions compo-
sition, it suffices to show that H2k+1 admits a cut-continuous map to
C2k+1. Let us denote E(C2k+1) = {e1, . . . , e2k+1} and let g be the map
g : E(H2k+1)→ E(C2k+1) that sends the edge xy into the edge ei if x and
y agree exactly on the i-th coordinate. By taking the preimage of any cut
R in C2k+1, which has even cardinality, we obtain our claim.

c)→ a) Let f be the homomorphism and xixi+1 an edge in C2k+1; let U =
f−1(xi) ∪ f−1(xi+1). Then f−1(xixi+1) = E(G) \ δ(U). This implies
that E(G) admits 2k + 1 disjoint cut complements.

Finally, before starting to examine the main result of this section, we point
out that the existence of homomorphisms to PQ2k is also the topic of various
conjectures, one of which states.

Conjecture 3.6 (Seymour [38]). Every planar graph with all odd cycles of
length at least 2k + 1 has a homomorphism to PQ2k.

Because in the case k = 1 we have that PQ2k is isomorphic to K4, and be-
cause the existence of a homomorphism from G to Ki is equivalent to i-vertex
colourability, we have that this conjecture is a generalisation of the well known
Four Colour Theorem.
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3.2 Homomorphisms to the Clebsch graph

We now present the main result of the aforementioned article by DeVos and
Šámal, [10].

Theorem 3.7. Every cubic graph of girth at least 17 admits a homomorphism
to PQ4.

We need some technical definitions and remarks before introducing the proof of
the theorem (the definitions we give are useful in the context of this proof, but
are not universally valid and may create confusion outside this context).

Definition 3.8 (labellings and weights). Let G be a graph. We define a labelling
of G as a 4-tuple X = (X1, . . . , X4) such that Xi ⊆ E(G). We call X a cut
labelling (resp. cut complement labelling) if every Xi is a cut set (resp. a
cut complement). In general, we call X wonderful if for every i 6= j we have
Xi ∩Xj = ∅.
Let X be a labelling of G and e be an edge in E(G), we call {i : e ∈ Xi} the label
`X(e) of e with respect to X. The weight of e in X is defined as wX(e) = |`X(e)|.
Finally, we define the cost of every single edge as costX(e) = α(wX(e)), where
α is defined by α(0) = 0, α(1) = 1, α(2) = 10, α(3) = 40 and α(4) = 1000; in
the same way, cost(X) =

∑
e costX(e).

Because of the equivalence in Proposition 3.4, to prove that G has a homo-
morphism to PQ4 it suffices to prove that G admits four pairwise disjoint cut
complements. By our last definition, if we can prove that G has a wonderful
cut complement labelling, we have the existence of our homomorphism.
Therefore, to prove the theorem we show that under our assumptions on the
regularity and girth of G every cut complement labelling of minimal cost is won-
derful. In particular, we proceed locally; i.e. we show that if a cut complement
labelling is not wonderful, it is possible to modify it locally (near an edge that
is contained in two of the sets of the labelling) to obtain a labelling with lower
cost. To do so, we use the fact that every cubic graph of high girth is locally
similar to a cubic tree. Indeed, we describe an operation that allows us to obtain
a labelling with a smaller cost in fixed cubic trees with central edge of weight
bigger than one, and we then apply this operation locally in our cubic graph.
We need to introduce some notation about cubic graphs and to define the main
operation that allows us to change the labellings.

Definition 3.9 (Rooted trees and internal vertices). We define recursively the
cubic rooted tree Ti as follows. T1 is an edge with one rooted vertex. Given Ti,
we construct Ti+1 as follows. Let (U1, x1) and (U2, x2) be two copies of Ti, and
let (U, x) be the graph obtained by contracting to x the roots x1 and x2 in the
union graph of U1 and U2. Then we define Ti+1 over U t {x′} with root x′ and
with edge set the edges of U with also an edge between x and x′. We call the
unique edge adjacent to the root the root edge of the rooted tree Ti.
Moreover, we define 2Ti to be the graph obtained by identifying in opposite
directions the rooted edges of two disjoint copies of Ti.
We call a vertex in Ti or 2Ti interior if it is the root or if it is not a leaf.
A cut is called internal if it can be written as δ(U) with U a set of interior
vertices. A cut labelling is internal if every component that it has is an internal
cut.
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T1 T2 T3

2T3

Figure 2: Cubic rooted trees.

We are now ready for a remark.

Remark 3.10. If C = δ(U) is a cut and D = E(G) \ δ(V ) is a cut complement,
then the symmetric difference C∆D is a cut complement given by

C∆D = (C \D) ∪ (D \ C) = E(G) \ (δ(U)∆δ(V ))

= E(G) \ δ(U∆V ).

In particular, if X is a cut complement labelling and Y is a cut labelling, we
have that X∆Y (the componentwise operation) is a cut complement labelling.

We can now proceed to analyse the first piece needed for the theorem.

Lemma 3.11. Let X be a cut complement labelling of 2T2 of minimal cost.
Then the weight of the central edge is at most 2.

Proof. Let X be a cut complement labelling of 2T2 with weight of the central
edge bigger than 2; we find an internal cut labelling Y such that cost(X∆Y ) <
cost(Y ) (note that the fact that Y is internal is pivotal to the proof of our
theorem; indeed, this allows to extend such a result to every graph locally
isomorphic to 2T2).
We use the notation represented in the following figure (where x is either one
of the vertices of the central edge e):

e

x fg

Figure 3: We define the edges e, f , g and the vertex x.

Moreover, for I ⊆ {1, . . . , 4}, let us denote with YI the cut labelling of 2T2 that
has δ({x}) = {e, f, g} in the coordinates corresponding to I and ∅ in the other
positions.
If I = `X(e) ∩ `X(f) ∩ `X(g) is not empty, it means that there is at least one
index (let it be the index 1) for which e, f, g belong to X1. In this case, we can
take Y{1} = ({e, f, g} , ∅, ∅, ∅); it is immediate to notice that Y{1}∆X has cost
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strictly less than X (because only the first coordinate of X changes, and its
weight is strictly less) and it is a cut complement labelling by our last remark.
Therefore we may assume that the intersection `X(e)∩ `X(f)∩ `X(g) is empty.
We are in one of the following cases.

a) wX(e) = 4 (which means e is in every coordinate of X). We have two
possible cases. Either `X(f) = `X(g) = ∅, which means that neither f nor
g are in any coordinate of X in which case we can take Y{1} and reason
similarly to above; or `X(f) ∪ `X(g) = I 6= ∅. In such a case, we can
directly take YI (because the intersection of all three indices sets is empty,
we are exchanging the place of f and g in the coordinates, and reducing
the contribution of e).

b) If e is in three coordinates (it cannot be just in two because else we would
already have our thesis), we may assume `X(e) = {1, 2, 3} and wX(e) ≥
wX(f) ≥ wX(g); moreover, wX(g) ≤ 2 because otherwise they would have
nontrivial intersection. In a first scenario, we have `X(f)∩ `X(e) = I 6= ∅,
in which case, following what we did before we have a reduction of the
cost taking YI∆X. In the second case, both `X(f) and `X(f) are subsets
of {4}; then we are done by taking, again, Y{1} (indeed the cost for e, f, g
passes from at least α(3) to at most 3α(2)).

We state now a more technical lemma, of the same nature as the last one, from
which Theorem 3.7 follows. We do not present a proof for this lemma because
the one presented in [10] heavily relies on computer computations.

Lemma 3.12. Let X be a cut complement labelling of 2T9 in which every edge
has weight at most 2 and for which the weight of the central edge is exactly 2.
There exists an internal cut labelling Y for which cost(X∆Y ) < cost(X).

A first computational approach to this problem could be to find, for every cut
complement labelling X which is not wonderful, an internal cut labelling Y
as in the statement. But it is not difficult to show that the possible number
of labellings is out of the current computational possibilities. Therefore, it is
necessary to focus on some particular, worst-case scenarios that are obtained by
defining a partial order on some auxiliary structure. For a complete analysis of
the algorithm, see [10, Section 2]
We are now ready to prove the main result of this section.

Proof of Theorem 3.7. By Proposition 3.4, applied for k = 2, it suffices to prove
that every cubic graph with girth at least 17 admits a wonderful cut complement
labelling.
Let G be a cubic graph of girth at least 17 and let X be a cut complement
labelling of minimum cost. By Lemma 3.11, we can assume that every edge has
weight at most 2 with respect to X (indeed, if it is not the case, we can find a
local cut labelling Y so that Y∆X is a cut complement labelling of strictly lower
cost). Now, assume there is one edge e of weight exactly 2; then we can take
the restriction of X to the subgraph of G internally isomorphic to 2T9 that has
e as its central edge (it is uniquely defined, but it might have some contracted
leaves). By Lemma 3.12, we can find a cut labelling Y such that X∆Y has cost
strictly less than the cost of X, and obtain the absurd.
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{1, 2}

{4}{3}

∅

{2}∅

{1}
{3}

{4}
{4}

{3}
{4}

{1}
{3}

{2}

Figure 4: A difficult labelling of T4.

Therefore if X has minimal cost, then it is wonderful; and because the cost
map is discrete, there exists at least one cut complement labelling with minimal
cost.

There is one quick generalisation of Theorem 3.7.

Corollary 3.13. Every graph with maximum degree 3 and girth at least 17 is
homomorphic to PQ4.

Proof. Let G be our subcubic graph, and let us define r =
∑
v(3− deg(v)) the

measure of how G fails to be 3-regular.
Let H be an r-regular graph of girth at least 17 (which exists by Proposition
2.6); moreover, let the graph G0 be constructed as follows. Take |V (H)| copies
of G indexed by the set V (H); iteratively for every edge uv in H, take one
vertex x of degree less than three in the copy of G indexed by u and one vertex
y of degree less than three in the copy of G indexed by v; add to G0 the edge
xy.
By repeating the construction, we obtain a graph G0 which is a 3 regular graph
with girth at least 17 and with subgraphs isomorphic to G. From Theorem 3.7
we get that G0 admits a homomorphism to C5 and therefore so does G.

Remark 3.14. Before concluding this section, it is interesting to point out that
it is not a coincidence the fact that we imposed α(1) 6= 0. Indeed, one could
wonder why α(1) 6= 0 if we just want to limit the number of edges that are in
at least two component of our labelling.
The idea behind the reason for which this precaution is necessary is that there
are some difficult examples in which an easier cost function does not work.
Indeed, if we set α(1) = 0 there are some cuts complements which are not
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wonderful and such that it is not possible to reduce their cost with the afore-
mentioned operation in just one step. The idea is that setting α(1) = 1 helps
us decide what to do in some particular situations.
One example is as follows. If we set α(1) = 0 and we have a cut complement
labelling X in which every edge has weight at most 2 and exactly one edge e has
weight 2, then the algorithm we presented fails if there is no way of reducing
the weight of e without increasing some the weight of some other vertex. For
an explicit example, Figure 4.

Finally, we present a quick example of the reason for which a similar method
cannot be trivially applied to solve the Pentagon Conjecture.

Remark 3.15. For every k ≥ 3, there exists a map h : V (2Tk) → V (C5) such
that every modification h′ of h which preserves the value of h on the leaves is
not a homomorphism. Indeed, for any fixed k, we have that there exists a copy
of T3 inside 2Tk in which leaves of 2Tk corresponds to leaves of T3. Consider
any mapping h that takes on those leaves values as in Figure 5.

1

32

4

Figure 5: Not every map can be internally modified to obtain a homomorphism.

We can notice that no modification of only internal vertices can change h into
a homomorphism to C5.
In particular, this implies that there does not exist an operation which modifies
vertex maps from 2Tk to C5 only changing their values on internal vertices and
has as output only graph homomorphisms.
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4 Minor avoidance and homomorphisms to cy-
cles

We know that the Pentagon Conjecture asks about the existence of homomor-
phisms between the family of cubic graphs and cycles. In this section, following
Galluccio, Goddyn and Hell [16], we answer a similar question about the families
of minor-avoiding graphs.
Besides the similarities with the Pentagon Conjecture, there is another perspec-
tive which we should point out. The study of the chromatic number of graphs is
of the highest importance in Combinatorics (we can think of Brook’s Theorem
as an example); therefore, any generalisation or different point of view on the
topic is of great interest on its own. In this section, we present the circular
chromatic number, which is an extension to the rational numbers of the chro-
matic number of a graph. Crucially, we establish a link between low circular
chromatic number and graph homomorphisms to cycles; we exploit this result
studying the circular chromatic number of high-girth graphs avoiding a minor.

4.1 Circular chromatic number

Graph colouring is one of the main topics of interest in Combinatorics. In this
subsection, we want to underline the link between graph colouring and graph
homomorphisms, a link that holds also in the extension to circular colourings.
We observed in a previous section that any proper k-colouring c of a graph G
naturally induces a homomorphism between G and Kk. Indeed, note that the
map that associates to each vertex v ∈ V (G) the vertex c(v) in Kk is indeed a
graph homomorphism (we assume [k] to be the image set of c and the vertex
set of Kk). The converse is also true, as we can regard the vertices of Kk as
distinct colours, and observe that if c is a homomorphism between G and Kk,
the same c is also a proper k-colouring.
This allows us to naturally generalise the concept of graph colouring. Indeed,
we can ask ourselves for which graphs H a given graph G is H-colourable. We
hope everyone agrees that this generalisation leads to interesting questions.
The main definition of this section is another extension of the concept of chro-
matic number; in particular, we define the circular chromatic number in a way
that allows it to take values in the field of rational numbers. Moreover, the circu-
lar chromatic number is a strengthening of the definition of chromatic number in
the sense that knowing the first allows us to calculate the latter but two graphs
with the same chromatic number can have different circular chromatic numbers.
This additional information contained in the circular chromatic number allows
us to obtain some results about graphs homomorphisms.

Definition 4.1. Let C be the circle of length 1 around the origin of R2, or
equivalently, C = ∂B(0, 1

2π ); and let φ : [0, 1)→ C be the natural map. For any

positive real r, we denote with C(r) the set of open intervals of C of length 1/r.
Let G be a graph, we define an r-circular colouring of G as a map f from V (G)
to C(r) such that if x, y are adjacent vertices of G, then f(x) ∩ f(y) = ∅.
The circular chromatic number of G, denoted by χc(G), is the infimum of the set
of positive r for which G has an r-circular colouring (the minimum is attained,
for a proof look at Zhu’s survey [43]).
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The circular chromatic number χc provides more information than the chromatic
number χ; indeed, it holds dχc(G)e = χ(G) (a proof of this fact relies on an
alternative definition of circular chromatic number and can be found in [43,
Theorem 1.1]) while it can be calculated that the flower snark J5 and K3 have
the same chromatic number but distinct circular chromatic numbers.
The link between graph homomorphisms and graph colouring survives to the
generalisation to circular colouring. In particular, because we are interested
in graph homomorphisms to cycles, it is interesting to point out the following
result.

Proposition 4.2 (Section 2, [43]). Let G be a graph and let k be a positive
integer. The following are equivalent:

i) There exists a homomorphism h : G→ C2k+1,

ii) There exists a
(
2 + 1

k

)
-circular colouring c : G→ C(2+ 1

k ).

Proof. We show that both conditions are equivalent to a third one, which is as
follows.

iii) There exists a map h′ : V (G)→ {0, . . . , 2k} such that if x, y are adjacent
vertices of G it holds |h′(x)− h′(y)| is either k or k + 1.

For a general graph H, we denote with Hr the graph over the vertex set of H
for which xy ∈ E(Hr) if the distance between x and y in H is at least r. We
can restate point iii) as: there exists a homomorphism between G and Ck2k+1.

Because 2k + 1 is odd, it is not difficult to observe that Ck2k+1 is isomorphic as
a graph to C2k+1, and hence i) and iii) are equivalent.
For the equivalence between ii) and iii), let us first show that ii) implies iii).
Let c be a (2 + 1

k )-circular colouring for G. It simplifies the notation to study
the induced map c′ : V (G) → C (recall that C = ∂B(0, 1

2π )) which sends a
generic vertex v to the central point of the interval c(v) (which by definition is
an interval of length 1

2+1/k in C).

The idea behind this result is that if we divide C into 2k + 1 segments of equal
length, we work with them as distinct vertices of C2k+1 in the natural way, and
we associate to v ∈ V (G) the vertex corresponding to the segment in which
c′(v) lies, this association is indeed a graph homomorphism. More formally, we
have as follows.
Recall that φ is the natural map between [0, 1) and C. Let h be the map
h : V (G) → {0, . . . , 2k} defined as h′(v) = bφ−1(c′(v)) · (2k + 1)c. Let v, w
be adjacent vertices in G; then the distance between c′(v) and c′(w) is at least
k

2k+1 by definition of circular colouring. Therefore, the distance between h′(v)
and h′(w) in the numbers modulo 2k + 1 at least k, as desired.
Let us now show that iii) implies ii). Let h′ be a map such as in iii), and

let c′ be the map c′ : V (G) → C defined as c′(v) = φ
(
h′(v)
2k+1

)
. Because of

the hypothesis in iii), we have that adjacent vertices are sent by c′ in points
with “circular distance” at least k

2k+1 . Hence, the natural corresponding map

c : V (G) → C(2+1/k), which sends v to a circular segment of length k
2k+1

centered in c′(v), is a
(
2 + 1

k

)
-circular colouring of G.

What we showed, is that graphs which are homomorphic to long cycles have
circular chromatic number close to 2. Elaborating on this, suppose G is a graph
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such that χ(G) = 3, this means that χc(G) ∈ (2, 3], because dχc(G)e = χ(G);
in particular, this means that there exists k such that G is not homomorphic to
C2k+1. This should not surprise us, because a graph is bipartite if and only if
it does not contain odd cycles.
Rewriting this remark from a different prospective, if we let C2k+1 be the class
of graphs G such that G  C2k+1. Then by the last proposition we can say
that every graph in C2k+1 has circular chromatic number at most 2 + 1

k . In
some sense, because we have C3 ⊃ C5 ⊃ . . . , we are tempted to say that the
limit family of C2k+1 has chromatic number two. This is exactly what happens.
Indeed, because every bipartite graph has a homomorphism to C2k+1 for any k,
and because every graph containing an odd cycle (every non-bipartite graph) is
not homomorphic to C2k+1 for k large enough, we have⋂

k∈N+

C2k+1 = {G : χ(G) ≤ 2} .

4.2 Girth-bipartite families and p-path degenerate graphs

For what we said in this last remark, it is reasonable to give the following
definition.

Definition 4.3 (Girth-bipartite). Let G be a class of graphs, we say that G is
girth-bipartite (or almost bipartite) if for any ε > 0 there exists gε ∈ N such
that every graph in G of girth at least gε has circular chromatic number at most
2 + ε.

In Section 2, we proved that the class of cubic graphs is not almost bipartite. The
main result of this section, due to Galluccio et al., states that almost bipartite
families are not so rare.

Theorem 4.4 (Galluccio et al. [16]). For any fixed graph H, the class of H-
minor free graphs is girth-bipartite.

We should take a moment to point out the relevance of this result. Indeed, the
study families of H-minor free graphs is quite interesting by itself. A famous
result by Kuratowski states that anyK5 andK3,3-minor avoiding graph is planar
and vice versa. Moreover, these families are also studied in relation to separators
because of their sparsity (see the famous Planar Separator Theorem by Lipton
and Tarjan [24] and its generalisation by Alon et al. [2]).
It is interesting to point out that this last theorem implies that the family of
planar graphs is almost bipartite (this, combined with the result of Section 2,
and the equivalence we proved in the last subsection, gives us that a cubic
graph is almost surely not planar); more generally, every infinite subfamily of a
minor-avoiding family is almost bipartite.
Before proceeding to the proof of the theorem, we need the definition of p-path
degenerate graph. We then prove that path degeneracy is a sufficient condition
for a graph to have a homomorphism to some cycle and that graphs of high
girth avoiding minors are indeed path degenerate.

Definition 4.5. Let G be a graph and p a positive integer. G is said to be
p-path degenerate if there exists a finite sequence G = G0, . . . , Gt of 2-connected
subgraphs of G such that Gt is bipartite and each Gi is constructed from Gi−1
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in the following way. There is a path P = u1, . . . , u` in Gi−1 with ` ≥ p, for
which all internal vertices U = {u2, . . . , u`−1} have degree exactly two, and we
have Gi = Gi−1 \ U .

The following lemma allows us to use path degeneracy to study the circular
chromatic number.

Lemma 4.6. Let G be a graph, ` an odd positive integer, P = u1, . . . , up a path
in G with p ≥ ` such that every internal vertex of P has degree exactly two and
U the set of internal vertices of P . Then G C` if and only if G \ U  C`.

Proof. For any homomorphism of G to C`, its restriction to a subgraph of G is
still a homomorphism. Therefore if G C`, then it also holds G \ U  C`.
On the other hand, let h : V (G \ U) → V (C`) be a homomorphism as in the
hypothesis. Because ` is odd, h(u1) and h(up) divide C` in two paths (may be
trivially), one of odd and one of even length. Let h(u1) = v1, . . . , vq = h(up)
be the path Q of C` of the same parity of p; then, because q ≤ ` ≤ p, we have
that there exists a homomorphism between U and Q which extends h. This
naturally induces a homomorphism from G to C` because all the vertices of U
do not have neighbours outside P .

The next corollary follows from the last lemma, and it of easier application.

Corollary 4.7. Let G be a p-path degenerate graph, then G  C` with ` odd
of size at most p+ 1. In particular, by Proposition 4.2 we have

χc(G) ≤ 2 +
1

bp/2c
.

Proof. Let G = G0, . . . , Gt be the sequence given to us by the definition of p-
path degeneracy and ` be the largest odd integer smaller than p + 1. Because
Bt is bipartite, we have Bt  C`. Moreover, by construction of Gi from Gi−1

and by Lemma 4.6 we have that G0  C` if and only if Gt  C`. This allows
us to conclude that G0  G`.
The bound on the circular chromatic number follows from Proposition 4.2.

4.3 Minor-avoiding families are almost bipartite

We prove Theorem 4.4 using the tools introduced in the last subsection, in
particular Corollary 4.7.
The general idea behind the proof of Theorem 4.4 is to prove that any graph
of high enough girth in a minor-avoiding family is p-path degenerate for some
p depending only on the girth bound. We need a technical lemma (for a proof,
see Thomassen [39, pp. 115]) that allows us to find some vertices of degree two
in said graphs (remember that we want to find paths in which all the internal
vertices have degree two).

Lemma 4.8 (Thomassen, [39]). Let H be a graph. There exists a positive
integer k such that every H-minor free graph G with δ(G) ≥ 3 has girth at most
k.

Let us denote with kH be the minimum of such k; we have that any H-minor
free graph with girth at least kH + 1 has δ(G) ≤ 2.
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Lemma 4.9. Let G be an H-minor free graph of girth at least kH(p − 1) + 1
for p a positive integer. Then G is p-path degenerate.

Proof. We may assume without loss of generality that G is a 2-connected graph
because a graph is not p-path degenerate only if it has a 2-connected component
that is not p-path degenerate.
Let Q(G) be the set of vertices of G of degree at least three. We prove this

lemma by induction on f(G) =
(∑

v∈Q(G) d(v)
)
− 2 |Q(G)|. The base cases are

the ones in which G is a cycle, and the statement trivially holds in these.
Suppose G is not a cycle. Let G0 = G and let x, y, z ∈ V (G0) such that
NG0

(y) = {x, z}; we define G1 over V (G0) \ {y} by contracting the vertex y to
the vertex x (we add the edge xz and remove the vertex y). We construct Gi
from Gi−1 in the same way if there is a vertex of degree 3 in Gi−1. Let G′ be
the last graph we obtain; observe that δ(G′) ≥ 3.
Because G is H-minor free, and because G′ is a minor of G, we also have that
G′ is H-minor free. Therefore, we can apply Lemma 4.8 to state that there
exists a cycle C ′ in G′ of length at most kH . This cycle corresponds in G in a
natural way to a cycle C which has length at least kH(p− 1) + 1 (which is the
girth of G). Because in C there are only at most kH vertices of degree three or
more, by pigeonhole theorem this means that G has a path P of length at least
p with internal vertices U of degree exactly two.
We can apply the inductive hypothesis on G\U , which is an H-minor free graph
with girth at least kH(p−1)+1 and f(G\U) < f(G). This allows us to conclude
by Lemma 4.6.

Proof of Thm 4.4. Follows from Lemma 4.9 and Corollary 4.7. Indeed, if ` a
positive integer such that 1

` < ε, we can take the family G of H-minor free
graphs of girth at least kH(2` − 1) + 1. Every graph in this family is 2`-path
degenerate by Lemma 4.9, and hence by Corollary 4.7 we have:

χc(G) ≤ 2 +
1

`
< 2 + ε.
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5 A variation of the Pentagon Problem

In this section, we present our work about the Pentagon Conjecture. In the
first part, we give a generalisation of the Pentagon Problem that allows for
approximated results; we then use a local approach (inspired by DeVos and
Šámal [10]) to study an upper bound on the error. In the last part, we proceed
to underline the problems with this approach and to explain why it cannot be
immediately used to solve the Pentagon Conjecture.

5.1 Approximating the Pentagon Conjecture

Having the goal of approximating the Pentagon Problem, we need a tool to
measure how much a map fails to be a homomorphism. Ideally, for any cubic
graph G we would like to have the map h : V (G) → V (C5) which violates the
minimum number of edges.

Definition 5.1. Let G and H be graphs, and let h : V (G)→ V (H). We denote
with Sh the set {uv ∈ E(G) : h(u)h(v) 6∈ E(H)} of violated edges. We have that
h is an homomorphism if and only if Sh = ∅. Because studying Sh is as difficult
as studying h, we use the proportion Sh

|E(G)| as measure of how much h fails to

be an homomorphism. We denote ωh = |Sh|
|E(G)| .

The Pentagon conjecture can be then formulated as follows. If G is a cubic
graph of girth high enough, there exists a map h : V (G) → V (C5) such that
|Sh| = 0 (or, equivalently ωh = 0). This suggests us some other definition.

Definition 5.2. Let G be a graph; we denote with ω∗(G) the minimum of the
set {ωh s.t. h : V (G)→ V (C5)}.

With this notation, the Pentagon Problem can be formulated as follows. Is it
true that ω∗(G) = 0 for any G which is cubic and with girth high enough?
We examine the following weakening of the Pentagon Conjecture.

Conjecture 5.3. For every ε positive real, there exists N ∈ N such that if G
is a cubic graph with girth(G) ≥ N , then ω∗(G) ≤ ε.

If the Pentagon Conjecture holds, then so does this weakening; while the vicev-
ersa is not true. Let G be a triangle-free cubic graph, h : V (G) → V (C5) any
map and v ∈ V (G). It is interesting to notice that by changing the value of h(v)
we can ensure that h violates at most one of the edges adjacent to v. It follows
that 1

3 is an upper bound for ω∗(G) whenever G is a triangle-free cubic graph.
In this section, we present a local approach to the previous conjecture, and we
find a better bound for ω∗(G). However, the upper bound we show is bounded
away from 0. Indeed, we prove the following.

Proposition 5.4. For evey ε > 0 there exists k ∈ N such that if G is a cubic
graph of girth at least 2k + 1, then ω∗(G) ≤ 1

4 (1 + ε).

5.2 Local approach

We start with some terminology. Firstly, we use here the notation about cubic
trees introduced in Section 3; moreover, we frequently refer to levels of Tk, both
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for edges and for vertices. In particular, we denote with level 0 the root vertex
and the root edge; we denote level 1 the vertex adjacent to the root vertex and
the two edges adjacent to it which are not in level 0. Generally, we define level
i + 1 as the set of vertices not in level i − 1 which are adjacent to the vertices
in the level i; for edges, the level i+ 1 is defined as the set of edges not in level
i adjacent to the vertices in the i+ 1-th level.
The main idea behind our approach is as follows. Let G be a cubic graph with
high enough girth, and let h : V (G) → V (C5) such that ωh = ω∗(G). It holds
that if T ⊆ V (G) is a set of vertices spanning a connected subtree of V (G),
then there is no homomorphism h′ : T → V (C5) such that |Sh′ | < |Sh ∩ E(T )|
and h and h′ coincide on the leaves of T (or, as we often write, h

∣∣
∂T

= h′
∣∣
∂T

);

indeed, if this were not the case, the map h = h
∣∣
V (G)\T

∪ h′∣∣
T

would be such

that ωh < ωh = ω∗(G).
We show that if ωh is bigger than a certain value, we can find a subtree T and
a map h′ as in the last paragraph.

Definition 5.5. Let G be a graph. A weight of the edges of T is a map
µ : E(G)→ R+. For S ⊆ E(G) we write µ(S) to indicate

∑
e∈S µ(e). We always

assume that all the edges have strictly positive weight and that µ(E(G)) = 1.
Given a generic map ν : E(G) → R+, we write µ ' ν to indicate that µ is the

normalised weight µ : e 7→ ν(e)
ν(E(G)) .

We are now ready for the first step of our approach. The following proposition,
given a map V (G) → V (C5) with many violated edges, provides the existence
of a subtree T of G with many violated edges; this allows us to work locally.
Before presenting the result, it is useful to agree on some notation.

Notation. Let H = (V,E), H ′ = (V ′, E′) be two graphs and let µ : E → R, µ′ :
E′ → R be two edge weights. We say that H and H ′ are weight isomorphic
if there exists an isomorphism g : V → V ′ which preserves the weight of the
edges.

We present a general result.

Proposition 5.6. Let G be a graph, let H = {H1, . . . ,Hk} be a set of edge-
weighted subtrees of G which are pairwise weight isomorphic, and for every
e ∈ E(G) let µ∗(e) =

∑
H∈H µH(e). Moreover, suppose that µ∗(e) does not

depend on e. If S ⊆ E(G) is such that |S| ≥ α |E(G)|, then there exists H ′ ∈ H
such that µH′(S ∩ E(H ′)) ≥ α.
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Proof. Observe that it holds:∑
H∈H

µH(S ∩ E(H)) =
∑
e∈S

∑
H∈H

µH(e)

=
∑
e∈S

µ∗(e) = µ∗(e) |S|

≥ µ∗(e)α |E(G)|

= α
∑

e∈E(G)

∑
H∈H

µH(e)

= α
∑
H∈H

∑
e∈E(G)

µH(e)

= α.

Therefore, it cannot be the case that µH′(S∩E(H ′)) < α for every H ′ ∈ H.

This proposition can be applied to our case.

Corollary 5.7. Let G be a cubic graph of girth at least 2k + 1, and let µ be a
weight for Tk homogeneous on levels (for any fixed level, each edge in that level
has the same weight). If h : V (G)→ V (C5) violates |Sh| = α |E(G)| edges, then
there exists a subtree H of G isomorphic to Tk such that µ(Sh ∩H) ≥ α.

Proof. Let H be the set of all subgraphs of G isomorphic to Tk; moreover, for
any edge e, let N (i)(e) be the graph induced by G over the vertices with distance
at most k from any one of the vertices adjacent to e. Because the girth of G is
at least 2k + 1, we have that all the N (k)(e) are isomorphic to 2Tk. Therefore,
in particular, µ∗(f) =

∑
H∈H µ(f) is constant for every edge f .

Therefore, by our last lemma, we can find a copy H of Tk such that µ(Sh∩H) ≥
α as required.

5.3 A first application

Let G be a cubic graph of girth at least 2k+1; let ν : E(Tk)→ R+ the constant
function ν : e 7→ 1 and let µo ' ν the normalised homogeneous weight.
We can apply Corollary 5.7 to this situation; we first need to formally introduce
an argument that we mentioned above.

Remark 5.8. Let G and Tk be as above. If h : V (G) → V (C5) is a map such
that ωh = ω∗(G), then there is no subgraph T of G isomorphic to Tk such that
there exists h′ : V (T )→ V (C5) such that |Sh′ | < |Sh ∩ T | and h

∣∣
∂T

= h′
∣∣
∂T

.

We can prove this by considering the vertex map h = h
∣∣
V (G)\T

∪ h′∣∣
T

. Indeed,

if such a subgraph T existed, we would have ωh < ω∗(G).

The main idea behind the result of this subsection is as follows.

Lemma 5.9. Let h : V (Tk) → V (C5) such that ωh >
2k−2

2k−1
. Then there exists

h′ : V (Tk)→ V (C5) such that h
∣∣
∂Tk

= h′
∣∣
∂Tk

and |Sh′ | < |Sh|.

Proof. Without loss of generality, by vertex transitivity of C5, we can assume
that h(root) = 1. Let h′ be the partial colouring of Tk defined only on the vertex
levels 0, 1, 2 . . . , k−1, k+1 which takes alternatively values 2 and 1 in each level.
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More specifically, we impose h
∣∣
∂Tk

= h′
∣∣
∂Tk

, then, for the levels 1, . . . , k − 1 we

define h′(v) = 1 if v is on an even level, and h′(v) = 2 if v is on an odd level.
As the example in Figure 6.
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Figure 6: An example-map.

However we complete h′, it clearly holds that Sh′ is a subset of the two last edge

levels. In order to show that we can complete h′ in such a way that ωh′ ≤ 2k−2

2k−1
it suffices to show that for any value on the leaves of T2, it is always possible to
assign to the middle vertex a value such that at most one edge is violated in T2.
The reason because this suffices is that to complete h′ we just need to colour each
vertex in the k-th level. Each of these vertices is the central vertex in a different
copy of T2, and these copies are edge disjoint. If we prove the aforementioned
claim for T2, we can then complete h′ in such a way that there is at most one
violated edge for each vertex of the k -level. To show that this is indeed true,
first observe that T2 has three leaves and one middle vertex. If two of the leaves
are labelled with the same vertex of C5, then it is clearly possible to assign
to the middle vertex of T2 a vertex of C5 such that at most one edge of T2 is
violated. On the other hand, if all the leaves of T2 are associated to distinct
vertices of C5, by pidgeonhole theorem at least two of them are in the form
i, i+ 2 and therefore it is still possible to complete the map in such a way that
at most one vertex is violated.
From this last consideration, we have that we can complete h′ in such a way
that at most 2k−2 edges are violated.

We are now ready to prove our upper bound on ω∗(G).

Proof of Proposition 5.4. Let k be such that 2k

2k−1
< (1 + ε). Suppose by con-

tradiction that ω∗(G) > 1
4 (1 + ε); this means that for every h : V (G)→ V (C5),

the map h violates at least 2k−2 edges. Let µo be the weight on the edges of Tk
and let h be such that ωh = ω∗(G); then by Corollary 5.7 we have that there
exists T ⊆ G a subtree of G such that µ(T ∩ Sh) ≥ 1

4 (1 + ε).
Recalling the definition of µo, this means that |Sh ∩ T | > 2k−2. By Lemma 5.9
we have that there exists a map h′ : V (T )→ V (C5) which is equal to h on ∂T
and with strictly less violated vertices. Therefore we can extend h′ to V (G) and
obtain a contradiction by minimality of ωh.
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5.4 Possible generalisations

The idea behind the localised approach to Conjecture 5.3 is quite straightfor-
ward. We call a map h : V (Tk) → V (C5) a bad map if it does not exists
h′ : V (Tk) → V (C5) such that |Sh′ | < |Sh| and h

∣∣
∂Tk

= h
∣∣
∂Tk

. For a level-

homogeneous weight µ of the edges of Tk, we use the following notation:

ω∗(µ) = max {µ(Sh) : h is bad} .

Moreover, we denote:

Ω(k) = min {ω∗(µ) : µ is a level-homog. edge weight of Tk} .

The local approach that we presented is equivalent to the following remark.

Remark 5.10. If G is a cubic graph of girth at least 2k+ 1, then ω∗(G) ≤ Ω(k).

Proof. Let h : V (G) → V (C5) such that ωh = ω∗(G); and let µ such that
ω∗(µ) = Ω(k).
Suppose by sake of contradiction that ω∗(G) > Ω(k). Then, by Proposition 5.6
and by a consideration already seen in the proof of Corollary 5.7, we have that
there exists T ⊆ G isomorphic to Tk such that µ(T ∩Sh) ≥ ωh = ω∗(G) > Ω(k).
There are two possibilities:

• Either h
∣∣
T

is bad, in which case we would have µ(T ∩Sh) ≤ ω∗(µ) = Ω(k),

which is a contradiction;

• or h
∣∣
T

is not bad. But in this case we can find h′ : V (G) → V (C5) such

that ωh′ < ωh, which again leads to contradiction.

What we did in the previous subsection can be summarised by saying that we

showed that ω∗(µo) = 2k−2

2k−1
, and therefore that Ω(k) ≤ 2k−2

2k−1
.

The local approach fails to provide an immediate proof to Conjecture 5.3; indeed,
it is not easy to determine the set of bad maps h : V (Tk)→ V (C5). We know,
for example, that if h is bad then:

i) |Sh| ≤ 2k−2,

ii) every vertex in Tk is adjacent to at most one edge in Sh,

iii) if T is subtree of Tk isomorphic to Ti, then |Sh ∩ T | ≤ 2i−2.

But, on the other hand, given a map h with the properties just presented, it is
not immediate to determine whether h is bad or not. Moreover, by analysing
an inductive definition of an Sh with the three aforementioned characteristics it
seems reasonable that for every µ we have

max {µ(Sh) : h satisfies i), ii), iii)} ≥ 2k−2

2k − 1
= ω∗(µo).

For this reason we believe that this local approach does not provide any stronger
result.
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6 Chromatic number of triangle-free graphs

While working on the Pentagon Problem, we encountered the problem of study-
ing the chromatic number of triangle-free regular graphs. In this section, we
analyse a famous result about a similar problem.
For a graph G of girth at least 5, let G3 be the graph over V (G) for which
xy ∈ E(G3) if and only if the distance of x and y in G is exactly 3. Observe
that if G is a cubic graph and if f : V (G) → V (C5) is a homomorphism, then
there is no pair of vertices x, y at distance exactly 3 such that f(x) = f(y); in
particular, χ(G3) ≤ 5. Inspired by this observation (and by the fact that G3

is 12-regular and without triangles if G is cubic of high enough girth), in this
section we present a result about the colourability of triangle-free graphs.

6.1 Presentation of the result

Recently, Molloy [30] presented a refined version of an unpublished result by
Johansson [19] about the chromatic number of triangle-free graphs with high
maximum degree. With his new approach, the author uses entropy compression
to obtain an easier and shorter proof.
We prove a statement weaker than the one in [30], by following the argument
presented by Bernshteyn in [4]; in this last article, the author shows a more
immediate approach to the problem of Johansson and Molloy, and also gives a
generalised statement (that we do not analyse here).
The main result of this section is as follows.

Theorem 6.1 (Johannson [19], Molloy [30]). For every ε ∈ R>0, there exists
∆ε ∈ N such that every triangle-free graph G of maximum degree ∆ ≥ ∆ε has
the following bound on its chromatic number:

χ(G) ≤ (1 + ε)
∆

ln ∆
.

The articles by Molloy [30] and Johannson [19] directly treat the more general
case of list chromatic number, obtaining the same upper bound; while in his
article, Bernshteyn [4] extends this result for DP-colourings. What we study
in this section is a strict weakening of the results presented in the mentioned
articles, but it is still interesting to analyse.
In the first subsection, we present Lovász Local Lemma, one of its alternative
presentations called Lopsided Lovász Local Lemma due to Erdős and Spencer
[15], and a modification for negatively correlated variables of the well-known
Chernoff bounds. In the second subsection, we present the general idea behind
the proof of Theorem 6.1 due to Bernshteyn. In the last subsection, we present
a proof of Lemma 6.12, from which the theorem follows naturally.

6.2 Lopsided Lovász Local Lemma and Chernoff Bounds

In this subsection, we present two variations of well-known theorems. We pro-
vide a proof of the first of these following the line of [15], we referred to Panconesi
and Srinivasan [36] for the proof of the second one. We also present the general
form for the first of the two results (though without proving it), because of its
wide applicability in Combinatorics.
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6.2.1 General Lovász Local Lemma and Lopsided version

To understand the idea behind the Lovász Local Lemma, we propose the fol-
lowing example.

Example 6.2. Let B1, B2, . . . be a sequence of mutually independent events in a
probability space, and suppose that each Bi has probability at least p for some
fixed positive real p. Moreover, let An =

⋂
i≤nBi.

By definition of independence, for every n ∈ N the probability of An is positive
(it is at least pn), even if it can be exponentially small in n. One interesting
consequence is that the intersection of a finite number of Bi is never empty.

Lovász Local Lemma is a powerful lemma that provides a similar result in a
weaker, finite, setting. This kind of results is particularly important in Com-
binatorics because we often want to prove that an event occurs with positive
probability.

Definition 6.3. Let A1, . . . , An be events in a generic probability space, and
let D = ([n], E) be a directed graph: moreover, let us take for every i ∈ [n],
a subset Si = {j ∈ [n] \ {i} : ij 6∈ E}. We say that D is a dependency digraph
for A1, . . . , An if each Ai is mutually independent of the set {Aj}j∈Si

. More
specifically, if for any subset S ⊆ Si it holds:

P

Ai ∩ ⋂
j∈S

Aj

 = P[Ai]P

⋂
j∈S

Aj

 .
We are now ready to state Lovász Local Lemma (for a reference, [3, Lemma
5.1.1]).

Lemma 6.4 (Lovász Local Lemma). Let A1, . . . , An be events in some prob-
ability space, and let D = ([n], E) be a dependency digraph for them. Suppose
there exists x ∈ [0, 1)n such that P[Ai] ≤ xi

∏
ij∈E(1− xj) for each i ∈ [n]; then

it holds:

P

[
n⋂
i=1

Ai

]
≥

n∏
i=1

(1− xi) > 0.

The main observation is that, in order to obtain
⋂
iAi 6= ∅, we do not require for

all the events to be mutually independent, we just need that the dependencies
are rare enough; indeed it is sometimes the case that we can prove that events
which are in some sense “far” from each other are independent.
In the lopsided version of the Local Lemma, every mention of the independence
is removed.

Definition 6.5. Let A1, . . . , An be events in a probability space. Suppose
Γ = ([n], E) is a simple graph such that for any i ∈ [n] and for any S ⊆
[n] \ ({i} ∪NΓ(i)), we have:

P

Ai ∩ ⋂
j∈S

Aj

 ≤ P[Ai]P

⋂
j∈S

Aj

 .
Then we say that Γ is a lopsidependency graph for A1, . . . , An.
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We are finally ready for the statement of the Lopsided Lovász Local Lemma.

Lemma 6.6 (LLLL, [15]). Let A1, . . . , An be nontrivial events in a probability
space, and let Γ be a lopsidependency graph for them with maximum degree d.
Suppose there exists p ∈ [0, 1] such that P[Ai] ≤ p for every i ∈ [n]; and suppose
also that 4dp ≤ 1. Then the event

⋂n
i=1Ai has positive probability.

Proof. We proceed by induction on n, the base case being trivial. By definition
of conditional probability,

P

[
n⋂
i=1

Ai

]
=

n∏
i=1

P

Ai
∣∣∣∣∣∣
i−1⋂
j=1

Aj

 .
We notice that in the above equation,

⋂i−1
j=1Aj is nontrivial because of our

inductive hypothesis.

We show that for any i ∈ [n] and for any S ⊆ [n], it holds P
[
Ai

∣∣∣⋂j∈S Aj] ≤ 2p.

This result, used in the above equation, provides,

P

[
n⋂
i=1

Ai

]
=

n∏
i=1

P

Ai
∣∣∣∣∣∣
i−1⋂
j=1

Aj


≥

n∏
i=1

(1− 2p) > 0.

We show by strong induction on s that for any i ∈ [n] and for any S ⊆ [n] of

size s, we have P
[
Ai

∣∣∣⋂j∈S Aj] ≤ 2p.

The cases in which s = 0 or i ∈ S are trivial. Hence, we may assume s > 0
and i 6∈ S. Therefore, up to rearrangement of the indices of the events, we may
assume the following: i = n, also S = {1, . . . , s} and NΓ(i) ∩ S = {1, . . . , d∗}
with d∗ ≤ d. With this in mind, and again using the definition of conditional
probability, we can write

P

An
∣∣∣∣∣∣
s⋂
j=1

Aj

 =
P
[
An ∧

⋂d∗
j=1Aj

∣∣∣⋂sh=d∗+1Ah

]
P
[⋂d∗

j=1Aj

∣∣∣⋂sh=d∗+1Ah

] .

As above, the events for which we condition are nontrivial by inductive hypoth-
esis. We provide an upper bound for the numerator and a lower bound for the
denominator as follows.

- For the numerator, it holds,

P

An ∧ d∗⋂
j=1

Aj

∣∣∣∣∣∣
s⋂

h=d∗+1

Ah

 ≤ P

[
An

∣∣∣∣∣
s⋂

h=d∗+1

Ah

]
≤ P[An] ≤ p.

The first inequality holds by monotonicity of probability measures; the
second follows by definition of lopsidependency graph and because in our
rearrangement of indices we have NΓ(i) ∩ S = {1, . . . , d∗}; while the last
inequality holds by hypothesis.
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- We can proceed as follows about the denominator:

P

 d∗⋂
j=1

Aj

∣∣∣∣∣∣
s⋂

h=d∗+1

Ah

 ≥ 1−
d∗∑
j=1

P

[
Aj

∣∣∣∣∣
s⋂

h=d∗+1

Ah

]

≥ 1−
d∗∑
j=1

2p ≥ 1− 2pd

≥ 1

2
.

Indeed, the first inequality follows because, for general A,B events in a
probability space, P[A∩B] +P[A∪B] = 1. The second inequality follows
by strong induction hypothesis on s of the claim we are proving; while the
last two inequalities are by hypotesis.

Therefore, by these observations we obtain

P

An
∣∣∣∣∣∣
s⋂
j=1

Aj

 ≤ 2p.

Before we introduce the next subsection, it is useful to point out a general
remark, that might enlighten us on how we can apply Lemma 6.6.

Remark 6.7 (Law of total probability). Let B1, . . . , Bn be a nontrivial partition
of a probability space. Then, for any event A on the same space, we can write:

P[A] =

n∑
i=1

P [A|Bi]P[Bi].

Therefore, if we want to prove P[A] ≤ p for some event A and some p ∈ [0, 1], it
suffices to show that for every i ∈ [n], it holds P [A|Bi] ≤ p.
This law of total probability also holds for conditional probabilities. More specif-
ically, suppose C is a nontrivial event, in the same probability space, we have
that

P [A|C] =
∑

C∩Bi 6=∅

P [A|C ∩Bi]P [Bi|C] .

Since
∑
C∩Bi 6=∅ P [Bi|C] = 1, if we want to show that P [A|C] ≤ p is suffices to

show that P [A|C ∩Bi] ≤ p for every Bi such that Bi ∩ C 6= ∅.
This last version of the law of total probability becomes particularly useful when
we have an event C and a partition B1, . . . , Bn such that for every i ∈ [n] it
holds either Bi ⊆ C or Bi ∩ C = ∅. Indeed, in this case in order to show that
P [A|C] ≤ p it suffices to show that P [A|Bi] ≤ p for every Bi such that Bi ⊆ C.

We present another, quite technical, Remark which we use in what follows.

Remark 6.8. Let A,B be nontrivial events in some probability space; P
[
B
∣∣A] ≥

P[B] if and only if P [A|B] ≤ P[A].
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Proof. The two conditions are equivalent; indeed we can write:

P [A|B] ≤ P[A] iff

P [A ∩B] ≤ P[A]P[B] iff

P
[
A ∩B

]
≥ P[B]P[A] iff

P
[
B ∩A

]
≥ P[B].

We are now ready for Chernoff bounds.

6.2.2 Chernoff bounds

Following an article of Panconesi and Srinivasan [36], we now present a modified
version of the well-known Chernoff bounds as shown in [30].

Definition 6.9. Let X1, . . . , Xn be {0, 1}-valued random variables. We say
that they are negatively correlated if, for any nonempty set S ⊆ [n], we have:

P[∀i ∈ S, Xi = 1] ≤
∏
i∈S

P[Xi = 1].

Or, equivalently, if for any such S it holds E
[∏

i∈S Xi

]
≤
∏
i∈S E[Xi].

We present now a technical detail that we need in the proof of next lemma; for
a reference, see Lee [23, Lecture 5]

Claim. Let Y1, . . . , Yn be negatively correlated {0, 1}-valued random variables,
and let Y =

∑n
i=1 Yi. For any h > 0, it holds

E
[
ehY

]
≤

n∏
i=1

E
[
ehYi

]
.

Proof. By linearity of expectation and by the close formula for powers of sums
we can write, for k ∈ N+:

E
[
Y k
]

=
∑

α∈(N)n:‖α‖1=k

E [Y α1
1 · . . . · Y αn

n ] ≤
∑

α∈(N)n:‖α‖1=k

n∏
i=1

E [Y αi
i ] .

The inequality follows because the variables are negatively correlated and have
values in {0, 1}.
Let Y 1, . . . , Y n be independent random variables such that for every i the image
distribution of Y i equals the image distribution of Yi. We can rewrite the above

centred equation as E
[
Y k
]
≤ E

[
Y
k
]
; indeed, because the Y i are independent,

we have that the right hand side of the above equation is equal to E
[
Y
k
]
. Then
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we have, by Taylor’s theorem:

E
[
ehY

]
=

∞∑
i=0

hiE[Y i]

i!
≤
∞∑
i=0

hiE[Y
i
]

i!

= E

[
n∏
i=1

ehYi

]
=

n∏
i=1

E
[
ehYi

]
=

n∏
i=1

E
[
ehYi

]
.

Lemma 6.10 (Correlated Chernoff bounds, [36]). Let X1, . . . , Xn be {0, 1}-
valued random variables, let Yi = 1−Xi and let also X =

∑n
i=1Xi. If Y1, . . . , Yn

are negatively correlated, then for any δ ∈ (0, 1] it follows:

P [X ≤ (1− δ)E[X]] ≤ exp

(
−δ2E[X]

2

)
.

Proof. Let Y =
∑n
i=1 Yi, let pi = E[Yi] and let p =

∑n
i=1

pi
n = E[Y ]

n . By
definition of expectation, for any h > 0 and for every i ∈ [n] we have E[ehYi ] =
1 − pi + pie

h. We can therefore use the above claim and the arithmetic mean-
geometric mean inequality to write:

E
[
ehY

]
≤

n∏
i=1

(1− pi + pie
h) ≤ (1− p+ peh)n.

Now, observe that for any s positive real, by Markov inequality and the last
centred equation, we can write:

P[Y ≥ s] = P[ehY ≥ ehs]
≤ e−hsE[ehY ]

≤ e−hs(1− p+ peh)n.

In particular, for α = δ E[X]
n :

P[X ≤ E[X]− αn] = P[Y ≥ (p+ α)n]

≤
(
e−(p+α)h(1− p+ peh)

)n
.

Setting h such that eh = (p+α)(1−p)
p(1−p−α) , we obtain

P[Y ≥ (p+ α)n] ≤

((
p

p+ α

)p+α(
1− p

1− p− α

)1−p−α
)n

.

Our result now follows from calculus. Indeed, if we set

f(x) = ln

((
p

p+ x

)p+x(
1− p

1− p− x

)1−p−x
)
,
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what we want to show is that f
(
δE[X]
n

)
n ≤ − δ

2E[X]
2 . In order to do so, we can

notice that:

f ′(x) = ln

(
p(1− p− x)

(p+ x)(1− p)

)
,

f ′′(x) = − 1

(p+ x)(1− (p+ x))
.

Moreover, we have f(0) = f ′(0) = 0. Now we can analyse the function h(t) =

f
(
tE[X]
n

)
for t ∈ [0, 1]. Firstly, note that h′′(t) = E[X]2

n2 f ′′
(
tE[X]
n

)
; our final

computation is as follows:

h′′(t) =
E[X]2

n2
f ′′
(
t
E[X]

n

)
= −E[X]2

n2

1(
n−E[X]

n + tE[X]
n

)(
1− n−E[X]

n − tE[X]
n

)
= − E[X]2

E[X](1− t)(n− (1− t)E[X])

≤ −E[X]

n
.

Therefore, we can apply Taylor’s theorem to obtain f
(
δE[X]
n

)
≤ − δ

2E[X]
2n , as we

wanted.

6.3 Outline of the proof

We first clarify some notation and terminology.

Notation. Let G be a simple graph. With partial k-colouring of G we mean
a map c : V (G) → [k] ∪ {‘blank’} such that if uv ∈ E and also c(v) ∈ [k], then
c(v) 6= c(u).
Let c be a partial k-colouring of G, we denote with Bc the set of blank vertices
of G; that is,

Bc = {v ∈ V (G) : c(v) = ‘blank’} .
Let c be a partial k-colouring of G and v ∈ Bc, we denote with L(c)v the list of
possible colours for v. More formally,

L(c)v = {i ∈ [k] : ∀u ∈ NG(v), c(u) 6= i} .

Let us denote the partial list L(c) associated with c as L(c) = (L(c)v)v∈Bc
.

If c′ is an L(c)-acceptable colouring of G[Bc], then the unique k-colouring which
is naturally denoted by c ∪ c′ is a k-colouring of G (we mean the colouring C
such that C

∣∣
Bc

= c′ and C
∣∣
V (G)\Bc

= c).

Notation. Let G be a simple graph, let L be a list assignment for the vertices
of G with colours from [k], and let i ∈ [k] be a colour. For v ∈ V (G), we use
the following notation to indicate the vertices adjacent to v with i in their list
assignment,

TLv,i = {u ∈ NG(v) : i ∈ Lu} .
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For ` ∈ N+, we say that a partial assignment of colours L is `-good, if |Lv| ≥ `
for every vertex v, and if for every choice of v ∈ V (G) and i ∈ Lv we have∣∣TLv,i∣∣ ≤ `

8 .

We are now ready to start following the outline of the proof of Theorem 6.1.
We first need two lemmas.

Lemma 6.11. Let G be a simple graph and L an assignment of colours for its
vertices with colours from [k]. If L is `-good for some ` ∈ N+, then there exists
an L-acceptable colouring of G. In particular, G is then k-colourable.

Proof. Without loss of generality, we may assume that |Lv| = ` for any v ∈
V (G). Indeed, if this is not the case, we can take a list assignment L such that∣∣Lv∣∣ = ` and Lv ⊆ Lv for every v ∈ V (G); if we prove that G is L-colourable,
it follows that G is also L-colourable.
Let c be a random colouring of the vertices of G obtained by choosing indepen-
dently uniformly at random the colour of each vertex v among the colours of
Lv. Moreover, for any adjacent couple of vertices u, v, and for any i ∈ Lu ∩Lv,
let us denote with Auv,i the event that both u and v are mapped to i by the
random colouring c. We have, for u, v, i as above, P[Auv,i] = 1

|Lv||Lu| = 1
`2

because by hypothesis c colours the vertices uniformly and independently, and
because |Lv| = |Lu| = `. Finally, for sake of simplicity, let us denote with A the
event in which c is an L-acceptable colouring; more specifically:

A =
⋂

(uv,i)∈
⋃

uv∈E(G){uv}×(Lu∩Lv)

Auv,i.

We want to show that P
[
A
]
> 0.

If {u1, v1} and {u2, v2} are disjoint subsets of V (G), then for any adequate i, j ∈
[k] we have that Au1v1,i and Au2v2,j are mutually independent because of the
mutual independence principle (for a reference [31, Chapter 4]). Therefore, each

Auv,i can be dependent of at most
∑
h∈Lv

∣∣∣TLv,h∣∣∣+∑j∈Lu

∣∣TLu,j∣∣ ≤ ` `8 + ` `8 = `2

4

other events. Hence, we can apply the Lopsided Local Lemma 6.6 to show that
the probability of A is strictly positive.
Let Γ be the simple graph over the set

⋃
uv∈E(G) {uv}× (Lu ∩Lv) ⊆ E(G)× [k]

with (u1v1, i) and (u2v2, j) being an edge if and only if {u1, v1} and {u2, v2}
have a common element. Because of what we said in the last paragraph, this is
a lopsidependency graph for the events Auv,i (it follows by the independence of
non-adjacent events).
Then, in order to apply the Lopsided Local Lemma, we just need to observe

that by multiplying the maximum degree of Γ, which is at most `2

4 , with the

upper bound for the probability of any Auv,i, which is 1
`2 , we obtain: `2

4
1
`2 = 1

4 .

Therefore proving by Lemma 6.6 that P
[
A
]
> 0. For any c such that A occurs,

we notice that c is an L-acceptable colouring.

The following lemma is the last essential step we need to prove Theorem 6.1.

Lemma 6.12. For every positive real ε, there exists ∆ε ∈ N such that any
triangle-free graph G with maximum degree ∆ ≥ ∆ε has a partial k-colouring c
such that L(c) is `-good for k ≤ (1 + ε) ∆

ln(∆) and ` = b∆ ε
2 c.
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Theorem 6.1 follows from this last result.

Proof of Theorem 6.1. Using the notation of Lemma 6.12, we can obtain a
partial k-colouring of G such that L(c) is `-good, for k ≤ (1 + ε) ∆

ln(∆) . We can

use Lemma 6.11 to conclude that there exists a k-colouring of G. And therefore
χ(G) ≤ k ≤ (1 + ε) ∆

ln(∆) .

It remains to show that Lemma 6.12 holds.

6.4 The last piece

In order to obtain the desired result, we first need a technical lemma, that allows
us to work locally with our colourings.
By uniform random partial L(c)-acceptable k-colouring of a set of vertices N ⊆
Bc we mean an element taken uniformly at random in the set of L(c)-acceptable
[k] ∪ {‘blank’}-colourings of G[N ].

Lemma 6.13. For every ε positive real, there exists ∆ε ∈ N such that, if G is a
triangle-free graph of maximum degree ∆ ≥ ∆ε, if we set k = b(1+ε) ∆

ln(∆)c and

` = b∆ ε
2 c we have the following. Let c0 be a fixed partial k-colouring of G and

u ∈ V (G) such that {u} ∪ NG(u) ⊆ Bc0 . Let c′ be a uniformly random partial

L(c0)-acceptable k-colouring of NG(u). Then we have P[|L(c′)u| < `] ≤ ∆−3

8 ;

moreover, P
[
∃i ∈ [k] s.t. i ∈ L(c′)u and

∣∣∣TL(c′)
u,i

∣∣∣ > `/8
]
≤ ∆−3

8 .

Proof. Since G is triangle-free and NG(u) is an independent set, an appropri-
ate model for c′ is as follows: the partial colouring c′ associates to each vertex
v ∈ NG(u) a uniform random element of L(c0)v ∪ {‘blank’}; this is done inde-
pendently for each vertex. For i ∈ [k], we may notice that i ∈ L(c′)u if and only
if c′ does not assign i to any vertex in NG(u) (and hence, if and only if c′ does

not assign i to any vertex in T
L(c0)
u,i ). By our model, for v ∈ TL(c0)

u,i , it is clear
that c′ is equally likely to assign any of |L(c0)v| + 1 possible distinct values to
v; therefore we can write, for any i ∈ [k],

P[i ∈ L(c′)u] =
∏

v∈TL(c0)
u,i

(
1− 1

|L(c0)v|+ 1

)

≥
∏

v∈TL(c0)
u,i

exp

(
− 1

|L(c0)v|

)

= exp

− ∑
v∈TL(c0)

u,i

1

|L(c0)v|

 .

The first equality holds because, in order to compute the probability, we are only
interested in the colouring of the vertices adjacent to u which might be coloured

with i by c′; therefore we are only interested in the value that c′ attains in T
L(c0)
u,i .

For each of these vertices independently, the probability that c′ assigns them
the colour i is exactly 1

|L(c0)v|+1 because of our model for c′. The inequality

follows from calculus.
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Let us denote with ri the value ri = −
∑
v∈TL(c0)

u,i

1
|L(c0)v| . We have the following

bound:

−
∑
i∈[k]

ri =
∑
i∈[k]

∑
v∈TL(c0)

u,i

1

|L(c0)v|

=
∑

v∈NG(u), L(c0)v 6=∅

1

|L(c0)v|
∑
i∈[k]

1i∈L(c0)v

= |{v ∈ NG(u) : L(c0)v 6= ∅}|
≤ ∆.

We can use this upper bound to find a lower bound on the expectation of |L(c′)u|;
indeed, by convexity of the exponential function:

E[|L(c′)u|] = E

∑
i∈[k]

1i∈L(c′)u

 =
∑
i∈[k]

P[i ∈ L(c′)u]

≥
∑
i∈[k]

exp(ri) ≥ k exp

1

k

∑
i∈[k]

ri


≥ k exp

(
−∆

k

)
≥ (1 + ε)

∆

ln(∆)
exp

(
− ln(∆)

1 + ε

)
= (1 + ε)

∆
ε

1+ε

ln(∆)
≥ 2`.

The inequality in the last line hods for large enough ∆. We want to use the
Chernoff bound as shown in Lemma 6.10. In order to do so, we need to prove
that the indicator variables 1 − 1i∈L(c′)u are negatively correlated. Recalling
the definition of negative correlated random variables, we need to show that for
any nonempty set S ⊆ [k] it holds

P[∀i ∈ S, i 6∈ L(c′)u] ≤
∏
i∈S

P[i 6∈ L(c′)u].

Instead, we show that for any i ∈ [k] and for any S′ ⊆ [k] \ {i} we have
P [i 6∈ L(c′)u|S′ ∩ L(c′)u = ∅] ≤ P[i 6∈ L(c′)u]. This is sufficient; indeed, if we
index S as S = {i1, . . . , it}, then we have:

P[∀i ∈ S, i 6∈ L(c′)u] =

t∏
j=1

P [ij 6∈ L(c′)u|{i1, . . . , ij−1} ∩ L(c′)u = ∅]

≤
∏
i∈S

P[i 6∈ L(c′)u].

For fixed i and S′ as above, we have that P [i 6∈ L(c′)u|S′ ∩ L(c′)u = ∅] ≤ P[i 6∈
L(c′)u] is equivalent to P [S′ ∩ L(c′)u = ∅|i ∈ L(c′)u] ≥ P[S′ ∩ L(c′)u = ∅] be-
cause of Remark 6.8.
This last centred inequality holds true. Indeed, the conditional probability in
the LHS can be obtained by choosing the c′ image colours of the vertices of
NG(u) uniformly at random excluding i. In particular, for v ∈ NG(u), we
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colour v uniformly and independently from the other vertices with a colour
from L(c0)v \ {i}. It is therefore true that for any v ∈ NG(u) and for any
j ∈ L(c0)v \ {i}, we can write

P [c′(v) = j|i ∈ L(c′)u] ≥ P [c′(v) = j] .

And we recall that if c′(v) = j then j 6∈ L(c′)u. Therefore,

P [S′ ∩ L(c′)u = ∅|i ∈ L(c′)u] ≥ P[S′ ∩ L(c′)u = ∅]

as wanted.
Hence, by Chernoff Bound 6.10 we can write:

P[|L(c′)u| ≤ `] ≤ P
[
|L(c′)u| ≤

1

2
E[|L(c′)u|]

]
≤ exp

(
−E[|L(c′)u|]

8

)
≤ exp

(
− `

4

)
≤ ∆−3

8
.

The last inequality holds for large enough ∆.

We now show that, with high probability, P
[∣∣∣TL(c′)

u,i

∣∣∣ > `/8
]
≤ ∆−3

8 for every

i ∈ L(c′)u. Recall that, for i ∈ [k], we set ri = −
∑
v∈TL(c0)

u,i

1
|L(c0)v| ; we now use

for simplicity ρi = −ri. Moreover, let

Ψ =
{
i ∈ [k] : ρi > ∆

ε
4

}
.

To show that with high probability, there are no colours i ∈ L(c′)u with∣∣∣TL(c′)
u,i

∣∣∣ > `/8 we work separately with the colours in Ψ and in [k] \ Ψ. In-

deed, we show that with high probability Ψ∩L(c′)u = ∅, and that for i ∈ [k]\Ψ

it holds with high probability
∣∣∣TL(c′)
u,i

∣∣∣ ≤ `/8.

• We show that P[Ψ ∩ L(c′)u 6= ∅] ≤ 1
2∆−4 for high enough ∆;

P[Ψ ∩ L(c′)u 6= ∅] ≤ E [|Ψ ∩ L(c′)u|] =
∑
i∈Ψ

P[i ∈ L(c′)u]

=
∑
i∈Ψ

∏
v∈TL(c0)

u,i

P [c′(v) 6= i]

=
∑
i∈Ψ

∏
v∈TL(c0)

u,i

(
1− 1

1 + |L(c0)v|

)

<
∑
i∈Ψ

∏
v∈TL(c0)

u,i

exp

(
− 1

2L(c0)u

)

<
∑
i∈Ψ

e−
1
2ρi < ke−

∆ε/4

2 <
1

2
∆−4.

Therefore, with high probability, we are interested just in the colours in
[k] \Ψ.
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• It holds v ∈ TL(c′)
u,i if and only if v ∈ TL(c0)

u,i and c′(v) = ‘blank′. Therefore,
for any i 6∈ Ψ, we have:

E
[∣∣∣TL(c′)

u,i

∣∣∣] =
∑

v∈TL(c0)
u,i

1

|L(c0)v|+ 1
< ρi ≤ ∆ε/4.

Because NG(u) is an independent set, and because by our model of c′,

the choices of whether a v ∈ TL(c0)
u,i is in T

L(c0)
u,i (whether c′(v) = ‘blank′)

are made independently for each v, standard concentration bounds apply.
Therefore it holds (for a reference, McDiarmid [28, Theorem 2.3(b)]) for
δ > 0:

P
[∣∣∣TL(c′)

u,i

∣∣∣ > (1 + δ)E
[∣∣∣TL(c′)

u,i

∣∣∣]] < exp

−δ2
E
[∣∣∣TL(c′)

u,i

∣∣∣]
2(1 + δ

3 )

 .

Which gives us that the probability that there is one i 6∈ Ψ with
∣∣∣TL(c′)
u,i

∣∣∣ >
2∆

ε
4 is at most (for ∆ large enough):

ke−
3
8 ∆ε/4

<
1

2
∆−4.

Therefore, for large enough ∆, the probability that there exists i ∈ L(c′)u with∣∣∣TL(c′)
u,i

∣∣∣ > `
8 is less than ∆−3

8 .

We need one last result in order to be able to prove Lemma 6.12.

Proposition 6.14. Let c0 be any fixed partial k-colouring of G, let U ⊆ Bc0 and
let c′ be any fixed partial L(c0)-acceptable colouring of U . Let c be a uniformly
chosen partial k-colouring of G. Then, if we denote W = V (G) \ U , it holds:

P
[
c
∣∣
U

= c′
∣∣∣c∣∣

W
= c0

]
=

1

M
,

where M is the number of partial L(c0)-acceptable colourings of U .

Proof. There are two possible cases:

• If c
∣∣
U

is not L(c0)-acceptable, then P
[
c
∣∣
W

= c0

]
= 0, because c0∪c′ would

not be a partial k-colouring (and we know that c is).

• If c
∣∣
U

is a partial L(c0)-acceptable colouring, then

P
[
c
∣∣
U

= c′
∣∣∣c∣∣

W
= c0

]
=

P[c = c0 ∪ c′]

P
[
c
∣∣
W

= c0

]
=

1

#L(c0)-accept. col. of G
.

The last inequality holds because both the numerator and the denominator
are independent from c′; therefore, every L(c0)-acceptable c′ has the same
probability of being equal to c

∣∣
U

.
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We are finally ready to prove our main lemma.

Proof of Lemma 6.12. Let c be chosen uniformly at random in the set of all
partial k-colourings of G. For every u ∈ V (G) we define the following bad event,

Au =

{
u ∈ Bc and

(
|L(c)u| < ` or

∣∣∣TL(c)
u,i

∣∣∣ > `

8
for some i ∈ L(c)u

)}
.

We prove that, with positive probability, none of these bad events Au happens,
and therefore with positive probability L(c) is `-good.
We now build a lopsidependency graph Γ for the events Au; we set Γ over V (G)
as follows: we add an edge uv in E(Γ) if u and v have distance at most 3 in G.
Therefore ∆(Γ) ≤ ∆3 =: d. In order to apply Lemma 6.6 we need to show that

for u ∈ V (G) and S ⊆ V (G)\(NΓ(u)∪{u}) we have P
[
Au
∣∣⋂

v∈S Av
]
≤ p = ∆−3

4 .
In this way, we obtain 4pd ≤ 1 and hence we can apply the Lopsided Local
Lemma 6.6.
In the remaining of the proof, we denote by N2

G(v) the set of vertices with
distance at most 2 from v in G. For any v ∈ V (G), the event Av is determined
by c

∣∣
N2

G(v)
.

Fix a vertex u ∈ V (G) and S ⊆ V (G) \NΓ(u); by last paragraph, we have that⋂
v∈S Av is determined by c

∣∣
V (G)\NG(u)

. In particular, this means that for every

partial colouring c0 of V (G) \NG(u) we either have that
⋂
v∈S Av holds or not;

hence the partition of events in which each set is induced by a partial colouring
of V (G) \ NG(u) behaves well with respect to the conditional probability of⋂
v∈S Av. Therefore, by the law of total probability 6.7, it suffices to show

that, for every partial colouring c0 of V (G) \NG(u), we can write:

P
[
Au

∣∣∣∣c∣∣V (G)\NG(u)
= c0

]
≤ ∆−3

4
.

To this end, let c0 be a partial colouring of V (G) \ NG(u). Without loss of
generality, we may assume that u ∈ Bc0 , because otherwise the probability of
Au is null.
Now, by Proposition 6.14, c

∣∣
NG(u)

conditioned on c
∣∣
V (G)\NG(u)

= c0 is a uniform

random partial L(c0)-acceptable colouring of NG(u).
We are now in the same situation as the one in Lemma 6.13, therefore we can
conclude that

P
[
Au

∣∣∣∣c∣∣V (G)\NG(u)
= c0

]
≤ ∆−3

4
,

as needed.
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7 List colourability of non-uniform hypergraphs

In this final section, we present a generalisation of a result due to Duraj et
al. [11]. This is another extremal example for non-2-colourable structures; the
study of these objects relate to the Pentagon Conjecture, as we saw in Section
4.

7.1 A short history of the problem

One problem that has inspired a lot of research in Combinatorics is the one of
finding the smallest value m(k) such that there exists a k-uniform hypergraph
with m(k) edges that is not 2-colourable. This problem was formulated by Erdős
and Hajnal [14] in the 60s. While the best known upper bound for m(k), due
to Erdős, is dated back to 1964 [13] and states m(k) = O(k2) · 2k; the best
lower bound, due to Radhakrishnan and Srinivasan [37], is more recent and
gives m(k) = Ω((k/ ln k)1/2) · 2k. Moreover, thanks to Lovász [25] it is known
that deciding whether a k-uniform hypergraph is 2-colourable is a NP-complete
problem for k ≥ 3.
An immediate generalisation to the above problem asks to find, for r ∈ N≥2

the minimum number m(k, r) for which there exists a k-uniform hypergraph
with m(k, r) edges that is not r-colourable. This generalised formulation of the
problem is due to Herzog and Schönheim [18] in the early 70s; in the same
paper where they formulate this problem, they also provide the upper bound
m(k, r) ≤ (1 + O( 1

k ) e2k
2(ln(r))rk, which remains the best known. As in the

case for r = 2, the lower bound had more success; the currently best is due to
Kostochka [20].

Theorem 7.1 (Kostochka, [20]). Let r <
(

1
8 ln(ln(k)/2)

)1/2
then for a =

blog2(r)c it holds:

m(k, r) > e−4r2

(
k

ln(k)

) a
a+1

rk.

Another direction in which this problem can be generalised is by relaxing the
uniformity condition (this reformulation is due to Erdős [12]). Let H be a
k-uniform hypergraph and suppose that we colour each vertex of V (H) inde-
pendently, with a colour taken uniformly at random among r colours. It is
immediate to notice that the expected number of monochromatic edges is

q(H) =
∑
e∈E

r1−|e|.

Because q(H) = |E| · r1−k when H is uniform, finding m(k, r) is equivalent to
find a k-uniform hypergraph that is not r-colourable with minimal value of q(H).
But the definition of q(H) does not require the k-uniformity, hence this last for-
mulation allows us to generalise the problem to non-uniform hypergraphs. The
case for r = 2 of this generalised problem has been studied by Beck, Shabanov
et al. The best known result is as follows.

Theorem 7.2 (Duraj, Gutowski and Kozik, [11]). There exists a constant δ > 0
such that any hypergraph H = (V,E) with k = min {|e| : e ∈ E} and q(H) ≤
δ · ln(k) is 2-colourable.

In this section, we provide a generalisation of this result to list-colourings.
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7.2 Preliminaries

For any r positive integer, and for H = (V,E) a hypergraph, an r-list for H is
a list of allowed colours L = (Lv)v∈V such that for any v ∈ V it holds |Lv| = r.
If for any given r-list L = (Lv)v∈V we have that H is L-colourable, we say that
H is r-list colourable.
It is practical to denote with smin(H) = min {|e| : e ∈ E}; and, for j ≥ smin(H),
we define Ej = {e ∈ E : |e| = j}; finally, we denote qj(r,H) :=

∑
e∈Ej

r1−j and

we let q(r,H) :=
∑
j≥smin(H) qj(H).

We prove the following result.

Theorem 7.3. For every r ∈ N≥2, there exists δ = δ(r) > 0 such that if

H = (V,E) is an hypergraph with k = smin(H) and q(r,H) ≤ δ ln(k)
ln ln(k) then H

is r-list-colourable.

We now fix r ∈ N≥2 for the rest of this section. We write q = q(H) = q(H, r)
and similarly for qj .

Remark 7.4. Notice that every H with q(H) ≤ 1 is r-list-colourable (the proba-
bility that a random uniform colouring is proper is positive); therefore in what
follows we can assume without loss of generality that q(H) > 1. Also, for some
fixed but yet to be decided N = N(r) ∈ N, we can focus only on hypergraphs H
with smin(H) ≥ N . Indeed, by setting δ < 1

N we obtain that only hypergraphs
H with smin(H) ≥ N satisfy the hypothesis.
Therefore, from now until the end of this section, we fix a hypergraphH = (V,E)

with k = smin(H) ≥ N and 1 < q ≤ δ ln(k)
ln ln(k) for some δ yet to be determined

(but at most 1
N , where N is yet to be determined too). Moreover we, fix an

r-list of allowed colours L = (Lv)v∈V . We want to prove that H is L-colourable.

7.3 Definition of the random colouring

In this subsection, we define a random L-colouring AL of H, and we show that
AL is a proper colouring with positive probability.
Let L =

⋃
v∈V Lv, and let ≺ be a cyclic total order on L (arbitrary, but fixed

from now on). For v ∈ V and c ∈ Lv, let us also denote Pv(c) the previous
element of c in Lv with respect to ≺; similarly, let Sv(c) be the next element of
c in Lv with respect to ≺.
The random colouring AL is defined in two parts as follows.

part 1 Random colouring and weight. Let (Cv)v∈V be a sequence of independent
random variables, in which Cv has image space Lv and uniform distrubu-
tion (we call this colouring the initial colouring C, sometimes we refer to
(Cv)v∈A with CA for some set A). Let (Wv)v∈V be a sequence of inde-
pendent random variables (also independent on the sequence (Cv)v∈V ), in
which Wv is taken uniformly at random in [0, 1] (we refer to these values
as the weights of the vertices, and we also may use the notation WA for
some set A ⊂ V ).

part 2 Recolouring. After part 1, we define AL as follows. Let V = {v1, . . . , vn}
in such a way that for every i we have Wvi ≤Wvi+1

(if there are choices to
make, let them be taken uniformly at random; we may notice that if the
Wv are all distinct, the procedure is completely deterministic). We define
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AL one vertex of V one after the other, starting with v1 and proceeding
until vn.

If vi is the last vertex of a C-monochromatic edge e (meaning that we
already defined the colour AL on all the other vertices of e), and if AL(z) =
Cz for all the vertices in e \ vi, we define AL(v) = Sv(Cvi) and we say that
e is a reason to recolour vi. Else, we define AL(vi) = Cvi .

Remark 7.5. If all the weights in the sequence (Wv)v∈V are distinct, part 2 is
deterministic (the random choices are done in part 1).

We now define some events. Let α = r2 · 5000 and ε = 1
1000 .

z) Two vertices have the same weight. Let Z be the event that there exist
v, w ∈ V such that Wv = Ww. We have P[Z] = 0 because the Lebesgue
measure is non-atomic.

a) Too many initially monochromatic edges. The expected number of C-
monochromatic edges is at most q. This follows by linearity of expectation
and noticing that for every edge e the probability that e is monochromatic
is at most r1−|e| (the value depends on L). Let A be the event that
there are more than αq monochromatic edges. By Markov’s inequality,
P[A] < 1

α .

b) A light monochromatic edge. Let us denote pj := ln(αq)
j . There is δ0 > 0

not depending on H (but dependent on r) such that if 1 < q < δ0
ln(k)

ln ln(k)

then pj ∈ (0, 1). Let us assume δ < δ0.

An edge e ∈ Ej is called light if W (e) := maxv∈eWv ≤ 1 − pj . The
expected number of light monochromatic edges of size j is at most:

qjr
j−1 · (1− pj)j · r1−j <

qj
αq
,

where the first term qjr
j−1 equals |Ej |. If we fix an edge e ∈ Ej the term

(1 − pj)j is the probability that every vertex in e has weight between 0
and 1−pj ; while the last vertex is an upper bound on the probability that
e is monochromatic.

Therefore, the expected number of light monochromatic edges is at most
1
α . Let B be the event that there is a light monochromatic edge; then
P[B] ≤ 1

α .

c) Too many almost monochromatic edges. Let Qj be the random variable
that counts the number of almost monochromatic edges of size j (an al-
most monochromatic edge is an edge in which all vertices have the same
colour, except for at most one vertex). Since the number of possible al-
most monochromatic edges cannot exceed the number of certifying pairs
associated with edges of size j (ordered pairs (e, v) with e of size j and
v ∈ e), we have that:

E[Qj ] ≤ qjrj−1 · j · r2−j = r · j · qj ,

where the first two terms qjr
j−1 · j = |Ej | j account for the number of

possible certifying pairs associated with edges of size j; while r2−j is
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the probability that, given a certifying pair (e, v), it holds that e \ v is
monochromatic.

We define Y :=
∑
j
Qj

j ; from the above upper bound, we obtain E[Y ] ≤ rq.
Let C denote the event that Y > αq; by Markov’s inequality, P[C] < r

α .

Let G be the event G = ¬(Z ∨A ∨ B ∨ C). We have P[G] ≥ 1− ε.

7.4 Analysis of the colouring

We start with a technical lemma, then we proceed.

Lemma 7.6. Let X be a nonnegative random variable, bounded above by M ;
suppose moreover that E[X] ≤ λM . Then, for any convex function f : [0,M ]→
[0,∞) with f(M) ≥ f(0), the following inequality holds:

E[f(X)] ≤ λf(M) + (1− λ)f(0).

It is important to notice the following.

Remark 7.7. Remember that our goal is to prove that with positive probability
AL is a proper L-colouring of H (where H is the hypergraph we fixed and L is
the arbitrary r-list for H that we choose). Let MAL(e) be the event that the
edge e is AL-monochromatic. We have:

P[AL proper] = 1− P[∃e :MAL(e)]

= 1− (P[G ∩ ∃e :MAL(e)] + P[G ∩ ∃e :MAL(e)])

≥ 1− (P[G ∩ ∃e :MAL(e)] + P[G])

≥ 1− ε−
∑
e∈E

P[G ∩MAL(e)].

Let us fix an arbitrary edge e. Because each vertex of e has a list of size r,
it holds that e can be monochromatic of at most r distinct colours. Let us
fix Red ∈

⋂
v∈e Lv arbitrarily and let MRed

AL (e) be the event that e is coloured
Red-monochromatically by AL. We prove

P[G ∩MRed
AL (e)] ≤ 1

(r + 1) · q · r|e|−1
.

This allows us to write:

P[AL proper] ≥ 1− ε−
∑
e∈E

∑
Red∈

⋂
v∈e Lv

P[G ∩MRed
AL (e)]

≥ 1− ε−
∑
e∈E

r · r1−|e|

(r + 1) · q
= 1− ε− r

r + 1
> 0.

Therefore, Theorem 7.3 follows from the following lemma.

Lemma 7.8. Let e ∈ E and Red ∈
⋂
v∈C Lv. Then

P[G ∩MRed
AL (e)] ≤ 1

(r + 1) · q · r|e|−1
.
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Let us now fix for the rest of this section e ∈ E of size s and Red ∈
⋂
v∈V Lv (if

this set is empty the above lemma holds trivially).

Remark 7.9. Almost surely, AL is a deterministic function that has as input
some random variables. In particular, we have AL = AL((Cv)v∈V , (Wv)v∈V ).
We may notice that:

i) LetMRed
C be the event that e is C-monochromatic. Then P[MRed

C ∩MRed
AL ] =

0. Indeed, let ((Cv)v∈V , (Wv)v∈V ) be in Z ∩ MRed
C . Then part 2 of

the AL algorithm recolours at least one of the vertices of e; therefore
((Cv)v∈V , (Wv)v∈V ) is not in MRed

AL .

ii) Let f be any edge in E and v ∈ f ; we denote with Hf,v the event
that f is the reason to recolour v. Let f ∈ E with |e ∩ f | > 1. Then
P[(
⋃
v∈e∩f Hf,v) ∩MRed

AL (e)] = 0. Indeed, suppose that f is a reason to
recolour v ∈ e ∩ f ; then v is the heaviest vertex of f and all the other
vertices of f were not recoloured during part 2 (in particular, there is an-
other vertex w in f ∩ e for which AL(w) = C(w) 6= AL(v)). Therefore the
final colouring of e is not monochromatic. This means that if AL colours
e monochromatically, and |f ∩ e| > 1, then f is not the reason to recolour
v for any v in the intersection (if we are in G).

iii) For any ((Cv)v∈V , (Wv)v∈V ) ∈ G ∩MRed
AL (e) there is at least 1 and at most

αq vertices in e with initial colour different from Red. Indeed, in part 2,
there are at most many recoloured vertices as many initially monochro-
matic edges, and because ((Cv)v∈V , (Wv)v∈V ) ∈ A we have that there are
at most αq initially monochromatic edges.

iv) Let us fix for this paragraph a vector C ′V \e = ((C ′v)v∈V \e) (which repre-

sents a partial colouring of V ); for any edge f 6= e such that |f ∩ e| = 1,
let us say that f endangers the vertex v = f ∩ e if f \ e is Pv(Red)-
monochromatic with respect to C ′V \e. We call severity of v the minimum
size of f such that f endangeres v, and we denote with Rej the set of

vertices of e that are endgangered with severity j; we also set
∣∣Rej∣∣ = Rej .

It is important to notice that if ((Cv)v∈V , (Wv)v∈V ) ∈ G∩MRed
AL (e) is such

that CV \e = C ′V \e, then every C-non-Red vertex w in e is endangered, and

C-coloured with Pw(Red). Therefore, if the severity of such a w is j, then
Ww ≥ 1 − pj because the vector is in B and there is a C-monochromatic
edge of size j with heaviest vertex w.

The next step in our proof of Lemma 7.8 is as follows.
We may notice that Rej depends only on CV \e; hence, we define the random

variable X =
∑
j≥k

∣∣Rej∣∣ ·pj over the probability space of the uniform colourings
of V \ e.

Proposition 7.10. Let x be a value such that P[X = x] > 0. Then,

P
[
G ∩MRed

AL (e)
∣∣X = x

]
<
ex − 1

r|e|
.

Proof. Let us fix a vector C ′V \e = ((C ′v)v∈V \e) as before. We want to compute
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P
[
G ∩MRed

AL (e)
∣∣∣CV \e = C ′V \e

]
, i.e. the probability of G ∩ MRed

AL (e), when we

impose the value of the colouring in V \ e (notice that X, as Rej , is completely
determined by CV \e). We have the following bound:

P
[
G ∩MRed

AL (e)
∣∣∣CV \e = C ′V \e

]
≤

≤ 1

r|e|−
∑

j R
e
j

∑
1≤ck+...≤αq

∏
j

(
Rej
cj

)(pj
r

)cj (1

r

)Re
j−cj

.

The RHS term is explained as follows:

- The random variables Ce are independent from CV \e; also observe that,
if (CV ,Wv) ∈ G ∩ MRed

AL (e) we must have that all the non endangered
vertices in e are coloured Red. This happens with probability 1

r
|e|−

∑
j Re

j

in the conditioned probability space (as in the original space, because of
independence), which accounts for the first term in the RHS.

- The sum represents a partition. We are partitioning the event (CV ,WV ) ∈
G ∩MRed

AL (e) and we want to study the conditional probability of each of
the partitioning sets. Each of the partitioning set is determined by the
choice of which of the endangered vertices is coloured Red by C and which
vertex v is coloured Pv(Red). In the above RHS, cj corresponds to the
number of initially non-Red vertices in Rej . In each partitioning events,
ck, ck+1, . . . is fixed. Once the number of non-Red elements in each Rej is

fixed, we have
(
Re

j
cj

)
possible ways in which to choose the vertices that have

to be non-Red (and therefore they have to be coloured Pv(Red)) among
the endangered vertices.

- At this point, every vector in our partitioning event has the same colouring
(because we selected the vectors with a specific pattern of Red vertices in e,
and the colouring of V \ e is determined). Moreover, each of these vectors
in G ∩MRed

AL (e) has to be such that each of the non-Red vertices in Rej has
weight at least 1−pj . The probability of this partitioning event is exactly(pj
r

)cj ( 1
r

)Re
j−cj . Indeed, all the random variables are independent, the

probability that one vertex is coloured by exactly one fixed colour is 1
r

(this colour may be either Red or Pv(Red)), and the probability that a
specific vertex has weight at least 1 − pj is pj (for any vertex it is the
same).

Because in the inequality above we are just using the value of Rej we can write:

P
[
G ∩MRed

AL (e)
∣∣(Rej)j] ≤ 1

rs

αq∑
c=1

∑
ck+...=c

∏
j

(
Rej
cj

)
p
cj
j

≤ 1

rs

αq∑
c=1

1

c!

∑
j

Rej · pj

c

.

The first inequality follows from calculus, while the second inequality is due to

the multinomial theorem and the bound
(
a
b

)
≤ ab

b! . We may also notice that the
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last expression can be written as a function of X. Therefore we obtain:

P
[
G ∩MRed

AL (e)
∣∣X = x

]
≤ 1

rs

αq∑
c=1

xc

c!
<
ex − 1

rs
.

We now proceed with the proof of the main lemma.

Proof of lemma 7.8. Recalling the definition of Rej and Qj , it is clear that it
holds Rej ≤ Qj . This implies:

X =
∑
j

Rejpj ≤ ln(αq) ·
∑
j

Qj
j

= ln(αq) · Y.

In particular, in every vector in G, it holds X ≤ ln(αq)αq. Therefore we have:

P[G ∩MRed
AL (e)] =

∑
x∈R

P
[
G ∩MRed

AL (e)
∣∣X = x

]
=

∑
x≤ln(αq)αq

P[X = x] · P
[
G ∩MRed

AL (e)
∣∣X = x

]
<

∑
x≤ln(αq)αq

P[X = x]
ex − 1

rs

=
1

rs
E
[
eX
′
− 1
]
,

where X ′ = X · 1≤ln(αq)αq. Using the fact that X ′ ≤ X ≤ ln(αq)Y we obtain:

E[X ′] ≤
∑
j

qjpj ≤
q ln(αq)αq

k
.

Moreover, by Lemma 7.6 applied over X ′ with λ = q ln(αq)αq
k and with M =

ln(αq)αq,

E[eX
′
− 1] ≤ exp(ln(αq)αq)

αk
.

Which implies:

P[G ∩MRed
AL (e)] <

1

rs
exp(ln(αq)αq)

αk
.

Now let δ < 1
2α (which we can do because α does not depend on H). Because

q < δ
ln(k)

ln ln(k)
,

for k large enough (as we said, we can assume this by asking δ < 1
N for some

fixed N not depending on H) we obtain ln(αq) ≤ ln ln(k), which gives

exp(ln(αq)αq)

αk
≤ 1

αk
exp

(
δ
α ln k

ln ln k
ln ln k

)
≤ k−

1
2

α
.

For k large enough, this last term is less than 1
r(r+1)q which gives us

P[G ∩MRed
AL (e)] ≤ 1

(r + 1)qrs−1
.
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[10] M. DeVos and R. Šámal, High-Girth Cubic Graphs are Homomorphic to
the Clebsch Graph, Journal of Graph Theory 66 (2011), pp. 241–259.

[11] L. Duraj, G. Gutowski, and J. Kozik, A note on two-colorability of nonuni-
form hypergraphs, 2018, arXiv: 1803.03060 [math.CO].
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